Entanglement, thermalization (and transport) in quark-gluon plasma, in ultra-cold gases, & black holes

Quantum Few- and Many-Body Systems in Universal Regimes, INT, Seattle

October 23rd, 2024

Matthias Kaminski *University of Alabama*

Circular rainbow viewed from plane above Seattle

Circular rainbow viewed from plane above Seattle

AdS/CFT

Circular rainbow viewed from plane above Seattle

[https://deepai.org/]

Universality at large N (number of colors): Shear viscosity to entropy density bound [Kovtun,Son,Starinets; PRL (2005)]

 $\frac{\eta}{s} = \frac{1}{4\pi}$

(Finite N corrects, finite coupling respects bound [Buchel, Myers, Sindha; JHEP (2008)] [Cremonini, Mod.Phys.Lett.B (2011)])

Outline

- 1. Statistical versus quantum mechanic dynamics
- 2. Holography (far from equilibrium)
- 3. Holographic entanglement entropy (calculation)
- 4. Quantum gravity experiments

Thermodynamics: entropy increases

Statistical mechanics: An **isolated system** evolves such that it maximizes its entropy. Entropy = Non-Information $S \propto \#$ of configurations

time

Thermodynamics: entropy increases

Matthias Kaminski

Statistical mechanics:

An **isolated system** evolves such that it maximizes its entropy.

Quantum mechanics:

A **pure state** (with zero entropy) remains pure with **zero entropy**.

[Kaufman et al.; Science (2016)]

"Quantum thermalization through entanglement in an isolated many-body system"

Statistical mechanics:

An **isolated system** evolves such that it maximizes its entropy.

Quantum mechanics:

A **pure state** (with zero entropy) remains pure with zero entropy.

"Quantum thermalization through entanglement in an isolated many-body system"

Pure state density matrix $\rho = 1 \cdot |\text{eigenstate}\rangle\langle \text{eigenstate}|$ with tr $(\rho^2) = 1$. Vanishing entropy $S = - \operatorname{tr} (\rho \log \rho) = 0$

Unitary time evolution $\rho \rightarrow U^{-1}\rho U$ keeps *S*=0.

Statistical mechanics:

An **isolated system** evolves such that it maximizes its entropy.

Quantum mechanics:

A **pure state** (with zero entropy) remains pure with zero entropy.

Example 1: Black hole evaporation

[Almheiri et al.; Rev.Mod.Phys. (2021)]

Pure state. **Zero entropy.** (inward falling mass shell)

ime

Statistical mechanics:

An **isolated system** evolves such that it maximizes its entropy.

Quantum mechanics:

A **pure state** (with zero entropy) remains pure with zero entropy.

Example 1: Black hole evaporation

[Almheiri et al.; Rev.Mod.Phys. (2021)]

Pure state. **Zero entropy.** (inward falling mass shell)

Black hole is formed.

ime

Statistical mechanics:

An **isolated system** evolves such that it maximizes its entropy.

Quantum mechanics:

A **pure state** (with zero entropy) remains pure with zero entropy.

Example 1: Black hole evaporation

[Almheiri et al.; Rev.Mod.Phys. (2021)]

Pure state. **Zero entropy.** (inward falling mass shell)

Black hole is formed.

ime

Hawking radiation, black hole evaporates.

Statistical mechanics:

An **isolated system** evolves such that it maximizes its entropy.

Quantum mechanics:

A **pure state** (with zero entropy) remains pure with zero entropy.

Example 1: Black hole evaporation

[Almheiri et al.; Rev.Mod.Phys. (2021)]

Pure state. **Zero entropy.** (inward falling mass shell)

Black hole is formed.

H b

time

Hawking radiation, black hole evaporates.

Thermal Hawking radiation. Nonzero entropy!?

Statistical mechanics:

4

An **isolated system** evolves such that it maximizes its entropy.

Quantum mechanics:

A **pure state** (with zero entropy) remains pure with **zero entropy**.

Example 1: Black hole evaporation

[Almheiri et al.; Rev.Mod.Phys. (2021)]

Page curve (fine-grained S)

Pure state. **Zero entropy.** (inward falling mass shell)

Black hole is formed.

Hawking radiation, black hole evaporates.

Thernal Hawking radiation. Nonzer: Chiropy!?

Statistical mechanics:

An **isolated system** evolves such that it maximizes its entropy.

Quantum mechanics:

A **pure state** (with zero entropy) remains pure with **zero entropy**.

Example 1: Black hole evaporation

Example 2: Heavy ion collisions (HIC)

Quantum information approach to HIC [Kharzeev; Phil.Trans.A.Math.Phys.Eng.Sci. (2021)]

[Zhang et al.; PRD (2021)]

[Florio,Kharzeev; PRD (2021)]

Pure state. **Zero entropy.** (two colliding ions) [Müller,Schäfer; (2017)]

ime

Statistical mechanics:

An **isolated system** evolves such that it maximizes its entropy.

Quantum mechanics:

A **pure state** (with zero entropy) remains pure with zero entropy.

Example 1: Black hole evaporation

Example 2: Heavy ion collisions

Example 3: Ultracold atoms

[Kaufman et al.; Science (2016)] "Quantum thermalization through entanglement in an isolated many-body system"

- Rb atoms in optical lattice
- six-site Bose-Hubbard system
- quench and microscopy

Pure state. Zero entropy. Remains pure!

BUT subsystems thermalize! (nonzero entropy)

time

Statistical mechanics:

An **isolated system** evolves such that it maximizes its entropy.

Quantum mechanics:

A **pure state** (with zero entropy) remains pure with **zero entropy**.

General proposed resolution

- Total system remains pure.
- Subsystems thermalize

(nonzero entropy).

• Eigenstate thermalization

hypothesis (ETH)? [Srednicki; (1993)]

... many open questions!

[Kaufman et al.; Science (2016)]

grey links: entanglement

Statistical mechanics:

An **isolated system** evolves such that it maximizes its entropy.

Quantum mechanics:

A **pure state** (with zero entropy) remains pure with **zero entropy**.

Statistical mechanics:

An **isolated system** evolves such that it maximizes its entropy.

Quantum mechanics:

A **pure state** (with zero entropy) remains pure with **zero entropy**.

Physical question

How do black holes and other isolated quantum systems thermalize?

talk by Aurel Bulgac (slower than ETH-thermalization)

Outline

1. Statistical versus quantum mechanic dynamics

2. Holography (far from equilibrium)

- **3. Holographic entanglement entropy (calculation)**
- 4. Quantum gravity experiments

Ion collision/Ultracold atoms ~ Black hole formation?

Exact correspondence: Holography (gauge/gravity)

$N=4$ Super-Yang-MillsTyin 3+1 dimensions \Leftrightarrow with $SU(N)$ and λ \Leftrightarrow	p II B Superstring Theory in (4+1)-dimensional Anti de Sitter space	
(gauge)	(gravity)	
Initial state Hydro expansion of QGP or hadron gas Freeze-out QGP URG HRG Preequilibrium hadronisation S.Bass		
	['t Hooft (1993)]	
[Susskind; J.Math.Phys. (1995)] [Maldacena; Adv.Theor.Math.Phys. (1997)]		

Exact correspondence: Holography (gauge/gravity)

N=4 Super-Yang-MillsTyp Iin 3+1 dimensionsinwith $SU(N)$ and λ in	I B Superstring Theory 1 (4+1)-dimensional Anti de Sitter space	
(gauge)	(gravity)	
Initial state Hydro expansion of QGP or hadron gas Freeze-out Preequilibrium QGP HRG hadronisation S.Bass		
	['t Hooft (1993)]	
[Susskind; J.Math.Phys. (1995)]		
[Maldacena; Adv.Theor.Math.Phys. (1997)]		

Black hole entropy grows as its surface area

(not as its volume).

[Bekenstein] [Hawking]

Far from equilibrium holography

Entanglement and thermalization

Holographic heavy ion collision (numerical, large N)

holographic idea: [Janik, Peschanski; PRD (2006)]

Holographic heavy ion collision (numerical, large N)

holographic idea: [Janik, Peschanski; PRD (2006)]

Off-center holographic heavy ion collision

Off-center holographic heavy ion collision

Off-center holographic heavy ion collision

Outline

- 1. Statistical versus quantum mechanic dynamics
- 2. Holography (far from equilibrium)

3. Holographic entanglement entropy (calculation)

4. Quantum gravity experiments

Entanglement entropy corresponds to minimal surface

RECALL: Black hole entropy grows as its surface area (not as its volume).

Entanglement entropy in quantum field theory corresponds to a particular **minimal surface** in gravity theory

[Ryu,Takayanagi; JHEP (2006)]

Calculation of entanglement entropy in 2D CFT from minimal surface in AdS3

Holographically dual definition

[Ryu,Takayanagi; JHEP (2006)]

Calculation of entanglement entropy in 2D CFT from minimal surface in AdS3 [Ecker; thesis (2018)]

Example: 3-dimensional AdS in Eddington-Finkelstein coordinates $(t, x, z) \longrightarrow (v, x, z)$

Calculate minimal surface = shortest path = geodesic

Metric: $ds^2 = \frac{1}{z^2} \left(-dv^2 - 2dzdv + d\vec{x}^2 \right)$

Clever parametrization of surface: $X^{\alpha}(\sigma) = (Z(\sigma), V(\sigma), X(\sigma))$

Geodesic equation:

$$\ddot{X}^{\alpha}(\sigma) + \Gamma^{\alpha}_{\beta\gamma}(X^{\delta}(\sigma))\dot{X}^{\beta}(\sigma)\dot{X}^{\gamma}(\sigma) = J(\sigma)\dot{X}^{\alpha}(\sigma)$$

Effect of chiral anomaly and magnetic field on entanglement

Calculation: strongly coupled *N*=4 Super-Yang-Mills theory in strong *B*; compute minimal surfaces in AdS5

Geometric picture: three faces of minimal surfaces

Outline

- 1. Statistical versus quantum mechanic dynamics
- 2. Holography (far from equilibrium)
- **3. Holographic entanglement entropy (calculation)**
- 4. Quantum gravity experiments
 - indirect: traversable wormhole on quantum computer
 - direct: gauge/gravity correspondence on electric circuit board

Indirect Experiment: Simulation on Quantum Computer

[Jafferis et al.; Nature (2022)]

Examine spacetime with "quantum computing glasses".

Indirect Experiment: Simulation on Quantum Computer

[Jafferis et al.; Nature (2022)]

IBM/Quantinuum Competitors: [Shapoval et al.; Quantum (2023)]

SYK Model of Majorana Fermions

Here, we study the dynamics of traversable wormholes through a many-body simulation of an SYK system of N fermions^{2,3}. The traversable wormhole protocol is equivalent to a quantum teleportation protocol in the large-N semiclassical limit (Fig. 1c). Explicitly, given left and right Hamiltonians H_L and H_R with N Majorana fermions ψ on each side, the SYK model with q couplings is given by

$$H_{\rm L,R} = \sum_{1 \le j_1 < \dots < j_q \le N} J_{j_1 \dots j_q} \psi_{\rm L,R}^{j_1} \dots \psi_{\rm L,R}^{j_q},$$
(1)

where the couplings are chosen from a Gaussian distribution with mean zero and variance $J^2(q-1)!/N^{q-1}$. We choose q = 4 and demonstrate gravitational physics at sufficiently small N, sparsifying $J_{j_1...j_q}$ to enable experimental implementation.

Applying the learning process, we produce a large population of sparse Hamiltonians showing the appropriate interaction sign dependence (Fig. 2a). We select the learned Hamiltonian

$$H_{L,R} = -0.36\psi^{1}\psi^{2}\psi^{4}\psi^{5} + 0.19\psi^{1}\psi^{3}\psi^{4}\psi^{7} - 0.71\psi^{1}\psi^{3}\psi^{5}\psi^{6} + 0.22\psi^{2}\psi^{3}\psi^{4}\psi^{6} + 0.49\psi^{2}\psi^{3}\psi^{5}\psi^{7},$$
(3)

which requires seven of the original N = 10 SYK model fermions, where ψ denotes the Majorana fermions of either the left or the right systems.

from [Jafferis et al.; Nature (2022)]

Machine Learning (ML): Simplify the Problem

[Jafferis et al.; Nature (2022)]

Use of ML

• use machine learning techniques to construct a sparsified SYK model, experimentally realized with 164 two-qubit gates on a nine-qubit circuit

Potential shortcomings of Jafferis et al.'s experiment

[Jafferis et al.; Nature (2022)]

Comment criticizing this experiment

[Kobrin/Schuster/Yao; preprint (2023)]

- **Problem 1:** learned Hamiltonian does not exhibit thermalization
- **Problem 2:** resembles SYK only for operators used in ML training
- **Problem3:** perfect size winding is generic feature of small-size models

see also response to criticism: [Jafferis et al.; (2023)]

[Dey, Chen, Kaminski, et al.; PRL (2024)]

Model black hole on electrical hyperbolic circuit board

Voltage on circuit satisfies Klein-Gordon equation for massive scalar in AdS [Basteiro et al.; PRL (2023)]

Testing holography in the lab

[Dey, Chen, Kaminski, et al.; PRL (2024)]

Realize wormhole on classical electric circuit:

Direct Experiment: Black Hole on Electrical Circuit [Dey, Chen, Kaminski, et al.; PRL (2024)]

Three point functions measured on circuit (gravity side):

Discussion

SUMMARY

- isolated quantum systems thermalize in similar ways
- entanglement = spacetime

OUTLOOK

- entanglement entropy in holography far-from-equilibrium
- finite N corrections: get closer to few-body dynamics
- demonstrate "entanglement=spacetime" in experiments

(spacetime emerging from entangled quantum bits?)

- ⇒improve indirect traversable wormhole on quantum computer
- >directly simulate quantum gravity on quantum computer
- use machine learning methods (experiments, ML spacetime)
 talk by Jane Kim

Indirect and Direct Quantum Gravity Experiments

Thanks to my collaborators (since 2012)

APPENDIX

APPENDIX: Universal magneto response in LQCD and N=4 SYM with magnetic field

[Dey, Chen, Kaminski, et al.; PRL (2024)]

CFT expectation (gauge side):

$$\langle \mathcal{O}_a \mathcal{O}_b \rangle \simeq rac{1}{(d_{ab})^{2\Delta}}$$

$$d_{ab} = \begin{cases} |e^{i\theta_a} - e^{i\theta_b}| & \text{(type-I)}\\ \frac{\sinh(\pi T\ell |\theta_a - \theta_b|)}{\pi T\ell} & \text{(type-II)} \end{cases}$$

Two point functions measured on circuit (gravity side):

c-Function

Entropic c-function

[Casini,Huerta; Phys.Lett.B (2004)]

l: length scale (inverse energy scale)

4D
$$a_4 = \beta_4 \frac{\ell^3}{H^2} \frac{\partial S_a}{\partial \ell}$$

[Nishioka,Takayanagi; JHEP (2007)] [Myers,Sinha; JHEP (2011)]

H: IR-regulator β_4 : *known constant*

Holographic entanglement entropy

Holographic entanglement entropy

Gravity dual to N=4 SYM theory with magnetic field

Einstein-Maxwell-Chern-Simons action

$$S_{grav} = \frac{1}{2\kappa^2} \left[\int_{\mathcal{M}} d^5 x \sqrt{-g} \left(R + \frac{12}{L^2} - \frac{1}{4} F_{mn} F^{mn} \right) - \frac{\gamma}{6} \int_{\mathcal{M}} A \wedge F \wedge F \right]$$

5-dimensional Einstein-Maxwell action encodes N=4 Super-Yang-Mills theory with axial **U(1) gauge symmetry** 5-dimensional Chern-Simons term **encodes chiral anomaly**

Einstein-Maxwell equations

$$\begin{aligned} R_{\mu\nu} + 4g_{\mu\nu} &= \frac{1}{2} \left(F_{\mu\alpha} F_{\nu}^{\ \alpha} - \frac{1}{6} g_{\mu\nu} F_{\alpha\beta} F^{\alpha\beta} \right) \\ \nabla_{\mu} F^{\mu\nu} &= -\frac{\gamma}{8\sqrt{-g}} \epsilon^{\nu\alpha\beta\lambda\sigma} F_{\alpha\beta} F_{\lambda\sigma} \,. \end{aligned}$$

Solution: charged magnetic black brane metric [D'Hoker, Kraus; JHEP (2010)]

• magnetic extension of a (charged) Reissner-Nordstrom black brane

$$ds^{2} = \frac{1}{z^{2}} \left(\frac{dz^{2}}{U(z)} - U(z)dt^{2} + v(z)^{2} \left(dx_{1}^{2} + dx_{2}^{2} \right) + w(z)^{2} \left(dx_{3}^{2} + c(z)dt \right)^{2} \right)$$

with numerically known solutions for U, v, w, c

Gravitational calculation

calculate a *geodesic* in conformally deformed AdS metric

	Transverse	Longitudinal
Embedding Coordinates	$\chi^{\mu} = (z(\sigma), t(\sigma), x_1(\sigma), x_2, x_3)$	$\chi^{\mu} = (z(\sigma), t(\sigma), x_1, x_2, x_3(\sigma))$
Surface Coordinates	$\sigma^i = (\sigma, x_2, x_3)$	$\sigma^i = (\sigma, x_1, x_2)$

Reminder: metric is
$$ds^2 = \frac{1}{z^2} \left(\frac{dz^2}{U(z)} - U(z)dt^2 + v(z)^2 \left(dx_1^2 + dx_2^2 \right) + w(z)^2 \left(dx_3^2 + c(z)dt \right)^2 \right)$$

Entropic c-function *in N=4 SYM vacuum state*

Entropic c-function *increases* in *thermal* state

- constant in vacuum of CFT (c-theorem valid)
- ➡ IR limit: thermal entropy

[Zamolodchikov; JETP Lett.(1986)] [Komargodski,Schwimmer; (2011)] [Osborn; Phys.Lett.B(1988)] [Cardy; Phys.Lett.B(1988)]

Entropic c-Function *increases* in *thermal* state

[Cartwright, Kaminski; arXiv: 2107.12409]

Effect of the chiral anomaly

Effect of the chiral anomaly

Schematic picture: probing energy scales

Numerical data confirming schematic picture

Thermal entropy

