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Circular rainbow viewed from plane above Seattle

Gauge/Gravity Correspondence  
= 

Holography 
= 

AdS/CFT

[https://deepai.org/]

https://arxiv.org/abs/hep-th/0405231
http://deepai.org
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Circular rainbow viewed from plane above Seattle

Gauge/Gravity Correspondence  
= 

Holography 
= 

AdS/CFT

Universality at large N (number of colors): 
Shear viscosity to entropy density bound

η
s

=
1

4π

[Kovtun,Son,Starinets; PRL (2005)]

(Finite N corrects, finite 
coupling respects bound  

                                                 )

[https://deepai.org/]

[Cremonini, Mod.Phys.Lett.B (2011)]
[Buchel, Myers, Sindha; JHEP (2008)] 

https://arxiv.org/abs/hep-th/0405231
https://arxiv.org/abs/hep-th/0405231
http://deepai.org
https://arxiv.org/pdf/1108.0677
https://arxiv.org/abs/0812.2521
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Outline

1. Statistical versus quantum mechanic dynamics 

2. Holography (far from equilibrium) 

3. Holographic entanglement entropy (calculation) 

4. Quantum gravity experiments
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Thermodynamics: entropy increases

ti
m

e

S ∝  # of configurations

Statistical mechanics: 

An isolated system evolves such 
that it maximizes its entropy. 

Entropy = Non-Information
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Thermodynamics: entropy increases

ti
m

e

S ∝  # of configurations

S = − tr (ρ log ρ)

Definition via density matrix

Statistical mechanics: 

An isolated system evolves such 
that it maximizes its entropy. 

Entropy = Non-Information

ρ = ∑
i

pi |ni⟩⟨ni |
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Statistical mechanics: 

An isolated system evolves such 
that it maximizes its entropy.

Clash of two fundamental concepts

Quantum mechanics: 

A pure state (with zero entropy) 
remains pure with zero entropy.

[Kaufman et al.; Science (2016)]     “Quantum thermalization through entanglement in an 
isolated many-body system” 

https://doi.org/10.1126/science.aaf6725
https://doi.org/10.1126/science.aaf6725
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Statistical mechanics: 

An isolated system evolves such 
that it maximizes its entropy.

Clash of two fundamental concepts

Quantum mechanics: 

A pure state (with zero entropy) 
remains pure with zero entropy.

[Kaufman et al.; Science (2016)]     “Quantum thermalization through entanglement in an 
isolated many-body system” 

Pure state density matrix     
         
with .

ρ = 1 ⋅ |eigenstate⟩⟨eigenstate |
tr (ρ2) = 1

Vanishing entropy S = − tr (ρ log ρ) = 0

Unitary time evolution   
keeps S=0.

ρ → U−1ρU

https://doi.org/10.1126/science.aaf6725
https://doi.org/10.1126/science.aaf6725
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Statistical mechanics: 

An isolated system evolves such 
that it maximizes its entropy.

Clash of two fundamental concepts

Quantum mechanics: 

A pure state (with zero entropy) 
remains pure with zero entropy.

Example 1:  
Black hole evaporation Pure state. Zero entropy. 

(inward falling mass shell)
[Almheiri et al.; Rev.Mod.Phys. (2021)]

ti
m

e

https://arxiv.org/abs/2006.06872
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Statistical mechanics: 

An isolated system evolves such 
that it maximizes its entropy.

Clash of two fundamental concepts

Quantum mechanics: 

A pure state (with zero entropy) 
remains pure with zero entropy.

Example 1:  
Black hole evaporation Pure state. Zero entropy. 

(inward falling mass shell)

Black hole is formed.

Hawking radiation,  
black hole evaporates.

Thermal Hawking radiation. 
Nonzero entropy!?

[Almheiri et al.; Rev.Mod.Phys. (2021)]

ti
m

e

Information paradox  
[Hawking; (1976)]

Page curve (fine-grained S)

https://arxiv.org/abs/2006.06872
https://arxiv.org/abs/2006.06872
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Statistical mechanics: 

An isolated system evolves such 
that it maximizes its entropy.

Clash of two fundamental concepts

Quantum mechanics: 

A pure state (with zero entropy) 
remains pure with zero entropy.

Example 1:  
Black hole evaporation

Black hole is formed.

Hawking radiation, 
black hole evaporates.

Thermal Hawking radiation. 
Nonzero entropy!

ti
m

e
Example 2:  
Heavy ion collisions (HIC)

[Müller,Schäfer; (2017)]
ti

m
e

Quantum information approach to HIC 
[Kharzeev; Phil.Trans.A.Math.Phys.Eng.Sci. (2021)]

Pure state. Zero entropy. 
(two colliding ions)

Particle distributions in detectors 
look thermal. Nonzero entropy!?

[Zhang et al.; PRD (2021)]

[Florio,Kharzeev; PRD (2021)]

https://arxiv.org/abs/1712.03567
https://arxiv.org/abs/2108.08792
https://arxiv.org/abs/2110.04881
https://arxiv.org/abs/2106.00838
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Statistical mechanics: 

An isolated system evolves such 
that it maximizes its entropy.

Clash of two fundamental concepts

Quantum mechanics: 

A pure state (with zero entropy) 
remains pure with zero entropy.

Example 1:  
Black hole evaporation

Black hole is formed.

Hawking radiation, 
black hole evaporates.

Thermal Hawking radiation. 
Nonzero entropy!

ti
m

e
Example 2:  
Heavy ion collisions

Example 3:  
Ultracold atoms

[Kaufman et al.; Science (2016)]      
“Quantum thermalization through entanglement in an isolated 
many-body system” 

Pure state. Zero entropy. 
Remains pure! 

BUT subsystems 
thermalize!  
(nonzero entropy)ti

m
e

• Rb atoms in optical lattice 

• six-site Bose-Hubbard system 

• quench and microscopy

[groups.jqi.umd.edu]

https://doi.org/10.1126/science.aaf6725
https://doi.org/10.1126/science.aaf6725
https://groups.jqi.umd.edu/porto/research/cold-atoms-optical-lattices
https://doi.org/10.1126/science.aay9560
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Statistical mechanics: 

An isolated system evolves such 
that it maximizes its entropy.

Clash of two fundamental concepts

[Kaufman et al.; Science (2016)]

Quantum mechanics: 

A pure state (with zero entropy) 
remains pure with zero entropy.

General proposed resolution

• Total system remains pure. 

• Subsystems thermalize 

(nonzero entropy). 

• Eigenstate thermalization 

hypothesis (ETH)? 

. . . many open questions!
grey links:  

entanglement

[Srednicki; (1993)]

https://doi.org/10.1126/science.aaf6725
https://arxiv.org/abs/hep-th/9303048
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Statistical mechanics: 

An isolated system evolves such 
that it maximizes its entropy.

Clash of two fundamental concepts

[Kaufman et al.; Science (2016)]

Quantum mechanics: 

A pure state (with zero entropy) 
remains pure with zero entropy.

General proposed resolution

• Total system remains pure. 

• Subsystems thermalize 

(nonzero entropy). 

• Eigenstate thermalization 

hypothesis (ETH)? 

. . . many open questions!
grey links:  

entanglement

[Srednicki; (1993)]➡thermalization mechanism? 
➡entanglement/decoherence? 
➡few versus many body: universality?

➡talks by Qi Zhou and Artem Volosniev

https://doi.org/10.1126/science.aaf6725
https://arxiv.org/abs/hep-th/9303048
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How do black holes  
and other isolated quantum systems  

thermalize?

Physical question

➡talk by Aurel Bulgac (slower than ETH-thermalization)
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Outline

1. Statistical versus quantum mechanic dynamics 

2. Holography (far from equilibrium) 

3. Holographic entanglement entropy (calculation) 

4. Quantum gravity experiments
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Ion collision/Ultracold atoms  ~ Black hole formation?

∼?

[groups.jqi.umd.edu]

https://doi.org/10.1126/science.aay9560
https://groups.jqi.umd.edu/porto/research/cold-atoms-optical-lattices
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Exact correspondence: Holography (gauge/gravity)

   N=4 Super-Yang-Mills 
in 3+1 dimensions 

with SU(N) and  
(gauge)

λ

Typ II B Superstring Theory 
in (4+1)-dimensional 
Anti de Sitter space  

(gravity)

,

,

     [‘t Hooft  (1993)]
     [Susskind; J.Math.Phys. (1995)]

     [Maldacena;  Adv.Theor.Math.Phys. (1997)]

https://arxiv.org/abs/gr-qc/9310026
https://arxiv.org/abs/hep-th/9409089
https://arxiv.org/abs/hep-th/9409089
https://arxiv.org/abs/hep-th/9409089
https://arxiv.org/abs/hep-th/9409089
https://arxiv.org/abs/hep-th/9409089
https://arxiv.org/abs/hep-th/9711200
https://arxiv.org/abs/hep-th/9711200
https://arxiv.org/abs/hep-th/9711200
https://arxiv.org/abs/hep-th/9711200
https://arxiv.org/abs/hep-th/9711200
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   N=4 Super-Yang-Mills 
in 3+1 dimensions 

with SU(N) and  
(gauge)

λ

Typ II B Superstring Theory 
in (4+1)-dimensional 
Anti de Sitter space  

(gravity)

,

,

Black hole entropy grows as its surface area 
(not as its volume). S ∝ Ah black 

hole

     [‘t Hooft  (1993)]
     [Susskind; J.Math.Phys. (1995)]

     [Maldacena;  Adv.Theor.Math.Phys. (1997)]

     [Bekenstein]
     [Hawking]

https://arxiv.org/abs/gr-qc/9310026
https://arxiv.org/abs/hep-th/9409089
https://arxiv.org/abs/hep-th/9409089
https://arxiv.org/abs/hep-th/9409089
https://arxiv.org/abs/hep-th/9409089
https://arxiv.org/abs/hep-th/9409089
https://arxiv.org/abs/hep-th/9711200
https://arxiv.org/abs/hep-th/9711200
https://arxiv.org/abs/hep-th/9711200
https://arxiv.org/abs/hep-th/9711200
https://arxiv.org/abs/hep-th/9711200
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Far from equilibrium holography

asymptotically 
Anti-de Sitter 
space (AdS)

radial AdS 
coordinate z

black 
hole

thermal 
QFT “lives” here, 
temperature T

Horizon formation in gravity

T=0 
QFT

Thermalization in field theory

gauge/gravity 
correspondence

T=0 particle 
“soup”

thermal 
QFT

nonzero T 
plasma

[Chesler, Yaffe; PRL (2009)]
[Janik,Peschanski; PRD (2006)]

gμν(v)⟨Tμν⟩(v)

time v

collapsing 
dust shell

➡exact/numerical thermalization results from holography

[Cartwright,Kaminski,Schenke; PRC (2022)]
[Cartwright,Kaminski,Knipfer (2022)]

[Cartwright,Kaminski; JHEP (2021)]
[Cartwright,Kaminski; JHEP (2019)]

http://arxiv.org/abs/arXiv:0812.2053
https://arxiv.org/abs/hep-th/0512162
https://arxiv.org/abs/2112.13857
https://arxiv.org/abs/2207.02875
https://arxiv.org/abs/2107.12409
https://arxiv.org/abs/1904.11507
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15

Holographic heavy ion collision (numerical, large N)
ti

m
e

Example: 
heavy ion  
Collisions

holographic idea: [Janik, Peschanski; PRD (2006)]

[van der Schee (2014)]

http://arxiv.org/abs/arXiv:0812.2053
https://sites.google.com/view/wilkevanderschee/public-codes
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Off-center holographic heavy ion collision
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m
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Outline

1. Statistical versus quantum mechanic dynamics 

2. Holography (far from equilibrium) 

3. Holographic entanglement entropy (calculation) 

4. Quantum gravity experiments
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Entanglement entropy corresponds to minimal surface

RECALL: Black hole entropy grows as its   
               surface area (not as its volume).

S ∝ Ah

Entanglement entropy in quantum field theory 
corresponds to a particular  
minimal surface in gravity theory [Ryu,Takayanagi; JHEP (2006)]

black brane

minimal surface

https://arxiv.org/abs/hep-th/0605073
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Calculation of entanglement entropy in 2D CFT  
from minimal surface in AdS3

Definition: entanglement entropy

Holographically dual definition
[Ryu,Takayanagi; JHEP (2006)]

region b
region a
region b

strip length l

Sa =
1

4G
𝒜 black brane

minimal surface 𝒜

region aregion b region b

Example: 3-dimensional AdS (t, x, z) 
at a given time t,  
minimal surface is shortest path  
which is also called a geodesic

x

z

strip length l

https://arxiv.org/abs/hep-th/0605073
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Calculation of entanglement entropy in 2D CFT  
from minimal surface in AdS3

Example: 3-dimensional AdS in Eddington-Finkelstein coordinates  
(t, x, z) —> (v, x, z) 

Calculate minimal surface = shortest path = geodesic

Metric: Clever parametrization of surface:

Geodesic equation:

Solution: minimal surfaces in AdS5, different l

[Ecker; thesis (2018)]

https://arxiv.org/pdf/1809.05529
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Effect of chiral anomaly and magnetic field on entanglement

temperature-magnetic field ratio

length 
scale l

➡anomaly effect peaked at T/B1/2 = 0.1

[Cartwright,Kaminski; JHEP (2021)]

Calculation: strongly coupled N=4 Super-Yang-Mills theory in strong B; 
compute minimal surfaces in AdS5

Entropic c-function (with anomaly minus without anomaly)

Reduced density matrix:
ρA = trB ρ

Entanglement entropy:

SA = − tr (ρA log ρA)

Entropic c-function:

c ∝
∂SA

∂l

A
B [Kaufman et al.; Science (2016)]

c a
no

m
al

y
−

c 0

https://arxiv.org/abs/2107.12409
https://doi.org/10.1126/science.aaf6725
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Geometric picture: three faces of minimal surfaces

[Cartwright,Kaminski; JHEP (2021)]

horizon

2) Emergent spacetime: [Van Raamsdonk; Science (2020)]
     1) Entanglement entropy: [Ryu,Takayanagi; JHEP (2006)]

3) Fine-grained entropy: [Almheiri et al.; Rev.Mod.Phys. (2021)]

black hole interior

Page curve 
(fine-grained S)

➡ Entanglement = Spacetime

[Van Raamsdonk; Gen.Rel.Grav. (2010)]

(UV)

(IR)

R
G

-s
ca

le

https://arxiv.org/abs/2107.12409
https://doi.org/10.1126/science.aay9560
https://doi.org/10.1126/science.aay9560
https://doi.org/10.1126/science.aay9560
https://arxiv.org/abs/gr-qc/9310026
https://arxiv.org/abs/2006.06872
https://arxiv.org/abs/1005.3035
https://arxiv.org/abs/1005.3035
https://arxiv.org/abs/1005.3035
https://arxiv.org/abs/1005.3035
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Outline

1. Statistical versus quantum mechanic dynamics 

2. Holography (far from equilibrium) 

3. Holographic entanglement entropy (calculation) 

4. Quantum gravity experiments 

• indirect: traversable wormhole on quantum computer 

• direct: gauge/gravity correspondence on electric circuit board
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Indirect Experiment: Simulation on Quantum Computer
[Jafferis et al.; Nature (2022)]

Examine spacetime with “quantum computing glasses”.

[www.quantamagazine.org]

https://doi.org/10.1038/s41586-022-05424-3
http://www.quantamagazine.org
https://www.quantamagazine.org/physicists-create-a-wormhole-using-a-quantum-computer-20221130/
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Indirect Experiment: Simulation on Quantum Computer
[Jafferis et al.; Nature (2022)]

Principle

[www.quantamagazine.org]

Quantumgravity problem 

send a signal through a wormhole 

in Jackiw-Teitelboim (JT) Gravity

Quantum mechanics problem 

???

gauge/gravity 
correspondence

Quantum mechanics problem 

quantum teleportation protocol in  

Sachdev-Ye-Kitaev (SYK) model

Simplified SYK problem 

machine represents problem??? 

(Hamiltonian of seven Majorana fermions 

with five fully-commuting terms)

machine 
learning: 
learn SYK

Google’s 
Sycamore 

solves 
machine-
simplified 
problem

Signal!

IBM/Quantinuum Competitors: 
[Shapoval et al.; Quantum (2023)]

https://doi.org/10.1038/s41586-022-05424-3
https://www.quantamagazine.org/physicists-create-a-wormhole-using-a-quantum-computer-20221130/
http://www.quantamagazine.org
https://arxiv.org/abs/2205.14081
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SYK Model of Majorana Fermions
from [Jafferis et al.; Nature (2022)]

https://doi.org/10.1038/s41586-022-05424-3
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Machine Learning (ML): Simplify the Problem
[Jafferis et al.; Nature (2022)]

Use of ML 

• use machine learning techniques to construct a sparsified SYK model, 

experimentally realized with 164 two-qubit gates on a nine-qubit circuit

https://doi.org/10.1038/s41586-022-05424-3
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Potential shortcomings of Jafferis et al.’s experiment

[Jafferis et al.; Nature (2022)]

[Kobrin/Schuster/Yao; preprint (2023)]
Comment criticizing this experiment 

[www.quantamagazine.org]

• Problem 1: learned Hamiltonian does not exhibit thermalization 

• Problem 2: resembles SYK only for operators used in ML training  

• Problem3: perfect size winding is generic feature of small-size models

see also response to criticism: [Jafferis et al.; (2023)]

https://doi.org/10.1038/s41586-022-05424-3
https://arxiv.org/abs/2302.07897
http://www.quantamagazine.org
https://www.quantamagazine.org/physicists-create-a-wormhole-using-a-quantum-computer-20221130/
https://arxiv.org/abs/2303.15423
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Principle
Quantumgravity problem 

send a signal through a wormhole 

in Jackiw-Teitelboim (JT) Gravity

Quantum mechanics problem 

???

gauge/
gravity 
corres-

pondence Quantum mechanics problem 

quantum teleportation protocol in  

Sachdev-Ye-Kitaev (SYK) model

Simplified SYK problem 

machine represents problem???

machine 
learning: 
learn SYK

Google’s 
Sycamore 

solves 
machine-
simplified 
problemSignal!

Quantumgravity 
quantum 

information on 
quantum circuit

Direct Experiment: Black Hole on Electrical Circuit
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Direct Experiment: Black Hole on Electrical Circuit
[Dey, Chen, Kaminski, et al.; PRL (2024)]

Model black hole on 
electrical hyperbolic 
circuit board 

Voltage on circuit 
satisfies Klein-Gordon 
equation for massive 
scalar in AdS 

Testing holography in 
the lab

[Lenggenhager, Thomale et al., 
Nat. Commun. (2022)]

[Basteiro et al.; PRL (2023)]

https://arxiv.org/abs/2404.03062
https://doi.org/10.1038/s41467-022-32042-4
https://doi.org/10.1103/PhysRevLett.130.091604
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Direct Experiment: Black Hole on Electrical Circuit

\

Realize wormhole on classical electric circuit:

[Dey, Chen, Kaminski, et al.; PRL (2024)]

https://arxiv.org/abs/2404.03062
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Direct Experiment: Black Hole on Electrical Circuit

Three point functions measured on circuit (gravity side):

CFT expectation (gauge side):

[Dey, Chen, Kaminski, et al.; PRL (2024)]

https://arxiv.org/abs/2404.03062
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OUTLOOK 

• entanglement entropy in holography far-from-equilibrium 

• finite N corrections: get closer to few-body dynamics 

• demonstrate “entanglement=spacetime” in experiments      

(spacetime emerging from entangled quantum bits?) 

➡improve indirect traversable wormhole on quantum computer 

➡directly simulate quantum gravity on quantum computer 

• use machine learning methods (experiments, ML spacetime) 

SUMMARY 

• isolated quantum systems thermalize in similar ways  

• entanglement = spacetime

Discussion

➡talk by Jane Kim
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Indirect and Direct Quantum Gravity Experiments

Quantumgravity problem 

send a signal through a wormhole 

in Jackiw-Teitelboim (JT) Gravity

Quantum mechanics problem 

???

gauge/gravity 
corres-

pondence

Quantum mechanics problem 

quantum teleportation protocol in  

Sachdev-Ye-Kitaev (SYK) model

Simplified SYK problem 

machine represents problem??? 

(Hamiltonian of seven Majorana fermions 

with five fully-commuting terms)

machine learning: 
learn SYK 

—— 
INDIRECT

quantum computer 
solves machine-

simplified problem

Signal

quantumgravity 
quantum 

information on 
quantum circuit 

—— 
DIRECT
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APPENDIX



Matthias Kaminski                                      Entanglement and thermalization                                                    Page

APPENDIX: Universal magneto response in LQCD and N=4 SYM  
with magnetic field

37

[Endrödi, Kaminski, Schäfer, Wu, Yaffe; JHEP (2018)]

Lattice QCD with 2+1 flavors, dynamical quarks, 
physical masses

pT = �LT

V

@FQCD

@LT

pL = �LL

V

@FQCD

@LL

transverse 
pressure:
longitudinal 
pressure:

FQCD… free energy
… transverse system 
sizeLT

… longitudinal system 
size
… system volume

LL

V

https://arxiv.org/abs/1806.09632
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Direct Experiment: Black Hole on Electrical Circuit

Two point functions measured 
on circuit (gravity side):

CFT expectation 
(gauge side):

[Dey, Chen, Kaminski, et al.; PRL (2024)]

https://arxiv.org/abs/2404.03062
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c-Function

➡ IR/UV fixed points: c-function 
equals central charge of IR/UV CFT 

➡ c-function measures              
degrees of freedom 

➡ take a CFT: c-function constant

Zamolodchikov’s 
c-theorem in 2D

c-theorem in 4D  
(the a-theorem)

(a4)UV − (a4)IR

trace anomaly

[Zamolodchikov; JETP Lett.(1986)]

[Komargodski,Schwimmer; (2011)]
[Cardy; Phys.Lett.B(1988)]

[Osborn; Phys.Lett.B(1988)]

energy-momentum 
tensor:

https://arxiv.org/abs/1107.3987
https://doi.org/10.1016/0370-2693(88)90054-8
https://doi.org/10.1016/0370-2693(89)90729-6
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Entropic c-function

➡ c-function defined by 

entanglement entropy

c2 = 3ℓ
δSa

δℓ
[Casini,Huerta; Phys.Lett.B (2004)]

2D

4D

entanglement 
entropy

a4 = β4
ℓ3

H2

∂Sa

∂ℓ

[Nishioka,Takayanagi; JHEP (2007)]
[Myers,Sinha; JHEP (2011)]

H:   IR-regulator 
:   known constantβ4

:   length scale (inverse energy scale)ℓ

https://arxiv.org/abs/hep-th/0405111
https://arxiv.org/abs/hep-th/0611035
https://arxiv.org/abs/1011.5819
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Holographic entanglement entropy

strip lengtha
b

b

Definition
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Holographic entanglement entropy

strip lengtha
b

b

Definition

Holographically dual definition

a

a minimal 
surface 
area

holographic direction  z 
(additional dimension)

[Ryu,Takayanagi; JHEP (2006)]

 is the 5-dimensional 
gravitational constant of 
Anti de Sitter spacetime

G5

https://arxiv.org/abs/hep-th/0605073
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Solution: charged magnetic black brane metric

• magnetic extension of a (charged) Reissner-Nordstrom black brane

[D’Hoker, Kraus; JHEP (2010)]

Einstein-Maxwell-Chern-Simons action

5-dimensional Chern-
Simons term encodes 
chiral anomaly

Gravity dual to N=4 SYM theory with magnetic field

5-dimensional Einstein-Maxwell action encodes N=4 
Super-Yang-Mills theory with axial U(1) gauge symmetry

Einstein-Maxwell equations 

with numerically known solutions for U, v, w, c

https://arxiv.org/pdf/0911.4518.pdf
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Gravitational calculation

V|| =
a

∫
−a

b

∫
−b

dx1dx3

minimal surface area

Reminder: metric is

Entanglement entropy

➡ calculate a geodesic in 
conformally deformed AdS metric

a

Recall:

a
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Entropic c-function in N=4 SYM vacuum state

zero temperature, 

no magnetic field, 

vanishing charge

➡ c-function at all scales 
equal to central charge of 
N=4 SYM, which is a CFT

[Cartwright, Kaminski; arXiv: 2107.12409]

= 2π2 ≈ 19.7

https://arxiv.org/abs/2107.12409
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Entropic c-function increases in thermal state

in thermal state

➡ c-function increases in thermal state (violates c-theorem?)  

➡ constant in vacuum of CFT (c-theorem valid) 

➡ IR limit: thermal entropy

[Cartwright,Kaminski; JHEP (2021)]

in vacuum state

[Zamolodchikov; JETP Lett.(1986)]
[Komargodski,Schwimmer; (2011)]

[Cardy; Phys.Lett.B(1988)]
[Osborn; Phys.Lett.B(1988)]

[Casini,Huerta; Phys.Lett.B (2004)]

[Nishioka,Takayanagi; JHEP (2007)]

[Myers,Sinha; JHEP (2011)]

a4 = β4
ℓ3

H2

∂Sa

∂ℓ

H:   IR-regulator 
:   known constantβ4

https://arxiv.org/abs/2107.12409
https://arxiv.org/abs/1107.3987
https://doi.org/10.1016/0370-2693(88)90054-8
https://doi.org/10.1016/0370-2693(89)90729-6
https://arxiv.org/abs/hep-th/0405111
https://arxiv.org/abs/hep-th/0611035
https://arxiv.org/abs/1011.5819
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[Cartwright, Kaminski; arXiv: 2107.12409]

now with 

temperature, 

magnetic field, 

charge, 

chiral anomaly

Entropic c-Function increases in thermal state

➡ c-function increases 

➡ effect of the charged, 
magnetic, thermal state  
➡ IR limit: thermal entropy 
➡ proposal: measure of 
occupation number

magnetic 
field 
strength

IR-scaling 
as expected 
from 
entanglement 
entropy

https://arxiv.org/abs/2107.12409
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Effect of the chiral anomaly
[Cartwright, Kaminski; arXiv: 2107.12409]

now with 

temperature, 

magnetic field, 

charge, 

chiral anomaly

length 
scale ℓ

➡ maximal effect at 0.1 

(thermal entropy has no 

maximum)

https://arxiv.org/abs/2107.12409
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Effect of the chiral anomaly
[Cartwright, Kaminski; arXiv: 2107.12409]

now with 

temperature, 

magnetic field, 

charge, 

chiral anomaly

length 
scale ℓ

➡ maximal effect at 0.1 

(thermal entropy has no 

maximum)

effect of quantum 

critical point?

[D’Hoker, Kraus; JHEP (2010)]

https://arxiv.org/abs/2107.12409
https://arxiv.org/pdf/0911.4518.pdf
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Schematic picture: probing energy scales
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Numerical data confirming schematic picture
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Thermal entropy


