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● newborn neutron stars 
(BNS merger remnants / supernovae) 

● pulsar glitches 

● magnetar and X-ray pulsar bursts 
● vector boson clouds 
● low-mass PBH binaries  2

long-duration CW-like transients 



“CW-like” transients? 
● quasi-monochromatic signals: 

very slow evolution of frequency and amplitude 
● signal duration < observing time 
● but often long enough for time-varying 

○ antenna response 
○ Doppler effect between source and Earth 

[K. Wette]

3[LSC/LigoLab] 



1. BNS remnants 
● GW170817: 

○ BNS merger 
○ Mtot≈ 2.74 Msun 
○ d ≈ 40 Mpc 

[Abbott+ PRL119,161101 (2017)] 
 
 

● What was the remnant? 
○ direct collapse to BH? 
○ [H/S]MNS → BH? 
○ stable NS? 

● answer would tighten EoS constraints 
● indirect EM evidence for 2) [e.g. Gill+ ApJJ876:139 (2019)], 

but no direct measurement 

[Baiotti&Rezzolla2017]

[A. Nitz / LVC]
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[A.Simonnet/LVC] 

https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.3847/1538-4357/ab16da


BNS remnants 

● short (<1s) and 
intermediate-duration 
(<500s) searches 

● GW burst methods 
● model-dependent 

sensitivity estimates: 
○ NR postmerger (<1s) 
○ bar modes 
○ NS (“magnetar”) 

spin-down  5



BNS remnants 

6● CW methods  ● up to 8.5 days ● NS (“magnetar”) spin-down 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BNS remnants  [Sarin&Lasky  
GRG53:59 (2021)] 

Evolution and GW 
emission depend on 
remnant mass and 
nuclear EoS. 

https://doi.org/10.1007/s10714-021-02831-1
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BNS remnants  [Sarin&Lasky  
GRG53:59 (2021)] 

If we had detected 
short GW transients… 

+ probe rich science of 
complicated immediate 
post-merger phase 

https://doi.org/10.1007/s10714-021-02831-1
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BNS remnants  [Sarin&Lasky  
GRG53:59 (2021)] 

If we had detected 
long GW transients… 

+ probe baby NS 
dynamical evolution 
(supported ellipticity, 
 braking index) 

https://doi.org/10.1007/s10714-021-02831-1


BNS and supernovae remnants 
● BNS remnants: heavy and might have higher ellipticities, but rare at low distances 

(local merger rate: 10–1700 Gpc−3 yr−1 from GWTC-3 [LVK PRX13,011048 (2023)]) 

● regular newborn NSs from core-collapse supernovae: R=1.63±0.46 (100 yr)−1per MW 
[Rozwadowska+ New Astro. 83,101498 (2021)] 

● shared signal model: 
rapid “power-law” spindown 

● often called “ms magnetar” model 
[Lasky+ https://dcc.ligo.org/T1700408/public] 

● still monochromatic 
 
 
 

● with LVK, limited to ~few Mpc, 
3G detectors: ~dozens Mpc  10[J-R. Mérou, UIB] 

n=3 magnetic dipole, n=5 mass quadrupole GWs, n=7 r-mode GWs 

https://doi.org/10.1103/PhysRevX.13.011048
https://doi.org/10.1016/j.newast.2020.101498
https://dcc.ligo.org/T1700408/public


BNS and supernovae remnants 
● Search challenges: rapid spindown, 

will cross many instrumental artifacts 

● various semi-coherent CW search methods 
have been adapted and used for GW170817 

[Abbott+ ApJ875:160 (2019)] 
 
 
 
 

○ AdaptiveTransientHough [Oliver, Keitel & Sintes PRD99,104067 (2019)] 

○ Generalized FrequencyHough [Miller+ PRD98,102004 (2018)] 

○ HMM-Viterbi [Sun&Melatos PRD99,123003 (2019)] 

● alternative neural network ideas [Miller+ PRD100,062005 (2019), Attadio+ arXiv:2407.02391] 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[J-R. Mérou, UIB] 

https://doi.org/10.3847/1538-4357/ab0f3d
https://doi.org/10.1103/PhysRevD.99.104067
https://doi.org/10.1103/PhysRevD.98.102004
https://doi.org/10.1103/PhysRevD.99.123003
https://doi.org/10.1103/PhysRevD.100.062005
https://arxiv.org/abs/2407.02391
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BNS and supernovae remnants 
● Future outlook: 

○ Likely need to get at least one order of magnitude better to see anything. 

○ Especially high frequencies (~kHz) relevant, so besides ET/CE, also dedicated 
detectors, like NEMO discussed in Australia, or some concepts in China. 

● Open questions: 

○ Is    general enough? What about evolving n(t)? [Grace+ PRD108,123045 (2022)] 

○ What maximum ellipticity can newborn NSs sustain, more than mature ones? 

○ Is phase coherence realistic? 

● (mildly) crazy ideas: 

○ blind all-sky searches? 

○ precovery of EM transients? 

 
○ Bayesian combination of GW searches and 

EM constraints, e.g. long-duration X-rays 
[Sarin+ PRD98,043011 (2018)] 

https://doi.org/10.1103/PhysRevD.108.123045
https://doi.org/10.1103/PhysRevD.98.043011


2. pulsar glitches 

[J. van Leeuwen]

● > 3000 known pulsars [ATNF] 
  

● > 740 known glitches 
   (as of 2022)  13



● pulsars lose energy by EM and GW emission 
→ slow spin-down 

● glitches: sudden spin-up, followed by 
relaxation phase with timescale 
(hours – months) 

● energy transfer from internal superfluid 

● and/or crustal “starquakes” 

● accompanying change in quadrupole 
moment (e.g. Yim & Jones MNRAS498,3138 (2020)) 
→  GW emission 

[NASA/Goddard/Conceptual Image Lab]

→ How can we search for such GWs from glitching pulsars? 
14

glitches as probes of NS physics 

https://doi.org/10.1093/mnras/staa2534
https://svs.gsfc.nasa.gov/20267


standard CW 
signal model=transient CW window function

1)  short-duration bursts from f-modes excited at the glitch: 
 Lopez+ PRD106.103037 (2022) → search with e.g. cWB 
 
  

2)  long-duration transient GWs: “tCWs” [Prix+ PRD84,023007 (2011)] 
  
 standard CW model, but in addition to phase and amplitude parameters, 
 also consider transient parameters defining a window in time:  

15

GWs from pulsar glitches 

https://doi.org/10.1103/PhysRevD.106.103037
https://doi.org/10.1103/PhysRevD.84.023007
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glitch energy budget [Prix+ PRD84,023007 (2011)] 
● indirect upper limit on emitted GW energy 

and amplitude: total energy released in glitch 

● angular momentum conservation 
between superfluid and normal component: 
 
 

● superfluid excess energy: 
 
 
 

● equate with total energy carried 
by CW-like GWs with amplitude  
 
 
 
 
→  

glitch excess energy upper limit 

compare with spindown UL for CWs: 

● fixed energy regardless of 
transient duration 𝝉  

● SNR increases with same sqrt(𝝉) 
as h0 upper limit 
→ same detectability 
for short or long transients 

https://doi.org/10.1103/PhysRevD.84.023007


maximize over       : 

  
“transient     -stat map” 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Test 2 hypotheses on data    : 

likelihood 
ratio: 

...or 
marginalize over   

evaluate 
over a bank 

of phase- 
evolution 
templates 

λ 

either 
maximize over       

tCW searches [Prix+ PRD84,023007 (2011)] 
“narrowband” 

searches: 

https://doi.org/10.1103/PhysRevD.84.023007


[Chandra/NASA]

[Chandra/NASA]

[1907.04717]
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tCW searches so far – O2 open data 

https://arxiv.org/abs/1907.04717


● improved version of O2 search: better setup [*] of template banks, BtS/G statistic [**], 
“distromax” method [***] for setting thresholds 

J0534+2200

   fGW ~ 60 Hz

glitched on 
2019/07/23

J0537-6910

     fGW ~ 123 Hz

3 glitches in 2019, 
1 glitch in 2020

J0908-4913

     fGW ~ 19 Hz

glitched ~ 
2019/10/09

J1105-6107

     fGW ~ 31 Hz

glitched ~ 
2019/04/09

J1813-1749

    fGW ~ 45 Hz

glitched ~ 
2019/08/03

J1826-1334

     fGW ~ 20 Hz

glitched on 
2020/01/31

[*] 2201.08785; [**] 1104.1704;  [***]  2111.12032

[2112.10990]
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tCW searches so far – O3 LVK search 

https://arxiv.org/abs/2201.08785
https://arxiv.org/abs/1104.1704
https://arxiv.org/abs/2111.12032
https://arxiv.org/abs/2112.10990


tCWs with CNNs  

● transient     -stat searches are computationally limited, mainly from trying many (t0,τ) combinations 

● finding a (t)CW in time-frequency data is basically pattern recognition 

● Convolutional Neural Networks (CNNs) are great at doing that fast. (At least for cats and dogs.) 

● But actually limited in finding the very weak, narrow, long tracks. (see Joshi&Prix 2305.01057) 
  
→ our hybrid approach: feed matched-filter intermediate data products to the CNN! 

[2303.16720]
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https://arxiv.org/abs/2305.01057
https://arxiv.org/abs/2303.16720


CNN upper limits on O2 Vela glitch 

Limitations: 
  

● Allowing for flexible amplitude evolution, but fixed to tCW frequency evolution model. 

● Faster than pure transient F-stat,  
but still far too slow for going beyond known pulsars.  → new approach needed for

“All-Sky All-Frequency All-Time”

searches for unknown glitchers!
21

● Faster! 

● Got close to pure F-stat 
performance, but not quite 
matching it. 



tCWs: prospects 
ATNF + Jodrell glitch catalogues 
→ 740 known glitches (2022/10/11) 
→ extrapolate future prospects 

● Sensitivity depth 
[Behnke+2014,Dreissigacker+2018] 
estimated for realistic searches 

● compare indirect energy UL: 
 
 
 

● plot for duration τ = 10 d 

● longer/shorter τ: 
push both markers and curves 
down/up by sqrt(τ) 
→ same detectability 

[2210.09907]

Best target: Vela! 
Glitches every ~18m. 

Next, please…?  22

https://arxiv.org/abs/1410.5997
https://arxiv.org/abs/1808.02459
https://arxiv.org/abs/2210.09907
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…2024: Vela glitched again! 

[Chandra/NASA]

● Vela pulsar: nearby (287pc), frot ∼ 11 Hz → fgw ∼ 22 Hz 
● strong glitches (Δf / f ∼ 10-6) every 1.5 years or so. 
● first LSC search for short bursts from 2006 glitch 

[Abadie+2011b]. 
● first tCW search on O2 open data for 2016 glitch 

[Keitel+2019]. 
● no glitch during O3, last in 2021, then got lucky in O4! 

E. Zubieta+, 
Argentine Institute of Radio 
astronomy 
[www.astronomerstelegram.org/
?read=16608] 

We observed a glitch occurring
between MJD 60428.96 (2024-04-28 23h UTC)

and MJD 60431.84 (2024-05-01 20h UTC). [...] change 
in the pulsar rotation period of dF0/F0 = 2.3E-6 [...]

J. Palfreyman,
Mt. Pleasant Telescope, 
Tasmania 
[www.astronomerstelegram
.org/?read=16615]

glitch epoch of MJD 60429.869615 +/- 3.84691e-05 
dF0/F0 of 2.40976e-06 +/- 4.88083e-10

(also confirmed by other 
radio telescopes and FERMI) 

https://arxiv.org/abs/1011.1357
https://arxiv.org/abs/1907.04717
https://www.astronomerstelegram.org/?read=16608
https://www.astronomerstelegram.org/?read=16608
https://www.astronomerstelegram.org/?read=16615
https://www.astronomerstelegram.org/?read=16615
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tCWs from pulsar glitches 

● Open questions: 
○ How to build a “transient mountain”? Does this actually happen? 
○ How much of the liberated energy would really be available for this? 
○ How much in other channels (e.g. “kicked r-modes”)? 
○ How deep into the NS could we look? 
○ Which glitchers are the best targets? 
○ How flexible do we need to be with the f(t) and A(t) model? 

 
● (mildly) crazy ideas: 

○ Can we already constrain physics with non-detections below the optimistic UL? 
○ blind all-sky, all-frequency, all-time searches for “dark glitches” 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