

Nuclear parton structure in heavy-ion collisions with CMS (towards the EIC)

Heavy Ion Physics in the EIC Era August 19-24, 2024, INT (Seattle)

<u>Gian Michele Innocenti</u> Massachusetts Institute of Technology

Constraining parton dynamics in nuclei in (x,Q²)

Exploit the advantages of heavy-ion collisions to study parton dynamics in the widest region of x and Q² In nuclei, high-density effects are expected at higher x-values

K. Hencken, M. Strikman et al. Phys. Rept. 458 1-171, 2008

G.M. Innocenti, MIT, Heavy Ion Physics in the EIC Era, 19-24 August 2024

Searches for non-linear evolution equations

- do we see saturation?
- what is its shape in (x,Q^2) ?
- what is the dependence on A?
- <u>can we characterize the transition across the different regimes?</u>

K. Hencken, M. Strikman et al. Phys. Rept. 458 1-171, 2008

Our toolbox: hadronic and UPC collisions

proton-nucleus hadronic collisions (e.g. pPb pr pO)

ultra-peripheral heavy-ion collisions

Wide set of experimental observables in the largest region of p_T and pseudorapidity:

- \rightarrow sensitivity to gluon and quark nPDFs
- \rightarrow large region of (x,Q²)

 $x_{ion} \sim \frac{M_V}{\sqrt{s_{NN}}} exp(-y_V)$

CMS as a broad-spectrum high-density QCD experiment

Wide pseudorapidity coverage, from high to low pt:

- Charged tracks in $|\eta_{\text{tracks}}| \leq 3$
- Calorimetry (ECAL/HCAL) in |ncal ≤ 5.2
- Muon detectors in $\eta_{muon} \leq 3.0$
- ZDC + PPS detectors

 \rightarrow With even stronger capabilities after HL-LHC upgrades

Large-coverage high-rate detector for hadronic and EM probes

- charged hadrons
- jets, heavy-flavour hadrons
- isolated photons, Z/W bosons

G.M. Innocenti, MIT, Heavy Ion Physics in the EIC Era, 19-24 August 2024

Constraining nuclear PDFs at the LHC with "hadronic" collisions

W+- measurements in pPb with CMS

Q² ~ M²_w, (anti)shadowing valence/sea light quarks **mid-rapidity**

backward higher x_A

W+ and W asymmetry vs η measured at mid-rapidity

experimental uncertainty < calculation uncertainties

→ **sizeable constraints on nPDF** (starting from EPPS16)

G.M. Innocenti, MIT, Heavy Ion Physics in the EIC Era, 19-24 August 2024

CMS: PLB 800 (2020) 135048

Dijets in hadronic pPb collisions

"Averaged" dijet $\eta_{dijet} = \frac{1}{2} (\eta_1 + \eta_2)$ $p_{T,dijet} = \frac{1}{2} (p_{T,1} + p_{T,1}) \sim Q$

> maximize correlation with x, Q^2

 \rightarrow Sensitivity to gluon nPDF for 55² <Q² <400² GeV, 0.005<x_A<~0.8 (EMC) \rightarrow Strong constraints since Run1 on nPDF of gluons (EPPS21 and NNPF3.0)

G.M. Innocenti, MIT, Heavy Ion Physics in the EIC Era, 19-24 August 2024

CMS: Phys. Rev. Lett. 121.062002 Eskola et al. arXiv.1812.05438

B-meson production in pPb collisions at 5.02 TeV

First attempt to use beauty quarks to study nPDF modifications of gluons (limited experimental accuracy)

- lack of proton-proton reference (R_{pA} built w.r.t. to FONLL predictions)
- rely on larger pPb statistics in Run 4 (or Run 3?) and beyond to improve the uncertainties of these measurements

Constraining nuclear PDFs at the LHC in UPCs

UPC collisions: LHC as a photon-nucleus collider

Access to photo-nuclear collisions to test nuclear matter:

- at the highest yN center-of-mass energies experimentally reachable • in the absence of significant final-state interactions (as in hadronic pPb collisions)

G.M. Innocenti, MIT, Heavy Ion Physics in the EIC Era, 19-24 August 2024

Ultra-peripheral collisions (impact parameter $b > R_A + R_b$)

the flux of quasi-real photons is proportional to Z²

Photon kinematics:

• p_T < *ħ*/R_A ~ 30 MeV • E_{max} ~ O(100) GeV at LHC.

K. Hencken, M. Strikman, R. Vogt, P. Yepes, Phys. Rept. 458:1-171, 2008

J/\u03c6 production in coherent \u03c7Pb collisions

Heavy quarkonia in vN collisions are produced via coupling to small x gluon fields

 \rightarrow allow to test small dipole interactions with small-x gluon fields

→ heavy-quark mass guarantees a perturbative description

Properties of coherent production:

- $\gamma A \rightarrow \gamma A \mu \mu$ with no nuclear breakup
- $\rightarrow \sigma$ coherent $\sim g(x, Q_2)$

 \rightarrow Gluon properties with x<<10⁻³, Q₂ ~ 2.5-4.0 GeV²

M. Strikman et al, Phys. Lett. B 640 (2006) 162-169

Pb

11

Two-way ambiguity in coherent yPb collisions

- The initial direction of the photon is not fully defined
- at $y_{J/\psi}$, a mixture of low-x and higher-x events
- \rightarrow limit the constraining power due to uncertainty on the value of x

Solving the photon ambiguity with neutron information from ZDC

Exploit the properties of electromagnetic dissociation (EMD) to distinguish between the two event classes

EMD = neutron emission due to soft-photon exchanges

By selecting events with at least one neutron on the same "side" of the J/ ψ \rightarrow select events corresponding to a high-energy photon (low-x gluon)

G.M. Innocenti, MIT, Heavy Ion Physics in the EIC Era, 19-24 August 2024

V. Guzey, M. Strikman, M. Zhalov, EPJC (2014) 72 2942

Coherent J/ ψ in PbPb UPCs with forward-neutron tag with CMS

Increased sensitivity to low-x effects without "low/high energy" ambiguities

- strong experimental constraints on theory for $x_{BJ} < 10^{-4}$ at low Q²
- non trivial dependence of R^{Pb}avs x, currently not fully captured by theoretical calculations

G.M. Innocenti, MIT, Heavy Ion Physics in the EIC Era, 19-24 August 2024

CMS, Phys. Rev. Lett. 131 (2023) 262301

Hard-processes in UPCs: to test the transition towards low-x

Coherent J/ψ in PbPb UPCs

gluons with x<10⁻⁴, Q² ~ 2.5-4.0 GeV²

• J/ ψ production at low p_T and NLO calculations are challenging

G.M. Innocenti, MIT, Heavy Ion Physics in the EIC Era, 19-24 August 2024

Complex theoretical description

ALICE, JHEP 10 (2023) 119 CMS, Phys. Rev. Lett. 131 (2023) 262301

Untagged di-jets in vN scatterings

G.M. Innocenti, MIT, Heavy Ion Physics in the EIC Era, 19-24 August 2024

Dynamic constraints on (x, Q²)

ATLAS, ATLAS-CONF-2017-011

"Open" heavy-flavor and HF-jet photoproduction in UPCs

Experimental strategy for "hard" inclusive photoproduction

Nontrivial questions about signal "definition" and theoretical challenges:

- \rightarrow inclusive? semi-inclusive due to requirement on the Xn0n?
- \rightarrow how to improve the control of the photon-flux and on EM dissociation?

Jets and heavy-quark-tagged jets:

 \rightarrow high-statistics up to high p_T **Fully-reconstructed heavy flavor**

 \rightarrow Trace charm quark down to low p_T

Jets and open heavy-quarks in yp scatterings in pPb collisions

 \rightarrow yp scatterings in pPb collisions as the baseline for yPb measurements

In combination with HERA and EIC measurements: \rightarrow New constraints on proton nPDFs, GDF, TMD at the highest yp center of mass energies available

New observables in yp/yPb collisions

Basic concept: "over-constraining" low-x models by measuring both barrel and very forward observables **M. Strikman, V. Guzey et al.**, <u>arXiv.2402.19060</u>

Hard-scattering production at central rapidities with information on the number of neutrons in ZDC:

 \rightarrow stronger discrimination power on low-x nuclear matter

→ new experimental challenges for ZDC reconstruction and calibration

Diffractive production of jets and heavy quarks

 \rightarrow benchmark for PbPb measurements

Need for theoretical calculations and MC simulations for diffractive events in both yp and yPb collisions!

G.M. Innocenti, MIT, Heavy Ion Physics in the EIC Era, 19-24 August 2024

Ilkka Helenius, arXiv:2107.07389

Converting CMS into a vy, vN detector for the "LHyC"

Zero-degree calorimeter (ZDC) as a trigger detector

- \rightarrow develop a strategy for fast online calibration

New trigger algorithms deployed for the 2023 run (100-1000 more data than in Run 2)

- \rightarrow photonuclear high-Q² triggers (ZDCXOR && L1 jet)
- \rightarrow photonuclear low-Q² triggers (ZDCXOR)
- \rightarrow yy and diffractive triggers

Improved algorithms being optimized for the 2024 data-taking period

 \rightarrow integrate ZDC in the Level-1 (hardware) trigger-emulation chain

L1 trigger efficiency vs $D^0 p_T$ (2023 data)

CMS Experiment at the LHC, CERN Data recorded: 2023-Oct-10 05:24:04.000512 GMT Run / Event / LS: 374925 / 591414336 / 646

A photonuclear dijet event in PbPb UPCs '23 collected with the new triggering algorithms

0, '1

a "background-less" forward dijet event

24

Short and long-term prospects with CMS at the LHC and HL-LHC

LHC long-term schedule

- \rightarrow we would need a few weeks of data to constrain nPDFs with EM probes or high-accuracy heavy-quark probes
- Additional run in Run 3? pPb in Run 4?
- Inputs for Run 5/6 from the "parton-structure" community? \rightarrow this is a crucial topic since LHC Run 5+6 is in parallel with the EIC data taking!

G.M. Innocenti, MIT, Heavy Ion Physics in the EIC Era, 19-24 August 2024

• About a week of OO/pO in 2025: statistics is enough for very soft-probe measurements, assessing quenching in small systems

The upgraded CMS detector for Run 4 (Phase II)

Trigger / HLT / DAQ

- L1/HLT rate x7.5
- DAQ: 6 \rightarrow 60 GB/s

tracking capabilities at Level-1

→ possibility of sampling the entire delivered luminosity of UPCs with negligible trigger biases

CMS, <u>CERN-LHCC-2019-003</u> CMS, <u>CMS-TDR-014</u>

G.M. Innocenti, MIT, Heavy Ion Physics in the EIC Era, 19-24 August 2024

New endcap calorimeters (HGCal) Unprecedented granularity $|\eta| < 3$

The upgraded CMS detector for Run 4 (Phase II)

New MIP Timing Detector (MTD) Precision timing $|\eta| < 3$ **Particle Identification over** several units of η !

CMS, <u>CERN-LHCC-2019-003</u> **CMS**, <u>CMS-TDR-014</u>

The upgraded CMS detector for Run 4 (Phase II)

New MIP Timing Detector (MTD) Precision timing $|\eta| < 3$ **Particle Identification over** several units of η !

G.M. Innocenti, MIT, Heavy Ion Physics in the EIC Era, 19-24 August 2024

CMS, <u>CERN-LHCC-2019-003</u> CMS, <u>CMS-TDR-014</u>

Upgraded Precision Proton Spectrometer (Run 4 and 5)

Basic working principle of the PPS: Protons which lose a fraction of momentum at the interaction point ($\xi = \Delta p/p$) are deflected away from the beam and measured by PPS \rightarrow direct measure of the $\xi = \Delta p/p$

PPS upgrade will further extend the ξ acceptance of the existing PPS (already operational in Run 3)

- 1.42 < ξ < 20 % for the first three stations (from Run 4)
- 0.33 < ξ < 20 % for the first three stations (from Run 5)

CMS NOTE -2020/008

Highlight: exclusive vector-meson production in pA

 \rightarrow Proof of principle for proton (and ion) tagging with the upcoming pO/OO run (scheduled for 2025)

Synergies and complementarities with the EIC program

UPC at the LHC → very low x reach

EIC \rightarrow <u>control on the photon virtuality (Q²)</u> and the scale of the interaction

Heavy-flavor and jets at the Electron-Ion Collider

Inclusive heavy-flavor measurements in ep/eA collisions (J/ ψ , open charm, and beauty jets)

- \rightarrow gluon (n)PDFs down to moderate/low x_{BJ}
- → evolution equations beyond DGLAP?

DD correlations:

- \rightarrow access to gluon TMDs
- → nuclear structure beyond the collinear limit

G.M. Innocenti, MIT, Heavy Ion Physics in the EIC Era, 19-24 August 2024

B.S. Page et al. Phys. Rev. D 101, 072003 H. T. Li and I. Vitev, Phys. Rev. Lett. 126, 252001 EIC, BNL-98815-2012, arXiv:1212.1701

Heavy-flavor and jets at the Electron-Ion Collider

Inclusive heavy-flavor measurements in ep/eA collisions (J/ ψ , open charm and beauty, jets)

- \rightarrow gluon (n)PDFs down to moderate/low x_{BJ}
- → evolution equations beyond DGLAP?

DD correlations:

- \rightarrow access to gluon TMDs
- → nuclear structure beyond the collinear limit

G.M. Innocenti, MIT, Heavy Ion Physics in the EIC Era, 19-24 August 2024

B.S. Page et al. Phys. Rev. D 101, 072003 H. T. Li and I. Vitev, Phys. Rev. Lett. 126, 252001 EIC, BNL-98815-2012, arXiv:1212.1701

Heavy-quark jet production and substructure in ep/eA: → parton-propagation inside the "cold" nuclear matter

 \rightarrow parton-shower evolution in a vacuum-like environment

Heavy-flavor hadrochemistry and collectivity:

 \rightarrow hadronization modification in cold-nuclear matter

 \rightarrow what is the time scale of hadronization?

HL-LHC and EIC for a multi-scale exploration of nuclear matter

CMS has a solid program for exploit pPb and PbPb to study nuclear matter down to low x in protons and nuclei with Run 3 data and with future heavy-ion runs at the HL-LHC.

LHC + RHIC + EIC → comprehensive understanding of QCD phenomena

- complementary kinematic regions (x,Q²)
- different experimental/theoretical advantages

<u>HL-LHC and EIC for a multi-scale exploration of nuclear matter</u>

CMS has a strong program to exploit pPb and PbPb to study nuclear matter down to low x in protons and nucleus with Run 3 data and with future heavy-ion runs at the HL-LHC

LHC + RHIC + EIC \rightarrow comprehensive understanding of QCD phenomena

- complementary kinematic regions (x,Q²)
- different experimental/theoretical advantages

With the LHC heavy-ion programs, and in particular with UPC collisions: • building and supporting the development of the experimental and theoretical tools for EIC

• we need theory support to develop this program and to solve some of the existing theoretical questions/limitations

HL-LHC and EIC for a multi-scale exploration of nuclear matter

CMS has a strong program to exploit pPb and PbPb to study nuclear matter down to low x in protons and nucleus with Run 3 data and with future heavy-ion runs at the HL-LHC

LHC + RHIC + EIC \rightarrow comprehensive understanding of QCD phenomena

- complementary kinematic regions (x,Q²)
- different experimental/theoretical advantages

With the LHC heavy-ion programs, and in particular with UPC collisions:

• building and supporting the development of the experimental and theoretical tools for EIC • we need theory support to develop this program and to solve some of the existing theoretical questions/limitations

Thank you for your attention!

Vector-meson photoproduction in UPC

Vector mesons (VM) probe gluonic structure of nucleus and nucleon. \rightarrow At LO in pQCD, cross section ~ photon flux \otimes [xG(x)]2

Coherent production ($< p_T > ~ 50 \text{ MeV}$)

- VM <pt> ~ 50 MeV
- Probing the averaged gluon density

Incoherent production VM ($< p_T > ~ 500 \text{ MeV}$)

 Photon fluctuated dipole couples coherently to entire nucleus Target nucleus remains intact

 Photon fluctuated dipole couples to individual nucleons • Target nucleus usually breaks

Probing the local gluon density fluctuation

Sketches from Zaochen Ye's talk at GHP2023

Coherent J/ ψ photoproduction in UPC PbPb collisions

 $Q^2 \sim M^2_{cc} GeV$, $x_A \sim shadowing$ (gluon PDFs)² - 4.0< y*< -2.5 (forward)

At fixed y, contributions from different x regions (higher and lower)

Two-way ambiguity can limit the constraining power due to large uncertainty on the determination of x! • The initial direction of the photon is not fully defined

G.M. Innocenti, MIT, Heavy Ion Physics in the EIC Era, 19-24 August 2024

→ access to gluon PDF in **absence of hadronic interactions**

Solving the photon ambiguity with neutron information from ZDC

$\frac{\mathrm{d}\sigma_{J/\psi}^{\mathrm{injn}}(y)}{\mathrm{d}y} = n_{\gamma \mathrm{A}}^{\mathrm{injn}}(\omega_1) \,\sigma_{J/\psi}(\omega_1) + n_{\gamma \mathrm{A}}^{\mathrm{injn}}(\omega_2) \,\sigma_{J/\psi}(\omega_2)$

- *i*n *j*n = (0n0n, 0nXn, XnXn)
- $\omega_{1,2} = \omega_{1,2}(y)$ are the two possible photon energies
- $n_{\gamma A}(\omega)$ is the photon flux (from theory)
- $\sigma_{J/w}(\omega)$ is the coherent photoproduction cross section for a single γA interaction, averaged over a range of y

G.M. Innocenti, MIT, Heavy Ion Physics in the EIC Era, 19-24 August 2024

V. Guzey, M. Strikman, M. Zhalov, EPJC (2014) 72 2942

42

Coherent J/ ψ in PbPb UPCs: CMS vs ALICE

G.M. Innocenti, MIT, Heavy Ion Physics in the EIC Era, 19-24 August 2024

ALICE, JHEP 10 (2023) 119 CMS, Phys. Rev. Lett. 131 (2023) 262301

Solving the photon ambiguity with neutron information from ZDC

Method in a nutshell (V. Guzey, M. Strikman, M. Zhalov, EPJC (2014) 72 2942)

- Rate of high energy photon flux is larger at smaller impact parameter
- impact parameter of the collision can be estimated by considering the magnitude of EM dissociation

EM dissociation (EMD) leads to neutron emission with additional photon exchange

- Independent of interested physics process
- Large cross section ~200 b (single EMD)

G.M. Innocenti, MIT, Heavy Ion Physics in the EIC Era, 19-24 August 2024

Probability of EMD is strongly correlated with the impact parameter of the collision **b**

Exclusive and inclusive quarkonium photoproduction

 $\gamma + p \rightarrow J/\psi$ p collisions:

Sensitive to the proton structure at high-gluon densities (So far, no indication of gluon saturation, even down to $x \sim 10^{-5}$ in a free nucleon)

From Kate Lynch's talk Jean-Philippe Lansberg (IJCLab), Charlotte Van Hulse (UAH), Ronan McNulty (UCD)

- Anticipate sizeable photoproduction yield
- Large hadronic background must be shown to be suppressed

Proton-lead is the ideal collision system

- No ambiguity as to the photon emitter
- Enhanced photon flux w.r.t. pp $\propto Z^2$
- Less pileup than *pp*

Coherent J/ ψ in PbPb UPCs with forward-neutron tag with CMS

First coherent measurement in different neutron classes → inputs to disentangle low from high energy γN events

CMS, Phys. Rev. Lett. 131 (2023) 262301

$$\frac{\mathrm{d}\sigma_{J/\psi}^{\mathrm{injn}}(y)}{\mathrm{d}y} = n_{\gamma \mathrm{A}}^{\mathrm{injn}}(\omega_1) \,\sigma_{J/\psi}(\omega_1) + n_{\gamma \mathrm{A}}^{\mathrm{injn}}(\omega_2) \,\sigma_{J/\psi}(\omega_2) \,\sigma_{J/\psi$$

- in jn = (0n0n, 0nXn, XnXn)
- $\omega_{1,2} = \omega_{1,2}(y)$ two possible photon energies
- $n_{\gamma A}(\omega)$ is the photon flux (from theory)
- $\sigma_{J/\psi}(\omega)$ the coherent photoproduction cross section for a single γA interaction, averaged over a range of y

BACKUP: CMS Run4

High-resolution, large acceptance silicon tracker ($|\eta| < 4$) **CMS**, <u>CMS-TDR-014</u>

from 100 x 150 to 50 x 50 μ m² pixel size Tracking out to $|\eta| < 4 !!$

Reduced material budget by up to 2x

Improved p_T resolution by about 25%

Improved mass resolution for resonances

G.M. Innocenti, MIT, Heavy Ion Physics in the EIC Era, 19-24 August 2024

Impact parameter resolution improved by 40% Improved heavy flavor measurements (B/D hadrons) & b/c-jet tagging)

48

MIP timing detector (MTD)

<u>CERN-LHCC-2019-003</u>

G.M. Innocenti, MIT, Heavy Ion Physics in the EIC Era, 19-24 August 2024

Unlock a wide set of semi-inclusive "DIS-like" measurements with identified hadrons with CMS

 10^{3}

A new ZDC CMS detector

Joint ATLAS & CMS effort: radiation-hard ZDCs for Run 4

- Crucial part of heavy-ion min. bias trigger from Run 3 onwards
 - Used to identify & characterize ultra-peripheral collisions
 - Bias estimation for centrality, especially in small systems
 - Exclusively HI detector (removed for high-lumi pp)

Upgraded Precision Proton Spectrometer (Run 4 and 5)

Basic working principle:

 \rightarrow direct measure of the $\xi = \Delta p/p$

PPS upgrade will further extend the ξ acceptance of the legacy PPS:

- 1.42 < ξ < 20 % for the first 3 stations (from Run 4)
- 0.33 < ξ < 20 % for the first 3 stations (from Run 5)

G.M. Innocenti, MIT, Heavy Ion Physics in the EIC Era, 19-24 August 2024

See Michael Pitt's talk

Protons which lose a fraction of momentum at the interaction point ($\xi = \Delta p/p$) are deflected away from the beam and measured by PPS

CMS NOTE -2020/008

BACKUP: CMS pPb measurements

From measurements to nPDF constraints

→Using a non-quadratic Hessian PDF reweighting, K. J. Eskola et al., EPJC 79, 511 (2019)

Significant constraints from inclusion of charm data from the LHC. Some caveats:

• what is the influence of final state effects (e.g. D meson flow or hadronization)?

• can we account for them in the nPDF fits?

G.M. Innocenti, MIT, Heavy Ion Physics in the EIC Era, 19-24 August 2024

the LHC. Some caveats: son flow or hadronization)?

BACKUP: Recent UPC measurements in pPb collisions: a few highlights

$\rho_0(770)$ photoproduction in pPb UPC collisions at 5.02 TeV

Results are consistent with those of the H1 and ZEUS Collaborations at HERA

Upsilon production in <u>exclusive</u> photonuclear pPb events

 \rightarrow sensitive to generalized parton distributions (GPDs) in the proton for $10^{-4} < x < 10^{-2}$

G.M. Innocenti, MIT, Heavy Ion Physics in the EIC Era, 19-24 August 2024

CMS, Eur. Phys. J. C 79 (2019) 277

