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Accreting Neutron Stars Observables
Accretion OutburstAccretion Outburst Quiescence

Brown and Cumming, ApJ (2009)

Accreting Neutron Stars Observables

Accretion on Accretion off

Persistent X-ray flux
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Accretion Outburst Quiescence

KS 1731-260
observed with

Chandra X-ray Satellite

Accreting Neutron Stars Observables
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Mass Model Urca Pair

BCPM 59Ca ↔ 59Sc
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SkP 57Ca ↔ 57Sc

SLy4 57Ca ↔ 57Sc
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Bayesian Model Averaging
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Great job!

*

*Warning: Collinearity of models affects the BMA
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Modeling Residuals

Modeling Residuals

Formulation of a GP

Input features:
xi := {Z, N, p, }𝜹

p is the promiscuity (shell effects) and  is the 𝜹
pairing factor

Model Parameters:
 𝜃 := {μ, η, ⍴i}

 ⍴ = 0.5  ⍴ = 1.0  ⍴ = 2.0η
μ

R. Jain et al., (to be submitted to PRC)
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Bayesian Model Averaging
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Normalized Weights

Evidence Integrals

R. Jain et al., (to be submitted to PRC)
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Bayesian Model Averaging

Normalized Weights

Evidence Integrals

Final Predictions

R. Jain et al., (to be submitted to PRC)
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Impact on Urca Cooling
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59Sc - 59Ti

59Ca - 59Sc

57Sc - 57Ti

Mass Model Urca Pair

BMA 59Ca ↔ 59Sc
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Quantifying the strength of Urca Cooling in accreting neutron star crusts is essential to 
improve crust models.

Urca cooling rates are sensitive to nuclear masses. 

A quantified global nuclear mass model developed in Bayesian Framework predicts a 
lower cooling at a higher depth.

Summary: Cooling + Masses
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Surrogate models that are simplified versions of high-dimensional models to reduce 
computational effort while preserving accuracy 

Have been used in fluid dynamics, structural mechanics, control systems, etc.

Methods include:
 Proper Orthogonalization Decomposition: Reduces dimensions by identifying dominant modes in data

 Reduced Basis Methods: Builds reduced models from snapshots of high fidelity solutions

 Balanced Truncation: Focuses on preserving system dynamics while reducing state space

Advantages:
 Reduces computational costs and times

 Enables real-time analysis and control of systems

 Facilitates understanding and decision-making in complex systems

Reduced Order Models
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Dynamic Mode Decomposition (DMD) is a data-driven technique used to analyze the 
dynamics of complex systems by decomposing them into spatiotemporal modes. It 
bridges numerical simulation and experimental data, revealing key features of system 
evolution.

Key Features:

 Extracts dominant dynamic structures from time-series data.

 Provides insight into the system's temporal behavior, including growth, decay, and oscillations.

 Works with both linear and nonlinear systems (via linear approximations).

How it Works:

 Collect snapshots of the system's state at different time steps.

 Represent the data as a matrix and approximate it using low-rank matrices.

 Identify eigenvalues and eigenvectors to derive modes and their dynamics.

Dynamic Mode Decomposition
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Advantages:

 Requires no prior knowledge of the governing equations.

 Captures dominant dynamics with reduced complexity.

Limitations:

 Assumes linear dynamics between snapshots.

 May require modifications (e.g., Extended DMD) for highly nonlinear systems.

Dynamic Mode Decomposition
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Logarithm-based emulator that overcomes the limitations of DMDs

 Does not assume linear dynamics between snapshots

 Includes Extended DMD formalism for nonlinear systems

Advantages:
 Understands the underlying dynamics of system

 High accuracy, low computational cost 

 Uses greedy algorithms to make predictions

Star Log-extended eMulator (SLM)
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Applications: Tolmann-Oppenheimer-Volkoff Equations
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Emulating the TOV equations: dots – emulations, curves – HF solutions

ArXiv: 2411.10556
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Applications: Tolmann-Oppenheimer-Volkoff Equations
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Emulating the pressure, mass and k2 curves: dots – data, curves – emulations

ArXiv: 2411.10556
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Applications: Tolmann-Oppenheimer-Volkoff Equations
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Parametric SLM (pSLM) predictions: the pressure, mass and k2 curves: dots – data, curves – emulations

ArXiv: 2411.10556

-- Requires only 15 data sets for training
-- Speeds up the calculation by a factor of 30,000
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Applications: Reaction Networks, CNO cycle
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Abundances for various elements in the CNO cycle using pSLM

Training Data

Test Case
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Emulators are a useful alternative to high fidelity solvers for uncertainty quantification

They are computationally inexpensive  

SLM accuracy seems to be independent of the number of parameters used

Summary: Emulators
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Thank you!

Hendrik Schatz

Witek Nazarewicz

Kyle Godbey

Rahul Jain

Xilin Zhang
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