

Cooling, Masses and Emulators

Sudhanva Lalit 10 December, 2024 INT, Washington

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics and used resources of the Facility for Rare Isotope Beams (FRIB) Operations, which is a DOE Office of Science User Facility under Award Number DE-SC0023633.

Accreting Neutron Stars Observables

Accretion Outburst

Accreting Neutron Stars Observables

Accretion Outburst

Quiescence

Accreting Neutron Stars Observables

Accretion Outburst

Quiescence

KS 1731-260 observed with Chandra X-ray Satellite

Mass Model	Urca Pair
BCPM	⁵⁹ Ca ↔ ⁵⁹ Sc

Mass Model	Urca Pair
BCPM	⁵⁹ Ca ↔ ⁵⁹ Sc
DZ31	⁵⁹ Sc ↔ ⁵⁹ Ti
FRDM-2012	⁵⁹ Sc ↔ ⁵⁹ Ti
WS4RBF	⁵⁹ Sc ↔ ⁵⁹ Ti

Mass Model	Urca Pair
BCPM	⁵⁹ Ca ↔ ⁵⁹ Sc
DZ31	⁵⁹ Sc ↔ ⁵⁹ Ti
FRDM-2012	⁵⁹ Sc ↔ ⁵⁹ Ti
WS4RBF	⁵⁹ Sc ↔ ⁵⁹ Ti
D1M	⁵⁷ Sc ↔ ⁵⁷ Ti
HFB-24	${}^{57}\text{Sc} \leftrightarrow {}^{57}\text{Ti}$
UNEDF1	${}^{57}\text{Sc} \leftrightarrow {}^{57}\text{Ti}$
UNEDF2	${}^{57}Sc \leftrightarrow {}^{57}Ti$

Mass Model	Urca Pair
ВСРМ	⁵⁹ Ca ↔ ⁵⁹ Sc
DZ31	⁵⁹ Sc ↔ ⁵⁹ Ti
FRDM-2012	⁵⁹ Sc ↔ ⁵⁹ Ti
WS4RBF	${}^{59}\text{Sc} \leftrightarrow {}^{59}\text{Ti}$
D1M	⁵⁷ Sc ↔ ⁵⁷ Ti
HFB-24	⁵⁷ Sc ↔ ⁵⁷ Ti
UNEDF1	⁵⁷ Sc ↔ ⁵⁷ Ti
UNEDF2	${}^{57}\text{Sc} \leftrightarrow {}^{57}\text{Ti}$
SkM*	⁵⁷ Ca ↔ ⁵⁷ Sc
SkP	⁵⁷ Ca ↔ ⁵⁷ Sc
SLy4	⁵⁷ Ca ↔ ⁵⁷ Sc
SV-Min	⁵⁷ Ca ↔ ⁵⁷ Sc
UNEDF0	⁵⁷ Ca ↔ ⁵⁷ Sc

Bayesian Model Averaging – A Brief Introduction

Courtesy: P. Guiliani

Courtesy: P. Guiliani

S. Lalit, 10 Dec, 2024, Slide 14

Neutrons

*Warning: Collinearity of models affects the BMA

Modeling Residuals

Modeling Residuals $y_i = y^{exp}(x_i) - y^{th}(x_i)$ $y_i = f(x_i, \theta) + \sigma \epsilon_i$

Formulation of a GP

 $f(x,\theta) \sim \mathcal{GP}(\mu, k_{\eta,\rho}(x, x'))$ $k_{\eta,\rho}(x, x') = \eta^2 e^{\sum_i -\frac{(x_i - x'_i)^2}{\rho_{x_i}}}$

Input features: $x_i := \{Z, N, p, \delta\}$

p is the promiscuity (shell effects) and $\pmb{\delta}$ is the pairing factor

Model Parameters: $\theta := {\mu, \eta, \rho_i}$

R. Jain et al., (to be submitted to PRC)

Normalized Weights

$$w_k = p(\mathcal{M}_k | y^*) = \frac{p(y^* | \mathcal{M}_k) \pi(\mathcal{M}_k)}{\sum_{\ell=1}^{11} p(y | \mathcal{M}_\ell) \pi(\mathcal{M}_\ell)}$$

Evidence Integrals $p(y|\mathcal{M}_k) = \int p(y|\theta_k, \mathcal{M}_k) \pi(\theta_k, \mathcal{M}_k) d\theta_k$

R. Jain et al., (to be submitted to PRC)

Normalized Weights

$$w_k = p(\mathcal{M}_k | y^*) = \frac{p(y^* | \mathcal{M}_k) \pi(\mathcal{M}_k)}{\sum_{\ell=1}^{11} p(y | \mathcal{M}_\ell) \pi(\mathcal{M}_\ell)}$$

Evidence Integrals $p(y|\mathcal{M}_k) = \int p(y|\theta_k, \mathcal{M}_k) \pi(\theta_k, \mathcal{M}_k) d\theta_k$

Final Predictions

$$y(x) = \sum_{k} w_{k} y^{(k)}(x)$$

$$\sigma_{y}^{2}(x) = \sum_{k} w_{k} (y^{(k)}(x) - y(x))^{2} + \sum_{k} w_{k} \sigma_{y_{k}}^{2}(x)$$

R. Jain et al., (to be submitted to PRC)

Impact on Urca Cooling

Summary: Cooling + Masses

- Quantifying the strength of Urca Cooling in accreting neutron star crusts is essential to improve crust models.
- Urca cooling rates are sensitive to nuclear masses.
- A quantified global nuclear mass model developed in Bayesian Framework predicts a lower cooling at a higher depth.

Reduced Order Models

- Surrogate models that are simplified versions of high-dimensional models to reduce computational effort while preserving accuracy
- Have been used in fluid dynamics, structural mechanics, control systems, etc.
- Methods include:
 - Proper Orthogonalization Decomposition: Reduces dimensions by identifying dominant modes in data
 - Reduced Basis Methods: Builds reduced models from snapshots of high fidelity solutions
 - Balanced Truncation: Focuses on preserving system dynamics while reducing state space
- Advantages:
 - Reduces computational costs and times
 - Enables real-time analysis and control of systems
 - Facilitates understanding and decision-making in complex systems

Dynamic Mode Decomposition

- Dynamic Mode Decomposition (DMD) is a data-driven technique used to analyze the dynamics of complex systems by decomposing them into spatiotemporal modes. It bridges numerical simulation and experimental data, revealing key features of system evolution.
- Key Features:
 - Extracts dominant dynamic structures from time-series data.
 - Provides insight into the system's temporal behavior, including growth, decay, and oscillations.
 - Works with both linear and nonlinear systems (via linear approximations).
- How it Works:
 - Collect snapshots of the system's state at different time steps.
 - Represent the data as a matrix and approximate it using low-rank matrices.
 - Identify eigenvalues and eigenvectors to derive modes and their dynamics.

Dynamic Mode Decomposition

Advantages:

- Requires no prior knowledge of the governing equations.
- Captures dominant dynamics with reduced complexity.
- Limitations:
 - Assumes linear dynamics between snapshots.
 - May require modifications (e.g., Extended DMD) for highly nonlinear systems.

Star Log-extended eMulator (SLM)

- Logarithm-based emulator that overcomes the limitations of DMDs
 - Does not assume linear dynamics between snapshots
 - Includes Extended DMD formalism for nonlinear systems
- Advantages:
 - Understands the underlying dynamics of system
 - High accuracy, low computational cost
 - Uses greedy algorithms to make predictions

Applications: Tolmann-Oppenheimer-Volkoff Equations

Emulating the TOV equations: dots – emulations, curves – HF solutions

ArXiv: 2411.10556

Applications: Tolmann-Oppenheimer-Volkoff Equations

Emulating the pressure, mass and k2 curves: dots – data, curves – emulations

ArXiv: 2411.10556

Applications: Tolmann-Oppenheimer-Volkoff Equations

Parametric SLM (pSLM) predictions: the pressure, mass and k2 curves: dots – data, curves – emulations

- -- Requires only 15 data sets for training
- -- Speeds up the calculation by a factor of 30,000

ArXiv: 2411.10556

Applications: Reaction Networks, CNO cycle

Abundances for various elements in the CNO cycle using pSLM

Applications: Reaction Networks, CNO cycle

Abundances for various elements in the CNO cycle using pSLM

Summary: Emulators

- Emulators are a useful alternative to high fidelity solvers for uncertainty quantification
- They are computationally inexpensive
- SLM accuracy seems to be independent of the number of parameters used

Thank you!

Hendrik Schatz

Kyle Godbey

Witek Nazarewicz

Xilin Zhang

Rahul Jain

