Efficient Parallel Numerical Simulations of the Einstein Equations in Spherical Coordinates

Liwei Ji
Collaborator: Vassilios Mewes, Yosef Zlochower, Lorenzo Ennoggi, Federico Lopez Armengol, Manuela Campanelli, Federico Cipolletta, Zachariah Etienne

INT Program 23-2

RIT ${ }^{\text {Colesealsienere }}$ Center for Computational Relativity and Gravitation

Einstein Toolkit

- Collection of scientific software components and tools to simulate and analyze General Relativistic Astrophysical systems
- Freely available as open source at http://www.einsteintoolkit.org
- State-of-the-art set of tools for numerical relativity, open source
- Currently 402 members from 282 sites and 49 countries
- >428 publications, >57 theses building on these components (as of June 2023)
- Regular, tested releases
- User support through various channels

Einstein Toolkit

Science

- Binary Black Hole Mergers
- Neutron Star Mergers
- Supernovae
- Accretion Disks
- Boson Stars
- Hairy Black Holes
- Cosmic Censorship

Einstein Toolkit as growing project

- Initially: some infrastructure, some application code

Einstein Toolkit as growing project

- Growing application suite

Einstein Toolkit as growing project

- Growing infrastructure "return"

Numerical Relativity in Spherical Coordinates

- Spherical coordinates vs Cartesian coordinates.
- Take advantage of approximate symmetries in a number of astrophysical objects (single stars, black holes, accretion disks, post merger remnant)
- Lower numerical dissipation in the evolution of fluid angular momentum.

SPHERICALNR [Mewes++ PRD 2018, Mewes++ PRD 2020]

- Implementaion in the Einstein Toolkit
- Identify the (x, y, z) in Carpet with (r, θ, ϕ)
- Apply internal boundary condition with SphericalBC

$r=0$	$\theta=0, \pi$	$\phi=0,2 \pi$
Parity	Parity	Periodicity

SPHERICALNR [Mewes++ PRD 2018, Mewes++ PRD 2020]

- Implementaion in the Einstein Toolkit
- Identify the (x, y, z) in Carpet with (r, θ, ϕ)
- Apply internal boundary condition with SphericalBC

$r=0$	$\theta=0, \pi$	$\phi=0,2 \pi$
Parity	Parity	Periodicity

SPHERICALNR [Mewes++ PRD 2018, Mewes++ PRD 2020]

- Implementaion in the Einstein Toolkit
- Identify the (x, y, z) in Carpet with (r, θ, ϕ)
- Apply internal boundary condition with SphericalBC

$r=0$	$\theta=0, \pi$	$\phi=0,2 \pi$
Parity	Parity	Periodicity

SPHERICALNR [Mewes++ PRD 2018, Mewes++ PRD 2020]

- Implementaion in the Einstein Toolkit
- Identify the (x, y, z) in Carpet with (r, θ, ϕ)
- Apply internal boundary condition with SphericalBC

$r=0$	$\theta=0, \pi$	$\phi=0,2 \pi$
Parity	Parity	Periodicity

SPHERICALNR [Mewes++ PRD 2018, Mewes++ PRD 2020]

- Coordinate singularities \rightarrow handled analytically
[Baumgarte++ PRD 2013, Baumgarte++ PRD 2015, Ruchlin++ PRD 2018]
- Reference-metric version of BSSN/fCCZ4 formulation and GRMHD
- Proper rescaling of tensorial quantities
- Reference Metric Formulation

$$
\begin{aligned}
h_{i j} & =\hat{\mathbf{e}}_{i}^{\{l\}} \hat{\mathbf{e}}_{j}^{\{m\}} h_{\{k\}\{l\}}, \\
\partial_{k} h_{i j} & =\hat{\mathbf{e}}_{i}^{\{l\}} \hat{\mathbf{e}}_{j}^{\{m\}} \partial_{k} h_{\{l\}\{m\}}+h_{\{l\}\{m\}} \partial_{k}\left(\hat{\mathbf{e}}_{i}^{\{l\}} \hat{\mathbf{e}}_{j}^{\{m\}}\right)
\end{aligned}
$$

- GRMHD

$$
\begin{aligned}
\partial_{t} D+\partial_{k}\left(f_{D}\right)^{k} & =-\hat{\Gamma}^{k}{ }_{k l}\left(f_{D}\right)^{l}, \\
\partial_{t} S_{i}+\partial_{k}\left(f_{S}\right)_{i}{ }^{k} & =\left(s_{S}\right)_{i}-\hat{\Gamma}^{k}{ }_{k l}\left(f_{S}\right)_{i}{ }^{l}+\hat{\Gamma}^{l}{ }_{k i}\left(f_{S}\right)_{l}{ }^{k}, \\
\partial_{t} \tau+\partial_{k}\left(f_{\tau}\right)^{k} & =s_{\tau}-\hat{\Gamma}^{k}{ }_{k l}\left(f_{\tau}\right)^{l}, \\
\partial_{t} A_{i} & =\alpha \hat{\epsilon}_{i j k} \bar{v}^{j} \mathcal{B}^{k}-\partial_{i}\left(\alpha \Phi-\beta^{k} A_{k}\right), \\
\partial_{t} \hat{\Phi}+\partial_{k}\left(f_{\Phi}\right)^{k} & =-\zeta \alpha \hat{\Phi}-\hat{\Gamma}_{k l}^{l}\left(f_{\Phi}\right)^{l}, \\
\mathcal{B}^{i} & =\hat{\epsilon}^{i j k} \partial_{j} A_{k} .
\end{aligned}
$$

- GRMHD in Reference Metric Formulation

$$
\begin{array}{ll}
\partial_{t} D+\sigma_{\{k\}\{l\}}^{m} \hat{\mathcal{R}}^{\{k\}} \partial_{m}\left(f_{D}\right)^{\{l\}} & =\Omega_{D}, \\
\partial_{t} S_{\{i\}}+\sigma_{\{k\}\{l\}}^{m} \hat{\mathcal{R}}^{\{k\}} \partial_{m}\left(f_{S}\right)_{\{i\}}\{l\} & =\left(\Omega_{S}\right)_{\{i\}}, \\
\partial_{t} \tau+\sigma_{\{k\}\{l\}}^{m} \hat{\mathcal{R}}^{\{k\}} \partial_{m}\left(f_{\tau}\right)^{\{l\}} & =\left(\Omega_{\tau}\right), \\
\partial_{t} A_{\{i\}} & =\left(\Omega_{A}\right)_{\{i\}}, \\
\partial_{t} \hat{\Phi}+\sigma_{\{k\}\{l\}}^{m} \hat{\mathcal{R}}^{\{k\}} \partial_{m}\left(f_{\Phi}\right)^{\{k\}} & =\Omega_{\Phi}, \\
\mathcal{B}^{\{i\}} & =\sigma_{l}^{\{i\}\{m\}} \hat{\mathcal{R}}_{\{m\}} \hat{\epsilon}^{l j k} \partial_{j} A_{k} .
\end{array}
$$

Filtering

- Severe CFL time step restriction

$$
d t=\mathcal{C} \min \left[d r, \frac{d r}{2} d \theta, \frac{d r}{2} \sin \left(\frac{d \theta}{2}\right) d \phi\right]
$$

- Dual-FFT filtering (damping functions suppress CFL unstable modes)

Filtering

- Double covering $\theta \in[0, \pi] \rightarrow \vartheta \in[0,2 \pi]$

$$
\mathbf{X}(r, \vartheta, \phi)= \begin{cases}\mathbf{X}(r, \theta, \phi), & \vartheta \in[0, \pi] \\ (-1)^{a} \mathbf{X}(r, 2 \pi-\theta, \pi+\phi), & \vartheta \in[\pi, 2 \pi]\end{cases}
$$

- Filtering θ first

$$
\mathbf{X}(r, \vartheta, \phi) \xrightarrow{\mathrm{FFT}} \tilde{\mathbf{X}}(r, l, \phi) \rightarrow f\left(l, l_{\max }\right) \tilde{\mathbf{X}}(r, l, \phi) \xrightarrow{\mathrm{iFFT}} \mathbf{X}(r, \vartheta, \phi)
$$

where $I_{\text {max }}=\max \left(2, \frac{2 r}{d r} \mathcal{L}\right)$

- Filtering ϕ next

$$
\begin{aligned}
\quad \mathbf{X}(r, \theta, \phi) & \xrightarrow{\mathrm{FFT}} \tilde{\mathbf{X}}(r, \theta, m) \rightarrow f\left(m, m_{\max }\right) \tilde{\mathbf{X}}(r, \theta, m) \xrightarrow{\mathrm{ifFT}} \mathbf{X}(r, \theta, \phi) \\
\text { where } m_{\max } & =\max \left(2, \frac{2 r}{d r} \mathcal{L} \sin \theta\right)
\end{aligned}
$$

Parallelization

Strong Scaling Test of SphericalNR on Frontera

- Grid $n_{r} \times n_{\theta} \times n_{\phi}=$ $256 \times 128 \times 256$
- Non-filtered algorithm is 1.38 faster in iteration per hour at 4096 cores
- Filtered algorithm is roughly 100 times faster in time per hour at 4096 cores

Spinning Bowen-York BH

- Contains radiation due to the initial data being conformally flat
- Aligned with the polar z-axis vs y-axis

Spinning Bowen-York BH

- Contains radiation due to the initial data being conformally flat
- Aligned with the polar z-axis vs y-axis

Off-Center Spherical Explosion

- Over-dense
($\left.\rho=1 \times 10^{-2}, p=1.0\right)$ ball of radius 1.0
- Constant magnitude magnetic field ($B^{z}=0.1$), rotate by 45° about x -axis
- The center of the over-dense region has been moved to $(x=1.1, y=z=0)$

Off-Center Spherical Explosion

- Over-dense

$$
\left(\rho=1 \times 10^{-2}, p=1.0\right)
$$ ball of radius 1.0

- Constant magnitude magnetic field ($B^{z}=0.1$), rotate by 45° about x-axis
- The center of the over-dense region has been moved to $(x=1.1, y=z=0)$

Off-Center Spherical Explosion

- Over-dense $\left(\rho=1 \times 10^{-2}, p=1.0\right)$ ball of radius 1.0
- Constant magnitude magnetic field ($B^{z}=0.1$), rotate by 45° about x-axis
- The center of the over-dense region has been moved to $(x=1.1, y=z=0)$

Bar-Mode Unstable Magnetized NS

- Proxy for the post merger remnant of BNS merger
- U11 model, perturb the pressure by 5% with random noise
- Initial poloidal magnetic field ($b^{2} \sim 10^{-5} G$)

Bar-Mode Unstable Magnetized NS

- Proxy for the post merger remnant of BNS merger
- U11 model, perturb the pressure by 5% with random noise
- Initial poloidal magnetic field $\left(b^{2} \sim 10^{-5} G\right)$

Bar-Mode Unstable Magnetized NS

- Proxy for the post merger remnant of BNS merger
- U11 model, perturb the pressure by 5% with random noise
- Initial poloidal magnetic field ($b^{2} \sim 10^{-5} G$)

Bar-Mode Unstable Magnetized NS

- Proxy for the post merger remnant of BNS merger
- U11 model, perturb the pressure by 5% with random noise
- Initial poloidal magnetic field ($b^{2} \sim 10^{-5} G$)

Bar-Mode Unstable Magnetized NS

- Proxy for the post merger remnant of BNS merger
- U11 model, perturb the pressure by 5% with random noise
- Initial poloidal magnetic field ($b^{2} \sim 10^{-5} G$)

Bar-Mode Unstable Magnetized NS

- Proxy for the post merger remnant of BNS merger
- U11 model, perturb the pressure by 5% with random noise
- Initial poloidal magnetic field $\left(b^{2} \sim 10^{-5} G\right)$

SphericalNReX

SphThetaPhiRIndexMapping index_mapping (domain)

SphericalNReX

- SphThetaPhiRIndexMapping index_mapping(domain)
- AMR in Φ (Dang++ 2021) + Squish θ
(a) Original Polar Grid

(b) Effective Grid

SphericalNReX

- SphThetaPhiRIndexMapping index_mapping(domain)
- AMR in Φ (Dang++ 2021) + Squish θ
(a) Original Polar Grid

(b) Effective Grid

- Neutrino transport ...

