Entanglement, thermalization (and transport) in quark-gluon plasma, in ultra-cold gases, & black holes

Quantum Few- and Many-Body Systems in Universal Regimes, INT, Seattle

October 23rd, 2024

Matthias Kaminski *University of Alabama*

Circular rainbow viewed from plane above Seattle

Circular rainbow viewed from plane above Seattle

AdS/CFT

Circular rainbow viewed from plane above Seattle

[\[https://deepai.org/\]](https://arxiv.org/abs/hep-th/0405231)

Universality at large *N* **(number of colors): Shear viscosity to entropy density bound** *[\[Kovtun,Son,Starinets; PRL \(2005\)\]](https://arxiv.org/abs/hep-th/0405231)*

(Finite N corrects, finite coupling respects bound [\)](https://arxiv.org/pdf/1108.0677) [Cremonini, Mod.Phys.Lett.B (2011)] [\[Buchel, Myers, Sindha; JHEP \(2008\)\]](https://arxiv.org/abs/0812.2521)

Gauge/Gravity Correspondence = Holography = AdS/CFT

Outline

- **1. Statistical versus quantum mechanic dynamics**
- **2. Holography (far from equilibrium)**
- **3. Holographic entanglement entropy (calculation)**
- **4. Quantum gravity experiments**

Thermodynamics: entropy increases

 $S \propto #$ of configurations *Statistical mechanics:* An **isolated system** evolves such that it maximizes its entropy. Entropy = Non-Information

time

Thermodynamics: entropy increases

Statistical mechanics:

An **isolated system** evolves such that it maximizes its entropy.

Quantum mechanics:

A **pure state** (with zero entropy) remains pure with zero entropy.

[\[Kaufman et al.; Science \(2016\)\] "Quantum thermalization through entanglement in an](https://doi.org/10.1126/science.aaf6725) isolated many-body system"

Statistical mechanics:

An **isolated system** evolves such that it maximizes its entropy.

Quantum mechanics:

A **pure state** (with zero entropy) remains pure with zero entropy.

[\[Kaufman et al.; Science \(2016\)\] "Quantum thermalization through entanglement in an](https://doi.org/10.1126/science.aaf6725) isolated many-body system"

> Pure state density matrix with tr $(\rho^2) = 1$. $\rho = 1 \cdot |$ eigenstate \rangle \langle eigenstate $|$ Vanishing entropy $S = -\operatorname{tr}(\rho \log \rho) = 0$

Unitary time evolution $\rho \rightarrow U^{-1} \rho U$ keeps *S=0*.

Statistical mechanics:

An **isolated system** evolves such that it maximizes its entropy.

Quantum mechanics:

A **pure state** (with zero entropy) remains pure with zero entropy.

Example 1:

Black hole evaporation $\begin{array}{c} \begin{array}{c} \end{array} \end{array}$ $\begin{array}{c} \begin{array}{c} \end{array}$ Pure state. **Zero entropy.**
Black hole evaporation $\left[\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} & \begin{array}{c} \end$

time

Statistical mechanics:

An **isolated system** evolves such that it maximizes its entropy.

Quantum mechanics:

A **pure state** (with zero entropy) remains pure with zero entropy.

Example 1:

[\[Almheiri et al.; Rev.Mod.Phys. \(2021\)\]](https://arxiv.org/abs/2006.06872)

Black hole evaporation $\begin{array}{c} \begin{array}{c} \end{array} \end{array}$ $\begin{array}{c} \begin{array}{c} \end{array}$ Pure state. **Zero entropy.**
Black hole evaporation (inward falling mass shell)

Black hole is formed.

time

Statistical mechanics:

An **isolated system** evolves such that it maximizes its entropy.

Quantum mechanics:

A **pure state** (with zero entropy) remains pure with zero entropy.

Example 1:

[\[Almheiri et al.; Rev.Mod.Phys. \(2021\)\]](https://arxiv.org/abs/2006.06872)

Black hole evaporation $\begin{array}{c} \begin{array}{c} \end{array} \end{array}$ $\begin{array}{c} \begin{array}{c} \end{array}$ Pure state. **Zero entropy.**
Black hole evaporation (inward falling mass shell)

Black hole is formed.

time

Hawking radiation, black hole evaporates.

Statistical mechanics:

An **isolated system** evolves such that it maximizes its entropy.

Quantum mechanics:

A **pure state** (with zero entropy) remains pure with zero entropy.

Example 1:

[\[Almheiri et al.; Rev.Mod.Phys. \(2021\)\]](https://arxiv.org/abs/2006.06872)

Black hole evaporation $\begin{array}{c} \begin{array}{c} \end{array} \end{array}$ $\begin{array}{c} \begin{array}{c} \end{array}$ Pure state. **Zero entropy.**
Black hole evaporation (inward falling mass shell)

Black hole is formed.

time

Hawking radiation, black hole evaporates.

Thermal Hawking radiation. **Nonzero entropy!?**

Statistical mechanics:

An **isolated system** evolves such that it maximizes its entropy.

Quantum mechanics:

A **pure state** (with zero entropy) remains pure with zero entropy.

Example 1:

[\[Almheiri et al.; Rev.Mod.Phys. \(2021\)\]](https://arxiv.org/abs/2006.06872)

Page curve (fine-grained S)

Black hole evaporation $\begin{array}{c} \begin{array}{c} \hline \end{array} \end{array}$ Pure state. **Zero entropy.**
Black hole evaporation (inward falling mass shell)

Black hole is formed.

Hawking radiation, black hole evaporates.

Thermal Hawking radiation. Nonze¹ Carropy!

Statistical mechanics:

An **isolated system** evolves such that it maximizes its entropy.

Quantum mechanics:

A **pure state** (with zero entropy) remains pure with zero entropy.

Example 1: Black hole evaporation

Example 2: Heavy ion collisions (HIC)

Quantum information approach to HIC [\[Kharzeev; Phil.Trans.A.Math.Phys.Eng.Sci. \(2021\)\]](https://arxiv.org/abs/2108.08792)

[\[Zhang et al.; PRD \(2021\)\]](https://arxiv.org/abs/2110.04881)

[\[Florio,Kharzeev; PRD \(2021\)\]](https://arxiv.org/abs/2106.00838)

(two colliding ions) *[\[Müller,Schäfer; \(2017\)\]](https://arxiv.org/abs/1712.03567)* Pure state. **Zero entropy.**

time

Statistical mechanics:

An **isolated system** evolves such that it maximizes its entropy.

Quantum mechanics:

A **pure state** (with zero entropy) remains pure with zero entropy.

Example 1: Black hole evaporation

Example 2: Heavy ion collisions

Example 3: Ultracold atoms

[Kaufman et al.; Science (2016)] ["Quantum thermalization through entanglement in an isolated](https://doi.org/10.1126/science.aaf6725) many-body system"

- Rb atoms in optical lattice
• six-site Bose-Hubbard sys
- six-site Bose-Hubbard system
- quench and microscopy

Pure state. **Zero entropy. Remains pure!**

Black hole is formed. The process of the process of

DIT^h autorization. **Non subsystems**
thermolize! **BUT subsystems thermalize! (nonzero entropy)**

time

Statistical mechanics:

An **isolated system** evolves such that it maximizes its entropy.

Quantum mechanics:

A **pure state** (with zero entropy) remains pure with zero entropy.

General proposed resolution

- Total system remains pure.
- Subsystems thermalize

(nonzero entropy).

• Eigenstate thermalization

hypothesis (ETH)? *[\[Srednicki; \(1993\)\]](https://arxiv.org/abs/hep-th/9303048)*

. . . many open questions!

[\[Kaufman et al.; Science \(2016\)\]](https://doi.org/10.1126/science.aaf6725)

grey links: entanglement

Statistical mechanics:

An **isolated system** evolves such that it maximizes its entropy.

Quantum mechanics:

A **pure state** (with zero entropy) remains pure with zero entropy.

Statistical mechanics:

An **isolated system** evolves such that it maximizes its entropy.

Quantum mechanics:

A **pure state** (with zero entropy) remains pure with zero entropy.

Physical question

How do black holes and other isolated quantum systems thermalize?

➡*talk by Aurel Bulgac (slower than ETH-thermalization)*

Outline

1. Statistical versus quantum mechanic dynamics

2. Holography (far from equilibrium)

- **3. Holographic entanglement entropy (calculation)**
- **4. Quantum gravity experiments**

Ion collision/Ultracold atoms ~ Black hole formation?

Exact correspondence: Holography (gauge/gravity)

Exact correspondence: Holography (gauge/gravity)

Black hole entropy grows as its **surface area**

 [Bekenstein] [Hawking]

Far from equilibrium holography

Matthias Kaminski Entanglement and thermalization Page 14

Holographic heavy ion collision (numerical, large *N***)**

[holographic idea: \[Janik, Peschanski; PRD \(2006\)\]](http://arxiv.org/abs/arXiv:0812.2053)

Holographic heavy ion collision (numerical, large *N***)**

[holographic idea: \[Janik, Peschanski; PRD \(2006\)\]](http://arxiv.org/abs/arXiv:0812.2053)

Off-center holographic heavy ion collision

Off-center holographic heavy ion collision

Off-center holographic heavy ion collision

Outline

- **1. Statistical versus quantum mechanic dynamics**
- **2. Holography (far from equilibrium)**

3. Holographic entanglement entropy (calculation)

4. Quantum gravity experiments

Entanglement entropy corresponds to minimal surface

RECALL: Black hole entropy grows as its surface area (not as its volume).

Calculation of entanglement entropy in 2D CFT from minimal surface in AdS3

Holographically dual definition

[\[Ryu,Takayanagi; JHEP \(2006\)\]](https://arxiv.org/abs/hep-th/0605073)

Calculation of entanglement entropy in 2D CFT from minimal surface in AdS3 *[\[Ecker; thesis \(2018\)\]](https://arxiv.org/pdf/1809.05529)*

Example: 3-dimensional AdS in Eddington-Finkelstein coordinates *(t, x, z) —> (v, x, z)*

Calculate minimal surface = shortest path = geodesic

Metric: $ds^2 = \frac{1}{r^2} \left(-dv^2 - 2dzdv + d\vec{x}^2 \right)$ **Clever parametrization of surface:**

 $X^{\alpha}(\sigma) = (Z(\sigma), V(\sigma), X(\sigma))$

Geodesic equation:

$$
\ddot{X}^\alpha(\sigma)+\Gamma^\alpha_{\beta\gamma}(X^\delta(\sigma))\dot{X}^\beta(\sigma)\dot{X}^\gamma(\sigma)=J(\sigma)\dot{X}^\alpha(\sigma)
$$

Matthias Kaminski Entanglement and thermalization Page 20

Effect of chiral anomaly and magnetic field on entanglement

Calculation: strongly coupled *N***=4 Super-Yang-Mills theory in strong** *B***; compute minimal surfaces in AdS5**

Geometric picture: three faces of *minimal surfaces*

Outline

- **1. Statistical versus quantum mechanic dynamics**
- **2. Holography (far from equilibrium)**
- **3. Holographic entanglement entropy (calculation)**
- **4. Quantum gravity experiments**
	- **• indirect: traversable wormhole on quantum computer**
	- **• direct: gauge/gravity correspondence on electric circuit board**

Indirect Experiment: Simulation on Quantum Computer

[\[Jafferis et al.; Nature \(2022\)\]](https://doi.org/10.1038/s41586-022-05424-3)

Examine spacetime with "quantum computing glasses".

Indirect Experiment: Simulation on Quantum Computer

[\[Jafferis et al.; Nature \(2022\)\]](https://doi.org/10.1038/s41586-022-05424-3)

IBM/Quantinuum Competitors: [\[Shapoval et al.; Quantum \(2023\)\]](https://arxiv.org/abs/2205.14081)

SYK Model of Majorana Fermions

Here, we study the dynamics of traversable wormholes through a many-body simulation of an SYK system of N fermions^{2,3}. The traversable wormhole protocol is equivalent to a quantum teleportation protocol in the large-N semiclassical limit (Fig. 1c). Explicitly, given left and right Hamiltonians H_L and H_R with N Majorana fermions ψ on each side, the SYK model with q couplings is given by

$$
H_{L,R} = \sum_{1 \le j_1 < \dots < j_q \le N} J_{j_1 \dots j_q} \psi_{L,R}^{j_1} \dots \psi_{L,R}^{j_q},\tag{1}
$$

where the couplings are chosen from a Gaussian distribution with mean zero and variance $f^2(q-1)!/N^{q-1}$. We choose $q = 4$ and demonstrate gravitational physics at sufficiently small N, sparsifying $J_{j_1...j_q}$ to enable experimental implementation.

> Applying the learning process, we produce a large population of sparse Hamiltonians showing the appropriate interaction sign dependence (Fig. 2a). We select the learned Hamiltonian

$$
H_{L,R} = -0.36 \psi^1 \psi^2 \psi^4 \psi^5 + 0.19 \psi^1 \psi^3 \psi^4 \psi^7 - 0.71 \psi^1 \psi^3 \psi^5 \psi^6 + 0.22 \psi^2 \psi^3 \psi^4 \psi^6 + 0.49 \psi^2 \psi^3 \psi^5 \psi^7,
$$
 (3)

which requires seven of the original $N = 10$ SYK model fermions, where ψ denotes the Majorana fermions of either the left or the right systems.

[from \[Jafferis et al.; Nature \(2022\)\]](https://doi.org/10.1038/s41586-022-05424-3)

Machine Learning (ML): Simplify the Problem

[\[Jafferis et al.; Nature \(2022\)\]](https://doi.org/10.1038/s41586-022-05424-3)

Use of ML

• use machine learning techniques to construct a sparsified SYK model, experimentally realized with 164 two-qubit gates on a nine-qubit circuit

Potential shortcomings of Jafferis et al.'s experiment

[\[Jafferis et al.; Nature \(2022\)\]](https://doi.org/10.1038/s41586-022-05424-3)

Comment criticizing this experiment

[\[Kobrin/Schuster/Yao; preprint \(2023\)\]](https://arxiv.org/abs/2302.07897)

- **Problem 1:** learned Hamiltonian does not exhibit thermalization
- **Problem 2:** resembles SYK only for operators used in ML training
- **Problem3:** perfect size winding is generic feature of small-size models

[see also response to criticism: \[Jafferis et al.; \(2023\)\]](https://arxiv.org/abs/2303.15423)

[\[Dey, Chen, Kaminski, et al.; PRL \(2024\)\]](https://arxiv.org/abs/2404.03062)

Model black hole on electrical hyperbolic circuit board

Voltage on circuit satisfies Klein-Gordon equation for massive scalar in AdS *[\[Basteiro et al.; PRL \(2023\)\]](https://doi.org/10.1103/PhysRevLett.130.091604)*

Testing holography in the lab

[\[Dey, Chen, Kaminski, et al.; PRL \(2024\)\]](https://arxiv.org/abs/2404.03062)

Realize wormhole on classical electric circuit:

[\[Dey, Chen, Kaminski, et al.; PRL \(2024\)\]](https://arxiv.org/abs/2404.03062)

Three point functions measured on circuit (gravity side):

Discussion

SUMMARY

- **• isolated quantum systems thermalize in similar ways**
- **• entanglement = spacetime**

OUTLOOK

- **• entanglement entropy in holography far-from-equilibrium**
- **• finite** *N* **corrections: get closer to few-body dynamics**
- **• demonstrate "entanglement=spacetime" in experiments**

(spacetime emerging from entangled quantum bits?)

- ➡**improve indirect traversable wormhole on quantum computer**
- ➡**directly simulate quantum gravity on quantum computer**
- **• use machine learning methods (experiments, ML spacetime)** ➡*talk by Jane Kim*

Indirect and Direct Quantum Gravity Experiments

Thanks to my collaborators (since 2012)

APPENDIX

APPENDIX: Universal magneto response in LQCD and N=4 SYM with magnetic field

[\[Dey, Chen, Kaminski, et al.; PRL \(2024\)\]](https://arxiv.org/abs/2404.03062)

CFT expectation (gauge side):

$$
\langle \mathcal{O}_a \mathcal{O}_b \rangle \simeq \frac{1}{(d_{ab})^{2\Delta}}
$$

$$
d_{ab} = \begin{cases} |e^{i\theta_a} - e^{i\theta_b}| & \text{(type-I)}\\ \frac{\sinh(\pi T \ell | \theta_a - \theta_b|)}{\pi T \ell} & \text{(type-II)} \end{cases}
$$

Two point functions measured on circuit (gravity side):

c-Function

Entropic **c-function**

[\[Casini,Huerta; Phys.Lett.B \(2004\)\]](https://arxiv.org/abs/hep-th/0405111)

ℓ: length scale (inverse energy scale)

$$
a_4 = \beta_4 \frac{\ell^3}{H^2} \frac{\partial S_a}{\partial \ell}
$$

[\[Nishioka,Takayanagi; JHEP \(2007\)\]](https://arxiv.org/abs/hep-th/0611035) [\[Myers,Sinha; JHEP \(2011\)\]](https://arxiv.org/abs/1011.5819)

H: IR-regulator β : known constant ⁴

Holographic entanglement entropy

Holographic entanglement entropy

Gravity dual to *N=4* **SYM theory with magnetic field**

Einstein-Maxwell-Chern-Simons action

$$
S_{grav}=\frac{1}{2\kappa^2}\left[\int_{\mathcal{M}}d^5x\sqrt{-g}\left(R+\frac{12}{L^2}-\frac{1}{4}F_{mn}F^{mn}\right)-\frac{\gamma}{6}\int_{\mathcal{M}}A\wedge F\wedge F\right.\nonumber\\
$$

5-dimensional Einstein-Maxwell action encodes N=4 Super-Yang-Mills theory with axial U(1) gauge symmetry *5-dimensional Chern-Simons term encodes chiral anomaly*

Einstein-Maxwell equations

$$
R_{\mu\nu} + 4g_{\mu\nu} = \frac{1}{2} \left(F_{\mu\alpha} F_{\nu}{}^{\alpha} - \frac{1}{6} g_{\mu\nu} F_{\alpha\beta} F^{\alpha\beta} \right)
$$

$$
\nabla_{\mu} F^{\mu\nu} = -\frac{\gamma}{8\sqrt{-g}} \epsilon^{\nu\alpha\beta\lambda\sigma} F_{\alpha\beta} F_{\lambda\sigma}.
$$

Solution: charged magnetic black brane metric *[\[D'Hoker, Kraus; JHEP \(2010\)\]](https://arxiv.org/pdf/0911.4518.pdf)*

• magnetic extension of a (charged) Reissner-Nordstrom black brane

$$
ds^{2} = \frac{1}{z^{2}} \left(\frac{dz^{2}}{U(z)} - U(z)dt^{2} + v(z)^{2} (dx_{1}^{2} + dx_{2}^{2}) + w(z)^{2} (dx_{3}^{2} + c(z)dt)^{2} \right)
$$

with numerically known solutions for U, v, w, c

Gravitational *calculation*

➡ **calculate a** *geodesic* **in conformally deformed AdS metric**

Reminder: metric is
$$
ds^2 = \frac{1}{z^2} \left(\frac{dz^2}{U(z)} - U(z)dt^2 + v(z)^2 \left(dx_1^2 + dx_2^2 \right) + w(z)^2 \left(dx_3^2 + c(z)dt \right)^2 \right)
$$

Entropic c-function *in N=4 SYM vacuum state*

Entropic c-function *increases* **in** *thermal* **state**

- ➡ **constant in vacuum of CFT (c-theorem valid)**
- ➡ **IR limit: thermal entropy**

[Zamolodchikov; JETP Lett.(1986)] [\[Komargodski,Schwimmer; \(2011\)\]](https://arxiv.org/abs/1107.3987) [\[Cardy; Phys.Lett.B\(1988\)\]](https://doi.org/10.1016/0370-2693(88)90054-8) [\[Osborn; Phys.Lett.B\(1988\)\]](https://doi.org/10.1016/0370-2693(89)90729-6)

Entropic c-Function *increases* **in** *thermal* **state**

[\[Cartwright, Kaminski; arXiv: 2107.12409\]](https://arxiv.org/abs/2107.12409)

Effect of the chiral anomaly

Effect of the chiral anomaly

Schematic picture: probing energy scales

Numerical data confirming schematic picture

Thermal entropy

