Connections between an exclusive program at EIC and UPCs

Spencer Klein, LBNL for the ePIC Collaboration

- Ultra-peripheral collisions \Box
- Exclusive interactions at the EIC \Box
	- The ePIC detector (forward)
	- Exclusive interactions in ePIC \Box
- Cross-sections \Box
- $d\sigma/dt$ and gluon spatial distributions \Box
- Reggeons and exotica \Box
- Backward production \Box
- UPCs in the EIC era \Box
- **Conclusions** \Box

Ultra-peripheral collisions (UPCs)

- Heavy nuclei carry strong electric and magnetic fields \Box
	- Fields are perpendicular -> nearly-real virtual photon field \Box

 $E_{\text{max}} = \gamma hc/b$

- Photonuclear interactions
	- □ Two-photon interactions also occur, but less relevant here
- Most visible when b >~2 R_A , so there are no hadronic interactions; \Box
	- We also see coherent J/ψ photoproduction in peripheral nuclear \Box collisions

<u>*LH</u>C at full energy \sqrt{s} =14 TeV/5.6 TeV

The energy frontier for photon physics!

UPCs – good and bad

- The energy frontier for electromagnetic \Box probes
	- □ Maximum CM energy W_{γ} ~ 3 TeV for pp at the LHC
		- \Box ~ 10 times higher than HERA

- Probe parton distributions in proton and heavy-ions down to
	- **Bjorken-x down to a few 10⁻⁶ at moderate** \mathbb{Q}^2
- Electromagnetic probes have α_{FM} ~ 1/137, so are less affected by \Box multiple interactions than hadronic interactions
	- **Exclusive interactions**
- Bidirectional photon beams \Box
- $Z\alpha$ ~ 0.6 for lead -> multiple interactions with a single ion pair. \Box
	- □ E. g. vector meson production + nuclear excitation or 2 vector mesons
	- Useful for tagging the impact parameter vector, but we cannot select pure single-photon exchange events

Bidirectional photon beams

- In pp/AA collisions, either nucleus can emit the photon \Box In pA, photon usually comes from the heavy nucleus
- In coherent reactions, the 2 possibilities are indistinguishable, so \Box amplitudes add, and interfere destructively
	- σ ->0 as p_T -> 0 at y=0
- 2 directions have different photon energies and Bjorken-x: \Box \Box k = M_V/2exp(±y) and xm_p= M_V/2_{γbeam}m_p exp(∓y)
- To find $\sigma(k)$ requires selecting events with different photon spectra \Box
	- Additional photons -> Different impact-parameter distributions \Box
	- Events with and w/o nuclear excitation \Box
	- Systems of linear equations -> solvable, at a cost in uncertainty \Box

The electron-ion collider & ePIC

- High luminosity ep/eA collisions \Box
- Photons with a wide range of virtuality
	- Observe scattered electron to determine photon energy and Q²
- Detector optimized for γ^*p/γ^*A collisions
	- \Box Near 4 π acceptance
	- Good forward instrumentation to determine if nucleus dissociated or not
- Precision measurements down to \Box Bjorken- $x \sim 10^{-4}$
	- **Less energy reach than UPCs** at the EIC, but more precision

The ePIC detector

- The central region (|y|<4) See Olga Evdokimov's talk b.
- Low Q² electron tagger determine photon E, Q² \Box
- Forward detectors \Box
	- B0 tracker & calorimeter $(4.6 < \eta < 5.9)$ \Box
	- Roman pots and Off-Momentum Detector detect scattered \Box protons
	- □ Zero Degree Calorimeter for photons and neutrons
- Big forward question: did the nucleus break up, or not? \Box

Energy and rapidity

- For exclusive interactions, energy and rapidity are related \Box Photon energy $K=M_x/2$ exp(y) \Box
	- Bjorken-x: $x=M_x/\gamma M_p$ exp(-y) \Box
- Wide energy coverage requires a wide rapidity range \Box
	- For vector mesons, need $\sim +1$ unit of pseudorapidity coverage \Box to cover a given rapidity range.

7 SK & M. Lomnitz, Phys. Rev. C **99**, 105203 (2019): n. b. flipped rapidity convention

Energy and Rapidity in UPCs

- AuAu/PbPb collisions are symmetric -> either nucleus can \Box emit the photon -> bidirectional ambiguity
	- **Photon energy K=M_x/2 exp(±y)**
	- **□ Bjorken-x: x=M_X/γM_p exp(**+y)
- Total amplitude is sum of both directions. Away from y=0, \Box $p_T=0$, interference is small \rightarrow can directly use cross-sections.
- The cross-section at a given y≠0 is the sum of two directional \Box cross-sections, with different energies.
- The solution is to use measurements with two different photon \Box spectra, so different energies, i. e. with two different crosssection ratios
	- □ Two different impact parameter distributions

J/ cross-sections vs. energy

 $\sigma \sim W^{\delta}$ continues up to $W_{\gamma p} \sim 1$ TeV

□ Some wiggles -> tension between analyses?

9

Coherent and Incoherent Photoproduction: a quantum view

The Good-Walker formalism links coherent and incoherent \Box production to the average nuclear configuration and event-byevent fluctuations respectively

□ Configuration = position of nucleons, gluonic hot spots etc.

- Coherent: Nucleus remains in ground state, so sum the \Box amplitudes, then square -> average over different configurations
- Incoherent $=$ Total $-$ coherent; total: square, then sum cross- \Box sections for different configurations

 $\frac{d\sigma_{\rm tot}}{dt} = \frac{1}{16\pi} \left\langle \left| A(K,\Omega) \right|^2 \right\rangle$ Average cross-sections (Ω) $\frac{d\sigma_{\rm coh}}{dt} = \frac{1}{16\pi} |\langle A(K,\Omega)\rangle|^2$ Average amplitudes (Ω) $\frac{\mathrm{d}\sigma_{\text{inc}}}{\mathrm{d}t} = \frac{1}{16\pi}\left(\left\langle \left|A(K,\Omega)\right|^2\right\rangle - \left|\left\langle A(K,\Omega)\right\rangle\right|^2\right)$ Incoherent is difference

Good and Walker, Phys. Rev. D **120**, 1857 (1960); Miettinen and Pumplin, Phys. Rev. D **18**, 1696 (1978)

Coherence in Good-Walker

- Coherent production ⇔ Target remains in the ground state \Box
	- $\Box \rightarrow d\sigma/dt$ probes transverse distribution of scatterers
- Incoherent production ⇔ Target is excited/dissociated \Box □ Cross-section probes event-by-event target fluctuations
- But… we observe coherent production accompanied by mutual \Box Coulomb excitation, and in peripheral heavy ion collisions
	- Here, coherent \Leftrightarrow the amplitudes from the nuclei add in-phase \Box

 $\sigma_{\text{coherent}} = |\Sigma_i A_i k \exp(ikb)|^2$

- □ Something is missing/problematic from Good-Walker
	- **How coherent is coherent enough?**
		- A soft bremsstrahlung photon can be added to any reaction
- Use caution in interpretation, especially in relating incoherent \Box production to target fluctuations

SK, Phys. Rev. C **107**, 055203 (2023)

d/dt and the transverse distribution of gluons in protons/nuclei from coherent production

Position (within nucleus) and p_T are conjugate variables \Box

□ F(b), the transverse distribution of scatterers in a target, is the 2d Fourier transform of ds/dp $_T$

$$
F(b) \propto \frac{1}{2\pi} \int_0^\infty dp_T p_T J_0(b p_T) \sqrt{\frac{d\sigma}{dt}}
$$

*must flip sign at each diffractive minimum

Sensitive to shadowing; major focus of EIC White Paper \Box

Difficulties in measuring d*d***dt**

- Resolution fills in the diffractive dips \Box
- In UPCs \Box
	- The photon flux must be removed by deconvolution \Box
	- Limited p_T reach creates windowing artifacts \Box
		- **D** May be alleviated with ALICE Run 3 data
- At the EIC \Box
	- Resolution is an issue, especially for the electron. \Box
	- Momentum transfer is << electron energy \Box
	- Beam energy spread must be considered \Box
- If the diffractive dips are filled in, they cannot be so well \Box localized, and F(b) becomes less precise

STAR transverse distribution measurements

- **Fit incoherent contribution at large |t| and subtract**
	- Use a dipole form factor for scattering off a single nucleon \Box
		- Not related to event-by-event fluctuations
- Vector sum of 'Pomeron' p_T , photon p_T and resolution \Box

Low-x VM production in eA in ePIC

- **More saturation expected for light mesons** \Box ϕ (light) and J/ ψ (heavy) are featured in EIC studies \Box ϕ is particular problem because the K^{\pm} daughters are so soft • p=135 MeV/c in ϕ rest frame; $\beta \sim 0.2$ so dE/dx is large \Box Consider $\rho \Box$ as a replacement
- Usually cannot see outgoing ion \Box
	- □ Some protons observable in Roman pot detectors, etc.
- Even if ion is observed, t is difference of large numbers \Box
	- Beam spread, measurement errors Π
- Multiple t-measurement methods considered \Box
- Method Exact (E): \bullet
- Method Approximate (A) (UPCs)
- Method with exclusivity corrected (L):

$$
-t = -(p_e - p_e - p_{VM})^2 = -(p_A - p_A)^2
$$

-t = (p_{T,e} + p_{T,VM})²
-t = -(p_{A',corr} - p_A)²,

where $\mathbf{p}_{A' \text{corr}}$ is constrained by exclusive reaction.

History of EIC t-measurements

- Diffractive dips are likely to be (barely) visible \Box
	- Implications for Fourier transform \Box

EIC Theory WG Meeting

Diffractive VM timeline

Incoherent production on protons

- H1 at HERA data on J/ψ production on protons \Box
- Fluctuations from coherent $\&$ incoherent J/ψ photoproduction. \Box \Box Proton excitations (Δ^+) -> incoherent
- Two models/calculations of $d\sigma/dt$ compared \Box
	- Data prefers a fluctuating proton over a smooth proton
- EIC can make precision measurements like this \Box

Mantysaari and Schenk, PRD **94**, 034042 (2016)

Separating coherent & incoherent production on ions

- In UPCs, $Z\alpha$ is large enough so that the \Box nuclei may exchange additional photons
	- Nuclear breakup complicates separation \Box
	- Photon exchange factorizes
- Coherent dominates at low p_T \Box

 \Box

- Incoherent dominates at high p_T \Box
- Subtract one component to get the other \Box
	- **Need assumptions re. shape of do/dp_T**
		- Shape is based on paradigm \Box $\sigma_{\text{coherent}} = |\Sigma_i A_i k \exp(ikb)|^2$
		- Somewhat inconsistent to use this $paradigm + Good-Walker to find fluctuation¹$
- Presence/absence of neutrons could help separation

ALICE, PRL **132**, 162302 (2024)

Incoherent J/ ψ **photoproduction on Pb**

- $p_T > 200$ MeV/c \Box
- Better agreement with models \Box that include subnucleonic fluctuations
	- Large high |t| tail above expectations from proton form factor

ALICE, PRL **132**, 162302 (2024)

Theoretical uncertainties in ion breakup

- ePIC can detect nuclear breakup by the presence of neutrons or \Box protons (with near-beam momentum), or of photons in the ZDC from nuclear excitations
	- Typical photon energies are ~ few MeV in emitter frame \Box Lorentz boosted in lab frame
- ¹⁹⁷Au has a first excited state at 77 keV (with $ct~60$ cm)) \Box Not visible in ZDC
	- 2nd excited state at 269 keV; boosted to 63 MeV max
- Other low-energy photon lines may be missed, or detected with \Box low efficiency
	- □ ZDC threshold matters, but background from synch. radiation
- To determine the excitation efficiency accurately, we need a \Box good model of the products of nuclear breakup.
	- Currently use BeAGLE
		- DPMJET + FLUKA for intranuclear cascade
			- Uncertainties are acknowledged to be large 20

ePIC veto projected performance

- How well can ePIC veto incoherent J/ψ production to study \Box coherent?
	- Requires ~ 500:1 to 1,000:1 to study coherent production

- Veto.1: no activity other than e^- and J/ψ in the main detector ($|\eta|$ < 4.0 and $p_T > 100$ MeV/c);
- Veto.2: Veto.1 and no neutron in ZDC;
- \bullet Veto.3: Veto.2 and no proton in RP;
- Veto.4: Veto.3 and no proton in OMDs;
- Veto.5: Veto.4 and no proton in B0;
- Veto.6: Veto.5 and no photon in B0;
- Veto.7: Veto.6 and no photon with $E > 50$ MeV in ZDC.

Does not reach 500:1 Modelling will be critical!

21 W. Chang *et al.*, Phys. Rev. D **104**, 114030 (2021)

Beyond Pomerons: Reggeons

Pomerons carry the quantum numbers of the vacuum \Box

- s-channel helicity conservation means that photon + Pomeron interactions lead to $J^{PC}=1^-$ states
	- **Experimentally well tested**
- Mostly gluons

- Cross-section rises with energy (σ ~ W_{yp}^{0.22})
- Reggeons are summed meson Regge trajectories \Box
	- □ Mostly quark-antiquark pairs+
	- □ Can accommodate a wider range of quantum numbers
		- **Broad range of physics!**
	- Cross-section drops with energy, $(\sigma \sim W_{\gamma p}^{-1})$ so Reggeon interactions are close-ish to threshold
		- D Optimum EIC data collection may occur below maximum energy

Production of exotica in UPCs and the EIC

- Exotica with J^{PC} =1⁻⁻ can come from γ -Pomeron interaction. \Box
- Other J^{PC} can only (if at all) come from γ -Reggeon interactions \Box
- In UPCs, γ -Reggeon fusion products are forward, mostly beyond \Box the reach of current detectors.
- γ -Reggeon final states are visible at the EIC. \Box
- Predicted rates at the EIC are high enough for characterization \Box
	- \Box γ -exotica coupling sensitive to internal structure

SK & Y. Xie, Phys. Rev. C 100, 024620 (2019) 23

Backward (u-channel) production

- Reggeons reactions that carry baryon number \Box like γ p-> $\rho/\omega/\pi^0/\gamma$ p
	- \Box do/dt is large do/du is small
- Seen by many fixed-target experiments, \Box including at JLab
	- Parameterize using Regge trajectories
	- □ Rate ~~ 1/1000 of forward producgtion
	- □ Similar to baryon stopping in heavy-ion collisions baryon junction models
- The γ /meson takes most of the proton \Box momentum (so is far forward), while t \Box The proton \sim stops -> at mid-rapidity γ /meson rapidity depends on its mass \Box
	- $p \rightarrow \pi \pi$, $\omega \rightarrow \gamma \pi^0$ in B0 detector at lower beam energies
	- π^0 and γ in ZDC best at higher beam energies
	- D. Cebra 24 *et al.,* PRC **106**, 015204 (2022); Z. Sweger *et al.,* PRC **108**, 055205 (2023)

-> ⁰ backward production kinematics

- $p\rightarrow \pi\pi$ kinematics are similar \Box
- B0 is the key detector \Box
- Best detection for 10 GeV e on 100 GeV p \Box
	- □ Q² doesn't change kinematics a lot

How do UPCs and the EIC compare?

- UPCs reach higher energy, so lower Bjorken-x \Box
	- \Box Photons are nearly real, but Q² comes from the hard scale of the final state
- The EIC photons cover a wide range of Q^2 , and ePIC can \Box detect the scattered electron, and so tag the photon
- Between the scattered electron and the nearly-hermetic \Box detector, ePIC has very strong power to completely reconstruct exclusive interactions with low backgrounds.
	- □ The proposed ALICE 3 has coverage out to $|y|$ <4, so will partially compete.

UPCs in the EIC era

- CMS, ATLAS and LHCb will continue to take data with \Box improved vertexing and other smaller upgrades
	- D More mass reach than the EIC
- ALICE 3 is a proposed completely-new detector \Box
- A broad UPC program in $\gamma\gamma$ and γ interactions is on- \Box going, and will continue
- What can UPCs do that the EIC can't? $\left| \right|$ <- Key question for US \Box
	- **Higher collision-energy** $\gamma\gamma$ and γ **p** interactions
		- Lower Bjorken-x values (but only at large |y|)
	- Physics in a strong (EM) field environment
		- n UPCs act as a 2-source interferometer
			- Interference seen with single mesons
		- **n** The LHC can extend this to interferometers with two or more mesons

ALICE 3

- Proposed detector for LHC Runs 5 and 6 (starting ~ 2035) \Box
- Tracking and calorimetry for $|n|$ < 4 \Box
- Particle identification \Box
- Vertex detector inside beampipe (\sim 4 μ m resolution @ 1 GeV/c) \Box

Two-meson interferometry

- For 1 meson, : $\sigma \sim |A_1 A_2 e^{ip \cdot b}|^2$ \Box
	- At midrapidity $A_1 = A_2$ and, $\sigma \rightarrow 0$ as $p_T \rightarrow 0$
- With 2 identical mesons, the possibilities multiply. \Box
	- Like an interferometer containing two photons.
- For |y|>>0, the two photons are from the same nucleus \Box
	- Superradiant emission: N meson probability is enhanced by N!
		- Like a laser
		- \Box <p_T> ~ <p_{T1}>/N
- Stimulated decay? \Box

e. g. π^+ from ρ decay close in phase $\mathbf{P}[\mathbb{H} \cup \mathbb{H}]$

2929 STAR, 2008

Quantum interferometry – an alternate view

PROTIP: YOU CAN SAFELY **IGNORE ANY SENTENCE THAT INCLUDES THE PHRASE** "ACCORDING TO QUANTUM MECHANICS"

xkcd.com

Conclusions

- **Exclusive interactions can probe many interesting physics** topics, including the low-x structure of matter, including its spatial distribution
- The nearly-hermetic ePIC detector at the EIC is well suited \Box to pursue high-statistics measurements with small systematic errors, over a wide range of Q^2 .
	- Precise measurements of gluon saturation.
	- **D** Transverse distribution of gluons in nucleus
	- Event-by-event fluctuations in gluon content (hot spots)
		- D Measurements of d σ/dt are limited by the limited t resolution.
- ePIC will also study backward production, exotica, etc. \Box
- UPCs at the LHC will retain their interest during the EIC era, \Box providing unique data on multi-meson production in high fields, and of nuclear structure at lower Bjorken-x than the EIC can reach.