Connections between an exclusive program at EIC and UPCs

Spencer Klein, LBNL for the ePIC Collaboration

- Ultra-peripheral collisions
- Exclusive interactions at the EIC
 - The ePIC detector (forward)
 - Exclusive interactions in ePIC
- Cross-sections
- dσ/dt and gluon spatial distributions
- Reggeons and exotica
- Backward production
- UPCs in the EIC era
- Conclusions

Ultra-peripheral collisions (UPCs)

- Heavy nuclei carry strong electric and magnetic fields
 - Fields are perpendicular -> nearly-real virtual photon field

 $\bullet E_{max} = \gamma hc/b$

- Photonuclear interactions
 - Two-photon interactions also occur, but less relevant here
- Most visible when $b > 2R_A$, so there are no hadronic interactions;

Energy	AuAu RHIC	pp RHIC	PbPb LHC	pp LHC
Photon energy (target frame)	0.6 TeV	~12 TeV	500 TeV	~5,000 TeV
CM Energy $W_{\gamma p}$	24 GeV	~80 GeV	700 GeV	~3000 GeV
Max γγ Energy	6 GeV	~100 GeV	200 GeV	~1400 GeV

*LHC at full energy √s=14 TeV/5.6 TeV

The energy frontier for photon physics!

UPCs – good and bad

- The energy frontier for electromagnetic probes
 - Maximum CM energy $W_{\gamma p} \sim 3 \text{ TeV}$ for pp at the LHC
 - ~ 10 times higher than HERA

- Probe parton distributions in proton and heavy-ions down to
 - Bjorken-x down to a few 10⁻⁶ at moderate Q²
- Electromagnetic probes have $\alpha_{EM} \sim 1/137$, so are less affected by multiple interactions than hadronic interactions
 - Exclusive interactions
- Bidirectional photon beams
- **Z** α ~ 0.6 for lead -> multiple interactions with a single ion pair.
 - E.g. vector meson production + nuclear excitation or 2 vector mesons
 - Useful for tagging the impact parameter vector, but we cannot select pure single-photon exchange events

Bidirectional photon beams

- In pp/AA collisions, either nucleus can emit the photon
 In pA, photon usually comes from the heavy nucleus
- In coherent reactions, the 2 possibilities are indistinguishable, so amplitudes add, and interfere destructively
 - □ σ->0 as p_T-> 0 at y=0
- 2 directions have different photon energies and Bjorken-x: • $k = M/(2 \exp(4x))$ and xm = M/(2x) m/(3x)
 - $\square k = M_{V}/2exp(\pm y) \text{ and } xm_{p} = M_{V}/2\gamma_{beam}m_{p}exp(\mp y)$
- To find $\sigma(k)$ requires selecting events with different photon spectra
 - Additional photons -> Different impact-parameter distributions
 - Events with and w/o nuclear excitation
 - Systems of linear equations -> solvable, at a cost in uncertainty

The electron-ion collider & ePIC

- High luminosity ep/eA collisions
- Photons with a wide range of virtuality
 - Observe scattered electron to determine photon energy and Q²
- **Detector optimized for** $\gamma^* p / \gamma^* A$ collisions
 - $\Box \text{ Near 4} \pi \text{ acceptance}$
 - Good forward instrumentation to determine if nucleus dissociated or not
- Precision measurements down to Bjorken-x ~ 10⁻⁴
 - Less energy reach than UPCs at the EIC, but more precision

The ePIC detector

- The central region (|y|<4) See Olga Evdokimov's talk
- Low Q² electron tagger determine photon E, Q²
- Forward detectors
 - **B0 tracker & calorimeter (4.6 < \eta < 5.9)**
 - Roman pots and Off-Momentum Detector detect scattered protons
 - Zero Degree Calorimeter for photons and neutrons
- Big forward question: did the nucleus break up, or not?

Energy and rapidity

- For exclusive interactions, energy and rapidity are related
 Photon energy K=M_X/2 exp(y)
 - D Bjorken-x: $x=M_X/\gamma M_p \exp(-y)$
- Wide energy coverage requires a wide rapidity range
 - For vector mesons, need ~ +1 unit of pseudorapidity coverage to cover a given rapidity range.

SK & M. Lomnitz, Phys. Rev. C 99, 105203 (2019): n. b. flipped rapidity convention

Energy and Rapidity in UPCs

- AuAu/PbPb collisions are symmetric -> either nucleus can emit the photon -> bidirectional ambiguity
 - □ Photon energy $K=M_X/2 \exp(\pm y)$
 - □ Bjorken-x: $x=M_X/\gamma M_p \exp(\mp y)$
- Total amplitude is sum of both directions. Away from y=0, p_T=0, interference is small -> can directly use cross-sections.
- The cross-section at a given y≠0 is the sum of two directional cross-sections, with different energies.
- The solution is to use measurements with two different photon spectra, so different energies, i. e. with two different crosssection ratios
 - Two different impact parameter distributions

J/ψ cross-sections vs. energy

 $_{ } _{ } _{ } \sigma \sim W^{\delta}$ continues up to $W_{\gamma p} \sim 1$ TeV

Some wiggles -> tension between analyses?

Coherent and Incoherent Photoproduction: a quantum view

The Good-Walker formalism links coherent and incoherent production to the average nuclear configuration and event-byevent fluctuations respectively

Configuration = position of nucleons, gluonic hot spots etc.

- Coherent: Nucleus remains in ground state, so sum the amplitudes, then square -> average over different configurations
- Incoherent = Total coherent; total: square, then sum crosssections for different configurations

 $\frac{\mathrm{d}\sigma_{\mathrm{tot}}}{\mathrm{d}t} = \frac{1}{16\pi} \left\langle \left| A(K,\Omega) \right|^2 \right\rangle \qquad \text{Average cross-sections (}\Omega\text{)}$ $\frac{\mathrm{d}\sigma_{\mathrm{coh}}}{\mathrm{d}t} = \frac{1}{16\pi} \left| \left\langle A(K,\Omega) \right\rangle \right|^2 \qquad \text{Average amplitudes (}\Omega\text{)}$ $\frac{\mathrm{d}\sigma_{\mathrm{inc}}}{\mathrm{d}t} = \frac{1}{16\pi} \left(\left\langle \left| A(K,\Omega) \right|^2 \right\rangle - \left| \left\langle A(K,\Omega) \right\rangle \right|^2 \right) \qquad \text{Incoherent is difference}$

Good and Walker, Phys. Rev. D 120, 1857 (1960); Miettinen and Pumplin, Phys. Rev. D 18, 1696 (1978)

Coherence in Good-Walker

- Coherent production \Leftrightarrow Target remains in the ground state
 - \square -> d σ /dt probes transverse distribution of scatterers
- Incoherent production ⇔ Target is excited/dissociated
 Cross-section probes event-by-event target fluctuations
- But... we observe coherent production accompanied by mutual Coulomb excitation, and in peripheral heavy ion collisions
 - $\hfill\square$ Here, coherent $\hfill\Leftrightarrow$ the amplitudes from the nuclei add in-phase

 $\sigma_{\text{coherent}} = |\Sigma_i A_i k \exp(ikb)|^2$

- Something is missing/problematic from Good-Walker
 - How coherent is coherent enough?
 - A soft bremsstrahlung photon can be added to any reaction
- Use caution in interpretation, especially in relating incoherent production to target fluctuations

SK, Phys. Rev. C **107**, 055203 (2023)

$d\sigma/dt$ and the transverse distribution of gluons in protons/nuclei from coherent production

Position (within nucleus) and p_T are conjugate variables

 F(b), the transverse distribution of scatterers in a target, is the 2d Fourier transform of ds/dp_T

$$F(b) \propto \frac{1}{2\pi} \int_0^\infty dp_T p_T J_0(bp_T) \sqrt{\frac{dc}{dt}}$$

*must flip sign at each diffractive minimum

Sensitive to shadowing; major focus of EIC White Paper

Difficulties in measuring $d\sigma/dt$

- Resolution fills in the diffractive dips
- In UPCs
 - The photon flux must be removed by deconvolution
 - Limited p_T reach creates windowing artifacts
 - May be alleviated with ALICE Run 3 data
- At the EIC
 - Resolution is an issue, especially for the electron.
 - Momentum transfer is << electron energy</p>
 - Beam energy spread must be considered
- If the diffractive dips are filled in, they cannot be so well localized, and F(b) becomes less precise

STAR transverse distribution measurements

- Fit incoherent contribution at large |t| and subtract
 - Use a dipole form factor for scattering off a single nucleon
 - Not related to event-by-event fluctuations
- **Vector sum of 'Pomeron'** p_T , photon p_T and resolution

Low-x VM production in eA in ePIC

- More saturation expected for light mesons
 φ (light) and J/ψ (heavy) are featured in EIC studies
 φ is particular problem because the K[±] daughters are so soft
 p=135 MeV/c in φ rest frame; β ~ 0.2 so dE/dx is large
 Consider p as a replacement
 Usually cannot see outgoing ion
 Some protons observable in Roman pot detectors, etc.
- Even if ion is observed, t is difference of large numbers
 - Beam spread, measurement errors
- Multiple t-measurement methods considered
- Method Exact (E):
- Method Approximate (A) (UPCs)
- Method with exclusivity corrected (L):

$$-t = -(p_{e}-p_{e}, -p_{VM})^{2} = -(p_{A}, -p_{A})^{2}$$

$$-t = (p_{T,e}, +p_{T,VM})^{2}$$

$$-t = -(p_{A',corr} - p_{A})^{2},$$

where $\boldsymbol{p}_{A',corr}$ is constrained by exclusive reaction.

History of EIC t-measurements

- Diffractive dips are likely to be (barely) visible
 - Implications for Fourier transform

EIC Theory WG Meeting

Diffractive VM timeline

Slide from Kong Tu, presented at an EIC Theory Group meeting

Incoherent production on protons

- H1 at HERA data on J/ψ production on protons
- **Fluctuations from coherent & incoherent J**/ ψ photoproduction.
 - □ Proton excitations (Δ^+) -> incoherent
- Two models/calculations of dσ/dt compared
 - Data prefers a fluctuating proton over a smooth proton
- EIC can make precision measurements like this

Mantysaari and Schenk, PRD **94**, 034042 (2016)

Separating coherent & incoherent production on ions

- In UPCs, Zα is large enough so that the nuclei may exchange additional photons
 - Nuclear breakup complicates separation
 - Photon exchange factorizes
- Coherent dominates at low p_T

П

- Incoherent dominates at high p_T
- Subtract one component to get the other
 - Need assumptions re. shape of dσ/dp_T
 - Shape is based on paradigm
 σ_{coherent} = |Σ_i A_ik exp(ikb)|²
 - Somewhat inconsistent to use this paradigm + Good-Walker to find fluctuation
- Presence/absence of neutrons could help separation

ALICE, PRL 132, 162302 (2024)

Incoherent J/ ψ photoproduction on Pb

- p_T>200 MeV/c
- Better agreement with models that include subnucleonic fluctuations
 - Large high |t| tail above expectations from proton form factor

ALICE, PRL 132, 162302 (2024)

Theoretical uncertainties in ion breakup

- ePIC can detect nuclear breakup by the presence of neutrons or protons (with near-beam momentum), or of photons in the ZDC from nuclear excitations
 - Typical photon energies are ~ few MeV in emitter frame
 Lorentz boosted in lab frame
- ¹⁹⁷Au has a first excited state at 77 keV (with ct~ 60 cm))
 Not visible in ZDC
 - 2nd excited state at 269 keV; boosted to 63 MeV max
- Other low-energy photon lines may be missed, or detected with low efficiency
 - ZDC threshold matters, but background from synch. radiation
- To determine the excitation efficiency accurately, we need a good model of the products of nuclear breakup.
 - Currently use BeAGLE
 - DPMJET + FLUKA for intranuclear cascade
 - Uncertainties are acknowledged to be large

ePIC veto projected performance

- How well can ePIC veto incoherent J/ψ production to study coherent?
 - Requires ~ 500:1 to 1,000:1 to study coherent production

- Veto.1: no activity other than e^- and J/ψ in the main detector ($|\eta| < 4.0$ and $p_T > 100 \text{ MeV}/c)$;
- Veto.2: Veto.1 and no neutron in ZDC;
- Veto.3: Veto.2 and no proton in RP;
- Veto.4: Veto.3 and no proton in OMDs;
- Veto.5: Veto.4 and no proton in B0;
- Veto.6: Veto.5 and no photon in B0;
- Veto.7: Veto.6 and no photon with E > 50 MeV in ZDC.

Does not reach 500:1 Modelling will be critical!

W. Chang et al., Phys. Rev. D 104, 114030 (2021)

Beyond Pomerons: Reggeons

- Pomerons carry the quantum numbers of the vacuum
 - s-channel helicity conservation means that photon + Pomeron interactions lead to J^{PC}=1⁻ states
 - Experimentally well tested
 - Mostly gluons

- □ Cross-section rises with energy ($\sigma \sim W_{\gamma p}^{0.22}$)
- Reggeons are summed meson Regge trajectories
 - Mostly quark-antiquark pairs+
 - Can accommodate a wider range of quantum numbers
 - Broad range of physics!
 - Cross-section drops with energy, (σ~ W_{γp}⁻¹) so Reggeon interactions are close-ish to threshold
 - Optimum EIC data collection may occur below maximum energy

Production of exotica in UPCs and the EIC

- Exotica with $J^{PC} = 1^{--}$ can come from γ -Pomeron interaction.
- Other J^{PC} can only (if at all) come from γ -Reggeon interactions
- In UPCs, γ-Reggeon fusion products are forward, mostly beyond the reach of current detectors.
- γ -Reggeon final states are visible at the EIC.
- Predicted rates at the EIC are high enough for characterization
 - \Box γ -exotica coupling sensitive to internal structure

SK & Y. Xie, Phys. Rev. C 100, 024620 (2019)

Backward (u-channel) production

- Reggeons reactions that carry baryon number like $\gamma p \rightarrow \rho/\omega/\pi^0/\gamma p$
 - □ dσ/dt is large dσ/du is small
- Seen by many fixed-target experiments, including at JLab
 - Parameterize using Regge trajectories
 - Rate ~~ 1/1000 of forward producgtion
 - Similar to baryon stopping in heavy-ion collisions baryon junction models
- The γ/meson takes most of the proton momentum (so is far forward), while t
 The proton ~ stops -> at mid-rapidity
- γ/meson rapidity depends on its mass
 - $\square \rho \rightarrow \pi\pi, \omega \rightarrow \gamma\pi^0$ in B0 detector at lower beam energies
 - $\square \pi^0$ and γ in ZDC best at higher beam energies
 - D. Cebra et al., PRC 106, 015204 (2022); Z. Sweger et al., PRC 108, 055205 (2023) ²⁴

ω-> $γπ^0$ backward production kinematics

- $\rho \rightarrow \pi\pi$ kinematics are similar
- B0 is the key detector
- Best detection for 10 GeV e on 100 GeV p
 - Q² doesn't change kinematics a lot

How do UPCs and the EIC compare?

- UPCs reach higher energy, so lower Bjorken-x
 - Photons are nearly real, but Q² comes from the hard scale of the final state
- The EIC photons cover a wide range of Q², and ePIC can detect the scattered electron, and so tag the photon
- Between the scattered electron and the nearly-hermetic detector, ePIC has very strong power to completely reconstruct exclusive interactions with low backgrounds.
 - The proposed ALICE 3 has coverage out to |y|<4, so will partially compete.</p>

UPCs in the EIC era

- CMS, ATLAS and LHCb will continue to take data with improved vertexing and other smaller upgrades
 - More mass reach than the EIC
- ALICE 3 is a proposed completely-new detector
- A broad UPC program in γγ and γp interactions is ongoing, and will continue
- What can UPCs do that the EIC can't? <- Key question for US</p>
 - **D** Higher collision-energy $\gamma\gamma$ and γ p interactions
 - Lower Bjorken-x values (but only at large |y|)
 - Physics in a strong (EM) field environment
 - UPCs act as a 2-source interferometer
 - Interference seen with single mesons
 - The LHC can extend this to interferometers with two or more mesons

ALICE 3

- Proposed detector for LHC Runs 5 and 6 (starting ~ 2035)
- **Tracking and calorimetry for** $|\eta| < 4$
- Particle identification
- Vertex detector inside beampipe (~ 4 μm resolution @ 1 GeV/c)

Two-meson interferometry

- For 1 meson, : $\sigma \sim |A_1 A_2 e^{ip \cdot b}|^2$
 - At midrapidity $A_1 = A_2$ and , $\sigma \rightarrow 0$ as $p_T \rightarrow 0$
- With 2 identical mesons, the possibilities multiply.
 - Like an interferometer containing two photons.
- For |y|>>0, the two photons are from the same nucleus
 - Superradiant emission: N meson probability is enhanced by N!
 - Like a laser
 - <p_T > ~ <p_{T1} >/N
- Stimulated decay?

a e.g. π^+ from ρ decay close in phase

STAR, 2008 ²⁹²⁹

Quantum interferometry – an alternate view

PROTIP: YOU CAN SAFELY IGNORE ANY SENTENCE THAT INCLUDES THE PHRASE "ACCORDING TO QUANTUM MECHANICS"

xkcd.com

Conclusions

- Exclusive interactions can probe many interesting physics topics, including the low-x structure of matter, including its spatial distribution
- The nearly-hermetic ePIC detector at the EIC is well suited to pursue high-statistics measurements with small systematic errors, over a wide range of Q².
 - Precise measurements of gluon saturation.
 - Transverse distribution of gluons in nucleus
 - Event-by-event fluctuations in gluon content (hot spots)
 - **D** Measurements of $d\sigma/dt$ are limited by the limited t resolution.
- ePIC will also study backward production, exotica, etc.
- UPCs at the LHC will retain their interest during the EIC era, providing unique data on multi-meson production in high fields, and of nuclear structure at lower Bjorken-x than the EIC can reach.