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We have been simulating core-collapse supernovae for ~60 
years often with the world’s biggest / best computers. 

- We can now do simulations in 3D for post-bounce times beyond 1 s and 
with ever improving microphysics and spatial fidelity. 

3D simulations indicate that the explosion is due to a 
combination of neutrino heating and turbulence.

- The neutrino heating depends upon the neutrino flavor

3D simulations are computationally expensive and still require 
some mixture of approximations to make them feasible. 

- The approximations are typically in the neutrino transport but 
simplifications appear elsewhere too e.g. the nucleosynthesis.

Neutrino flavor transformation is not included in the simulation

MotivationMotivation



  

Calculations of SN neutrino flavor transformation usually post-
process a ‘classical’ simulation.

see Stapleford et al, PRD, 102, 081301 (2020) and 

Xiong et al PRD 107 083016 (2023) for two exceptions

What has been found is that the flavor transformation occurs in 
several places due to different reasons. 

.
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Fast Oscillations occur due to differences in the angular 
distribution of the neutrinos versus antineutrinos

Sawyer, PRD 72, 045003 (2005)

Mirizzi & Serpico, PRL 108, 231102 (2012)

Izaguirre, Raffelt & Tamborra, PRL 118, 021101 (2017)

and many many more

Abbar et al, PRD, 100 043004 (2019)



  

Tamborra et al did not find angular crossings in their analysis of 
a 1D simulation. 

Tamborra et al, ApJ, 839 132 (2017)

Abbar et al examined 2D and 3D simulations and found 
locations and times where FFO could occur.

Abbar et al, PRD, 100 043004 (2019)

see also Nagakura et al, ApJ 886 139 (2019)



  

Angular crossings in 1D were later found above the shock due 
to greater amount of scattering of the electron antineutrinos. 

 Morinaga et al PRR 2 012046 (2020)

cos θ



  

The current picture of SN, the neutrinos and their flavor 
transformation is not self-consistent. 

- Any flavor transformation below the shock will change the simulation. 

In order to regain self-consistency, we need to include 
neutrino flavor transformation as we do the simulations. 



  

How hard can it be?How hard can it be?

The spatial resolution of the simulations will have to increase 
considerably. 

- The best SN simulations have spatial grid zones ~100 m – 1 km

- The oscillation lengthscale around the neutrinosphere is ~10 microns

As the spatial grid zones become smaller, the time steps taken 
by the simulation also shrink: μs → ps

Fischer et al (2010), 
10.8 M⊙ model,        
t = 0.3 s pb, NMO

1↔2
2↔3 Kneller & de los Reyes, 

JPG 44 084008 (2017)



  

The computational expense will also increase due to the much 
finer angular resolution required for the neutrino distributions

State of the art SN simulations typically use ~10 angle groups 
and assume axial symmetry.

Multi-angle neutrino flavor oscillation calculations need many 
hundreds to thousands of angle bins. 

It has been shown the axial symmetry is spontaneously broken 
so we should really add the other angle dimension. 

Raffelt, Sarikas & Seixas PRL 111 091101 (2013)



  

Including neutrino flavor transformation in simulations will 
increase the runtime of even a 1D simulation by a lot. 

- it takes Agile-Boltztrann ~100 to 1000 core hours to run to ~1 s 
postbounce.

To make quantum supernova simulations feasible we will have 
to get creative: 

- e.g. Nagakura & Zaizen rescaled the neutrino Hamiltonian down by a 
factor of 10-4 then extrapolated their results back to the proper strength.

Nagakura & Zaizen PRL 129 261101 (2022)

see also Xiong et al PRD 107 083016 (2023)



  

Oscillations with momentsOscillations with moments
 

Many classical SN simulations evolve the neutrino field using 
angular moments.

- the number of moments evolved is usually just 2 in 1D, 4 in 3D. 

It is possible to do neutrino transformation with moments.

Strack and Burrows, PRD 71 093004 (2005)

Zhang and Burrows, PRD 88 105009 (2013)

Myers et al, PRD 105 123036 (2022)

Grohs et al, arXiv:2207.02214



  

We define a quantum angular moment of the distribution f as

M n (q)=∫q cosnθ f dΩq

where q is the energy of the neutrino, θ the angle relative to 
the radial direction 

The first few moments have well-known names

- n = 0 is the (differential) energy density E
q

- n = 1 is the (differential) radial component of the energy flux  F
q

- n = 2 is the ‘rr’ component of the (differential) pressure tensor P
q



  

Assuming spherical symmetry, the moments evolve according to 

- the H’s are contributions to the Hamiltonian, 

- the absorption / emission / collisions have been omitted

The infinite tower of equations can be truncated at what ever 
level one desires. 

- Usually one considers two schemes: a one-moment (M0) and a two-
moment (M1)

We need a relationship between the moments to close the 
equations. 

This relationship is called ‘The Closure’

∂Eq
∂ t

+
∂ Fq
∂ r

+
2 Fq
r

=−i [HV+HM+HE , Eq]+i [H F , Fq]

∂Fq
∂ t

+
∂ Pq
∂ r

+
3 Pq−Eq

r
=−i [HV+HM+HE , Fq]+i [H F , Pq ]

⋮



  

Are moment-based approaches any good?Are moment-based approaches any good?

We want to compare moment-based approaches against other 
methods e.g. Discrete Ordinates, Particle-In-Cell, MC

We compared moments with the multi-angle calculations based 
on the neutrino Bulb Model.

Duan et al PRL 97 241101 (2006)

- The neutrinosphere is a hard surface with spherically symmetric neutrino 
emission.

- No collisions or absorption / emission beyond the neutrinosphere.

- The neutrino field is in steady state.

- The neutrino field has axial symmetry around the radial direction.

There is an exact solution for the moments in the classical limit.



  

For the M0 moment calculation, we use a scalar closure that is 
the exact classical solution

where θ
max

 is the largest angle between the neutrino velocity 

vectors at some radius r, and the radial direction.

For the M1 calculation the scalar closure is again taken to be 
the exact classical solution

Fq=
(1+cosθ max)

2
Eq

Pq=
(1+cosθ max+cos2θ max )

3
E q



  

First consider the MSW problem using 1 MeV neutrinos emitted 
from a spherical source of radius 10 km.

- There is an exact solution for a single neutrino.

The density of the matter was set to 8000 g/cm3 in order to put 
the neutrinos on the MSW resonance.

The angular distribution of the neutrino emission is taken to be

with

- β = 0 is a half-isotropic distribution

The transition probability is computed from the flux moment.

Pν e→ν x
=
r2F xx (r )−Rν

2 F xx (Rν )
Rν

2 F ee(r )−Rν
2 F xx (Rν )

Faa(Rν ,θ )∝Θa(θ )

Θa∝cosβ aθ



  

The difference between the 
multi-angle and moments 
grows with r.

- The amplitude of the moment 
result is larger than the multi-
angle.

In the multi-angle results we 
see the effect of neutrinos  
losing coherence.

The moments using a scalar 
closure overestimates the 
coherence.



  

Consider another case now with the self-interaction included. 

We adjusted the luminosities so that the flavor transformation 
occurs close to the neutrinosphere.

L [erg/s] 〈E  [MeV]〉 T [MeV] η

ν
e 2.050×1049 9.4 2.1 3.9

ν
e 2.550×1049 13 3.5 2.3

ν
x 1.698×1049 15.8 4.4 2.1

ν
x 1.698×1049 15.8 4.4 2.1



  

The moment calculation 
does very well. 0.80
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Consider a third case, again with the self-interaction, where 
there are equal numbers of electron and x-flavor neutrinos.

L [erg/s] 〈E  [MeV]〉 T [MeV] η

ν
e 1.8×1052 12 2.1 3.9

ν
e 2.2×1052 15 3.5 2.3

ν
x 2.7×1052 18 4.4 2.1

ν
x 2.7×1052 18 4.4 2.1



  

The multi-angle separates 
from the moments at ~60 km.

 



  

More recently we looked at how well moments and a scalar 
closure capture fast-flavor oscillations.

- this is a demanding test: fast flavor oscillations depend upon angular 
distributions which is something the moments don’t have.

Grohs et al, 
arXiv:2207.02214

moment code

particle-in-cell code



  

These results are encouraging but the agreement is 
inconsistent. 

Is the scalar closure the problem?

What is a more general, quantum, closure?



  

Quantum ClosuresQuantum Closures
Our starting ansatz is that two moments, e.g. E and P, are 

related by 

P=L E R

P=L E (U EDU E
† )L†

Since E and P are Hermitian they have eigenvalue matrices

E=U EΛEU E
†

Hermiticity means that the closure must be such that

P=R† E L†

The closure must be of the form

P=U PΛPU P
†

where D is a diagonal Hermitian matrix. 



  

For the time being, D = 1 so that 

If we knew E and P, we can find L.

E and P are positive definite allowing us to write

L=ρϵ−1

P=ρ ρ †E=ϵ ϵ †

so L must be 

P=L E L†



  

Again writing E and P as

ρ=U PΛP
1 /2 SPϵ=U EΛE

1 /2SE

U P=ΥPΦPU E=ΥEΦE

E=U EΛEU E
† P=U PΛPU P

†

we see

where S
E
 and S

P
 are arbitrary unitary matrices.

We can factorize U
E
 and U

P
 as 

where Y
E
 and Y

P
 are Hermitian unitary matrices which can be 

written in terms of the elements of E and P, and Φ
E
 and Φ

P
  

are arbitrary diagonal unitary matrices.



  

Inserting all these expressions we obtain

L=Υ PΦPΛP
1 /2 SP SE

† ΛE
−1 /2 ΦE

† ΥE

ΦP SPSE
† ΦE

† =1

L=Υ PX
1 /2 ΥE

X=ΛPΛE
−1

If we set

L reduces to

where



  

For two flavors

X=(χ 1 0
0 χ 2

)=χ (
1+vP
1+vE

0

0
1−vP
1−vE

)
Υ=( cos (θ /2 ) sin (θ /2)e−iϕ

sin (θ /2)e iϕ −cos (θ /2) )
and Y is parameterized in terms of two angles



  

A quantum closure can be understood as a three-step relation:

P=ΥP(X 1 /2 (ΥE EΥ E )X 1/2)ΥP

- Y
E
 rotates E to its eigenvalue matrix

- X1/2 rescales the eigenvalues

- Y
P
 rotates away from a diagonal matrix

This same relation could be written as 

P=(Υ PΥ E )E (ΥE X ΥE ) (ΥEΥP )
which is the general form given previously. 

This is the form one would use if you want to relate E and F 
because F is not positive definite. 



  

Moment alignmentMoment alignment

We can measure the ‘alignment’ between moments using the 
Frobenius Inner Product and Frobenius norm

cosξ =
⟨E−½ Tr (E) , P−½Tr (E)⟩F
|E−½Tr (E)|F|P−½Tr (E)|F

The Frobenius Inner Product and norm are

⟨E ,P ⟩F=Tr (E
† P)

|E|F=(⟨E , E⟩F )1/2



  

We can go back to the test problems and determine the closure 
parameters.

First the MSW problem



  



  

Now that we know the closure parameters, we can redo the 
moment calculation with a quantum closure.
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Next, the first self-interaction test case where the scalar closure 
worked well.
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The closure parameters in this test case are:

- χ
1
 = χ

2

- θ
E
 = θ

P

- ϕ
E
 = ϕ

P

The moments are very close to perfectly aligned.



  

Finally, the second self-interaction test case where the scalar 
closure worked well below 60 km but not above.
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Surprisingly the closure parameters in this test case evolve very 
similarly to the previous one:

- χ
1
 ≈ χ

2

- θ
E
 = θ

P

- ϕ
E
 = ϕ

P

and the moments are again very close to perfectly aligned.



  

We take the closure parameters for a single energy and use 
them in the moment code for all energies.
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SummarySummary

Moments are a more efficient way of doing neutrino flavor 
transformation calculations. 

If the correct closure is used, the results from moment 
calculations are exact. 

We have developed a formulation for quantum closures. 

Initial test cases indicate that the closure for self-interaction 
scenarios is almost classical i.e. a scalar. 

The future goal is to figure out how / why the departure from the 
scalar closure occurs. 
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