Perturbation theory for four-body systems near unitarity

Sebastian König

INT 24-3: Quantum Few- and Many-Body Systems in Universal Regimes

October 21, 2024

Thanks...

...to my collaborators...

- Feng Wu (IJCLab Orsay), Xincheng Lin (NCSU)
- U. van Kolck (IJCLab Orsay, U. Arizona, ECT* Trento)
- B. Long, R. Peng (Sichuan U.), S. Lyu (INFN Naples)
- G. Hupin (IJCLab Orsay), K. Kravvaris (LLNL)
- H.-W. Hammer TU Darmstadt), H. Griesshammer (George Washington U.)

... for support, funding, and computing time...

• NCSU HPC Services, Jülich Supercomputing Center

Nuclear effective field theories

- choose degrees of freedom approriate to energy scale
- only restricted by symmetry, ordered by power counting

- degrees of freedom here: nucleons (and/or clusters thereof)
- even more effective d.o.f.: rotations, vibrations

Papenbrock, NPA **852** 36 (2011); ...

• most effective theory depends on energy scale (and nucleus) of interest

Nuclear scales

Nuclear scales

Nuclear scales

Efimov trimers and tetramers

- Efimov effect: infinite tower of three-body states in unitarity limit
- realized experimentally in cold atomic systems
 - scattering length can be tuned via Feshbach resonances

- two-body system is **scale invariant** at unitarity
- three-body scale arises via **dimensional transmutation**
- three-body bound-state energies are **spaced geometrically**
 - $E^{(n+1)} = E^{(n)}/(22.7)^2$

Braaten+Hammer, Phys. Rept. 428 259 (2006)

Efimov, PLB 33 563 (1970)

Efimov trimers and tetramers

- Efimov effect: infinite tower of three-body states in unitarity limit
- realized experimentally in cold atomic systems
 - scattering length can be tuned via Feshbach resonances

- each state comes with two associated tetramers
- plus higher-body clusters beyond that

- two-body system is **scale invariant** at unitarity
- three-body scale arises via **dimensional transmutation**
- three-body bound-state energies are **spaced geometrically**
 - $E^{(n+1)} = E^{(n)}/(22.7)^2$

Braaten+Hammer, Phys. Rept. 428 259 (2006)

Efimov, PLB 33 563 (1970)

Hammer+Platter, EPJA 32 13 (2007); von Stecher, JPB 43 101002 (2010); ...

Efimov trimers and tetramers

- at unitarity
 - ► $B_4/B_3 \simeq 4.611$, $B_{4*}/B_3 \simeq 1.002$ Hammer+Platter, EPJA **32** 13 (2007); Deltuva, PRA **82** 040701 (2010)

• in ⁴He

- ground state at $B_lpha/B_T\simeq 3.66$
- \blacktriangleright resonance at $B_{lpha*}/B_T\simeq 1.05$ (where $B_T=7.72$)

TUNL nuclear data

Nuclear scales revisited

Nuclear scales revisited

The unitarity expansion

Capture gross features at leading order, build up the rest as perturbative "fine structure!"

Nuclear sweet spot

- $1/a~< Q_A <~1/R \sim m_\pi$
- $Q_A=\sqrt{2M_NB_A/A}$

SK et al. PRL **118** 202501 (2017)

Α	2	3	4	•••	56
$\mathbf{Q}_{\mathbf{A}}\mathbf{R}$	0.3	0.5	0.8	•••	0.9
\hookrightarrow iron	not m	uch c	liffere	nt from	⁴ He
				van	Kolck (201

The unitarity expansion

Capture gross features at leading order, build up the rest as perturbative "fine structure!"

Nuclear sweet spot

- $1/a~< Q_A <~1/R \sim m_\pi$
- $Q_A = \sqrt{2M_NB_A/A}$

SK et al. PRL **118** 202501 (2017)

Α	2	3	4	•••	56
$\mathbf{Q}_{\mathbf{A}}\mathbf{R}$	0.3	0.5	0.8	•••	0.9
\hookrightarrow iron	not m	uch c	liffere	nt from	⁴ He
				van	Kolck (201

- discrete scale invariance as guiding principle (Efimov effect!)
 - ▶ near equivalence to bosonic clusters, exact SU(4) symmetry

Wigner, Phys. Rev. **51** 106 (1937); Mehen et al., PRL **83** 931 (1999); Bedaque et al., NPA **676** 357 (2000) Vanasse+Phillips, FB Syst. **58** 26 (2017)

cf. also Kievsky+Gattobigio, EPJ Web Conf. 113 03001 (2016), \dots

Unitarity expansion scheme

(1) describe strong force with contact interaction

$$C_0 = \underbrace{C_0^{(0)}}_{ ext{leading order (LO)}} + C_0^{(1)} + \cdots$$

- momentum cutoff Λ gives "smearing"
- fit $C_0^{(0)}$ to get $a = \infty$ in both NN S-wave channels

(2) fix Efimov spectrum to physical triton energy

• pionless LO three-body force

Bedaque et al., NPA **676** 357 (2000)

• triton as "anchor" at each order

(3) include in perturbation theory

- finite *a*, Coulomb
- range corrections
- all further higher-order corrections

Unitarity expansion scheme

(1) describe strong force with contact interaction

$$C_0 = \underbrace{C_0^{(0)}}_{ ext{leading order (LO)}} + C_0^{(1)} + \cdots$$

- momentum cutoff Λ gives "smearing"
- fit $C_0^{(0)}$ to get $a = \infty$ in both NN S-wave channels

(2) fix Efimov spectrum to physical triton energy

• pionless LO three-body force

Bedaque et al., NPA **676** 357 (2000)

• triton as "anchor" at each order

(3) include in perturbation theory

- finite *a*, Coulomb
- range corrections \leftarrow not actually included so far!
- all further higher-order corrections

Let's study this for bosonic systems first!

Part I

Bosons

Universal few-boson systems

⁴He atoms

- ⁴He atoms are naturally close to the unitarity limit
 - S-wave scattering length $a_2 = 100$ Å, effective range $r_2 = 7.326$ Å much smaller
 - ▶ shallow dimer with binding energy ~ 1.3 mK $^{Janzen + Azsz, J. Chem. Phys. 103 9626 (1995)}$
 - \blacktriangleright universal trimers and tetramers with binding energies $\mathcal{O}(100)$ mK

Other cold atomic systems

- Feshbach resonances can be used to tune the scattering length in cold atomic gases
- Efimov effect has been observed for a variety of systems by now

Relation to nuclear physics

- in the Wigner SU(4) limit, the equations for the S=1/2 three-nucleon system decouple into two components
- one of these components is equivalent to the bosonic equation

Bedaque, Hammer, van Kolck, NPA 676 357 (1999)

Many talks about all this at this workshop!

U. van Kolck (Monday), H. Griesshammer (Monday), X. Lin (Wednesday), ...

Numerical approach

Unified (2-, 3-, 4-body) numerical framework

Two-body system

- separable regulator for contact interactions: $V=C_0|g
 angle\langle g|$
- can be solved analytically to get scattering amplitudes

Three-body system

- Faddeev equations: $|\psi
 angle = G_0 t P |\psi
 angle + (G_0 + G_0 t G_0) V_3 |\Psi
 angle$
- full wave function: $|\Psi
 angle = (1+P)|\psi
 angle$
- used to fit three-body force

Four-body system

- Faddeev-Yakubowsky equations: two components $|\psi_{A,B}
 angle$
- full wave function involves both components:
 - $ullet |\Psi
 angle = (1{-}P_{34}{-}PP_{34})(1+P)|\psi_A
 angle + (1{+}P)(1{+} ilde{P})|\psi_B
 angle$

Deep trimers

- the physical Efimov effect is an infrared phenomenon
 - accumulation point of three-body bound states (trimers) at zero energy
- however, the EFT may exhibit a parallel UV limit cycle
 - ► famous log-periodic cutoff dependence of the three-body force
 - ▶ with each pole in the three-body coupling constant, a new deep trimer enters the

spectrum

Bedaque, Hammer, van Kolck, PRL **82** 463 (1999); NPA **646** 444 (1999)

• occurrence depends on regularization scheme

▶ no UV limit cycle observed for local regulators

Kirscher + Gazit, PLB **755** 253 (2016)

Why do we care?

Deep trimer removal

- at some cutoff a physical tetramer is associated with the deepest trimer
- as we increase the cutoff, a yet deeper trimer appears
- the physical tetramer can then decay into that deep trimer plus a particle
 - ▶ i.e., the physical tetramer becomes a resonance

Deep trimer removal

- at some cutoff a physical tetramer is associated with the deepest trimer
- as we increase the cutoff, a yet deeper trimer appears
- the physical tetramer can then decay into that deep trimer plus a particle
 - ▶ i.e., the physical tetramer becomes a resonance

Trimer sweeping

- calculate the full wave function $|\Psi_3
 angle$ of the deep trimer
- then replace $V_3 \to V_3 + \lambda |\Psi_3\rangle \langle \Psi_3|$ in the interaction, $\lambda =$ large number
 - ▶ this removes the deep trimer from the negative-energy spectrum!
- well-established technique in general, known for decades
- used for example to remove spurious two-nucleon states in Chiral EFT

Nogga, Timmermans, van Kolck, PRC 72 054006 (2005)

gg3po, via Wikimedia Commons (GPL)

Lehman, PRC 25 3146 (1982)

• requires fully generic FY equation (no separable simplification!)

Deep trimer removal

- at some cutoff a physical tetramer is associated with the deepest trimer
- as we increase the cutoff, a yet deeper trimer appears
- the physical tetramer can then decay into that deep trimer plus a particle
 - ▶ i.e., the physical tetramer becomes a resonance

Trimer sweeping

- calculate the full wave function $|\Psi_3\rangle$ of the deep trimer
- then replace $V_3 \to V_3 + \lambda |\Psi_3\rangle \langle \Psi_3|$ in the interaction, $\lambda = \text{large number}$
 - ▶ this removes the deep trimer from the negative-energy spectrum!
- well-established technique in general, known for decades
- used for example to remove spurious two-nucleon states in Chiral EFT

Nogga, Timmermans, van Kolck, PRC 72 054006 (2005)

gg3po, via Wikimedia Commons (GPL)

Lehman, PRC 25 3146 (1982)

• requires fully generic FY equation (no separable simplification!)

Alternative approach

• it is also possible to work with four-body equations that feature a full trimer propagator and remove the deep state directly at that level Lin, PRC 109 0240

Lin, PRC **109** 024002 (2024) see talk by Xincheng Lin

Four-boson ground-state convergence

- energies expressed in units of $B_2 = 1$ (even though system at unitarity!)
 - would be more sensible to use B_3 as reference energy
- three-body state fixed at $B_3=96.971\,B_2$, based on physical ⁴He atoms
- apparent convergence to expected $B_4^{(0)} = 4.6108\,B_3$ for large cutoffs

Deltuva, PRA **82**, 040701 (2010)

• however, oscillations overlay simple $1/\Lambda$ dependence

Range corrections

Recap

- recall the unitarity expansion at next-to-leading order:
 - Coulomb (not in this talk), finite scattering length $(1/a \neq 0)$, range corrections
- in the standard theory, 1/a enters at leading order, range correction is NLO
- unitarity scheme pairs the expansions in 1/(Qa) and $Q/M_{
 m hi}$

Separable Hamiltonian formalism

$$H(p,p') = H_0 + C_0 \, g(p) g(p') + C_2 \, g(p) \Big[p^2 + {p'}^2 \Big] g(p') + \cdots$$

- $g(p) = \exp\left(-(p/\Lambda)^n
 ight)$ with $n=2,4,\cdots$ implements regularization
- LECs are split into orders and run with the cutoff Λ
 C₀ = C₀⁽⁰⁾(Λ) + C₀⁽¹⁾(Λ) + ···, C₂ = C₂⁽¹⁾(Λ) + ···
 - ▶ reproduce effective range expansion: $p \cot \delta(p) = -\frac{1}{a} + \frac{r^2}{2}p^2 \cdots$
- Note: this uses a momentum-dependent formulation
- approaches with dimer fields implement range correction via energy dependence

see e.g. talk by X. Lin

NLO four-body force

- full next-to-leading order includes range corrections $\sim C_2^{(1)} \, (p^2 + p'^2)$
- four-boson energy does not converge with cutoff
- promotion of four-body force to NLO

Bazak, Kirscher, SK et al., PRL 122 143001 (2019)

- inclusion of four-body force stabilized five- and six-body system as well
- general prediction for promotion of many-body forces (for bosons!)
- only need a single four-body datum, rest remains prediction at NLO
- higher-body few-body forces likely promoted as well (but not for nucleons)

Consequences

Four-body ground-state energy becomes input at NLO...

..but other observables remain predictions, e.g.:

- tetramer excited state talk by X. Lin
- ground-state radius
- other static properties

Perturbative Faddeev scheme

Basic setup

SK, EPJA 56 113 (2020); cf. Vanasse, PRC 88 044001 (2013)

- full wavefunction: $|\Psi
 angle=(1+P)|\psi
 angle$
- perturbative expansion: $|\Psi
 angle = |\Psi^{(0)}
 angle + |\Psi^{(1)}
 angle + \cdots$
- Faddeev equation: $|\psi^{(0)}
 angle = K^{(0)}|\psi^{(0)}
 angle$ with $K^{(0)} = G_0 t^{(0)}P$

 \rightsquigarrow NLO energy shift $B^{(1)}=\langle \Psi^{(0)}|V^{(1)}|\Psi^{(0)}
angle$

Wave-function correction

- set $K^{(1)} = B^{(1)}(G_0 + G_0 t^{(0)} G_0) + G_0 t^{(1)} P$
- then $({f 1}-K^{(0)})|\psi^{(1)}
 angle=K^{(1)}|\psi^{(0)}
 angle$
 - ▶ singular part from LO solution projected out
- need only solve linear system with same kernel as LO equation!
- \rightsquigarrow N2LO energy corrections $B^{(2)}=\langle\Psi^{(1)}|V^{(1)}|\Psi^{(0)}
 angle+\langle\Psi^{(0)}|V^{(2)}|\Psi^{(0)}
 angle$
- \rightsquigarrow NLO corrections for operators (form factor \rightarrow radius)
 - works essentially the same way for Faddeev-Yakubowsky equations

Four-boson ground-state radius

- calculations orchestrated and executed by Feng Wu
- radius calculated from form factor in strict perturbation theory

$$\blacktriangleright \ F_C(q) = \langle \Psi | \rho(q) | \Psi \rangle \rightsquigarrow \langle r^2 \rangle = -\frac{1}{6} \frac{d^2}{dq^2} F_C(q) \Big|_{q \to 0} = \langle r^2 \rangle^{(0)} + \langle r^2 \rangle^{(1)} + \cdots$$

Atomic ⁴He @ unitarity, scaled 0.06 Hivama et al. (2012) $\sqrt{{
m <r^2 > } (1/\sqrt{[{
m MB}_2]})}$ 0.05 0.04 $\Delta \quad LO,\, n_{reg}=4,\, l_{max}=2$ 0.03 \square LO, $n_{reg} = 2$, $l_{max} = 2$ NLO, $n_{reg} = 2$, $l_{max} = 2$ \blacktriangle NLO, $n_{reg} = 4$, $l_{max} = 2$ NLO, $n_{reg} = 2$, $l_{max} = 4$ \diamondsuit NLO, $n_{reg} = 4$, $l_{max} = 4$ 0.02 50 100 150 200 250 300 350 400 $\Lambda (\sqrt{[MB_2]})$ Wu, SK, et al., work in progress

- jobs used 48 $(l_{max}=2)$ and 64 $(l_{max}=4)$ momentum mesh points
- NLO range corrections shift radius towards potential-model result

Hiyama + Kamiura, PRA 85, 022502 (2012)

Part II

Nucleons

Recap

- 3N/4N systems dominated by "bosonic" component
- ⁴He binding energy becomes input at NLO
- ⁴He radius can still be predicted
- also interesting: excited state in ⁴He, more nucleons Hupin, SK, Kravvaris, van Kolck, Wu, work in progress

But let's talk about something else for a moment...

Nuclear effective field theories

- choose degrees of freedom approriate to energy scale
- only restricted by symmetry, ordered by power counting

- degrees of freedom here: nucleons (and/or clusters thereof)
- even more effective d.o.f.: rotations, vibrations

Papenbrock, NPA **852** 36 (2011); ...

• most effective theory depends on energy scale (and nucleus) of interest

• consider the effective total potential:

$$V(r) = V_{ ext{OPE}}(r) + rac{L(L+1)}{r^2}$$

- for L>0, this "shields" the nucleons from the singular attraction of $V_{
 m OPE}(r)$
- critical momentum characterizes perturbativeness

V(r)

15

Partly perturbative pions

• observation is the basis for perturbatively renormalized chiral EFTs (not this talk!)

Birse, PRC 2006

Nogga, Timmermans, van Kolck, PRC 2005

KSW counting

- basically, expand nuclear force around pionless EFT
- compelling idea, alas: poor convergence properties
- recent work: problematic only in low partial waves!

Kaplan et al., PLB/NPB 1998

Cohen+Hansen 1999; Fleming et al., NPA 2000

Wu + Long 2019; Kaplan, PRC 2020

4

Observation 1

- KSW scheme works for two-nucleon partial waves with l>0, except ${}^{3}P_{0}$
 - ► for center-of-pass momenta below the Δ threshold Wu + Long (2019); Kaplan, PRC (2020)
- however, Born approximation with OPE + contact works for 3P_0 scattering
 - ▶ ${}^{3}P_{0}$ converges with a P-wave contact promoted to NLO! Peng, Lyu, Long (2020)

Two-nucleon phase shifts

- good convergence of two-nucleon P-waves (except ${}^{3}P_{0}$)
 - \blacktriangleright breaks down at $k\sim 300$ MeV (Δ production threshold)
- similar picture for yet higher partial waves

Wu + Long, PRC **99** 024003 (2019) B. Long, talk at Chiral Dynamics 2024 SAID: gwdac.phys.gwu.edu

• circles: SAID data, triangles: OPE + once iterated

Observation 1

- KSW scheme works for two-nucleon partial waves with l>0, except ${}^{3}P_{0}$
 - ► for center-of-pass momenta below the Δ threshold Wu + Long (2019); Kaplan, PRC (2020)
- however, Born approximation with $\mathsf{OPE}+\mathsf{contact}$ works for 3P_0 scattering
 - ▶ ${}^{3}P_{0}$ converges with a P-wave contact promoted to NLO! Peng, Lyu, Long (2020)

Observation 1

- KSW scheme works for two-nucleon partial waves with l>0, except ${}^{3}P_{0}$
 - ▶ for center-of-pass momenta below the Δ threshold Wu + Long (2019); Kaplan, PRC (2020)
- however, Born approximation with OPE + contact works for ${}^{3}P_{0}$ scattering
 - ▶ ${}^{3}P_{0}$ converges with a P-wave contact promoted to NLO! Peng, Lyu, Long (2020)

Observation 2

- 3S_1 - 3D_1 mixing angle vanishes in the combined unitarity+chiral limit
 - $1/a_{{}^3S_1} o 0$, $m_\pi o 0$ implies $\epsilon o 0$
 - ▶ this happens despite the tensor force still being strong in the chiral limit
 - ► however, this is an on-shell only effect Lyu, Zuo, Peng, SK + Long, in preparation
- at N2LO, there is still a large correction to the mixing angle (and ${}^{3}D_{1}$ phase shift)
 - ▶ this can be fixed by promoting just the SD mixing term to NLO!
- related recent work in similar direction

talk by Harald last week Teng + Griesshammer, 2410.09653 [nucl-th]

Observation 1

- KSW scheme works for two-nucleon partial waves with l>0, except ${}^{3}P_{0}$
 - for center-of-pass momenta below the Δ threshold Wu + Long (2019); Kaplan, PRC (2020)
- however, Born approximation with OPE + contact works for ${}^{3}P_{0}$ scattering
 - ▶ ³ P_0 converges with a P-wave contact promoted to NLO! Peng, Lyu, Long (2020)

Observation 2

- 3S_1 - 3D_1 mixing angle vanishes in the combined unitarity+chiral limit
 - $1/a_{{}^3S_1} o 0$, $m_\pi o 0$ implies $\epsilon o 0$
 - ▶ this happens despite the tensor force still being strong in the chiral limit
 - however, this is an on-shell only effect
 Lyu, Zuo, Peng, SK + Long, in preparation
- at N2LO, there is still a large correction to the mixing angle (and ${}^{3}D_{1}$ phase shift)
 - ▶ this can be fixed by promoting just the SD mixing term to NLO!
- related recent work in similar direction

talk by Harald last week Teng + Griesshammer, 2410.09653 [nucl-th]

Bottom line

• together, these two modifications fix perturbative pions for 2N scattering

Finally

Let's look at some few-nucleon results!

⁴He energy at NLO

- consider first a calculation without four-nucleon force at NLO
- calculation with 48 momentum mesh points
 - including some large cutoffs with deep triton state removed

- do perturbative pions eliminate the need for a four-nucleon force?
 - ► it does not look like they do

⁴He radius at NLO

• now we include the four-nucleon force and calculate the radius

Remarks

- calculations now with 32 momentum mesh points
- dashes lines fit a polynomial in $1/\Lambda$
 - standard approach, but may not capture actual Λ dependence!

⁴He radius at NLO

• now we include the four-nucleon force and calculate the radius

Remarks

- calculations now with 32 momentum mesh points
- dashes lines fit a polynomial in $1/\Lambda$
 - standard approach, but may not capture actual Λ dependence!
- no clear improvement of radius from pions

³H radius at NLO

- the triton energy is used to fix the three-body force...
- ...but of course we can predict the triton radius!

Remarks

- this calculations is again with 48 momentum mesh points
- range correction studied previously in Pionless EFT
- somewhat more significant impact of pions on the radius

Vanasse, PRC 95 024002 (2017)

Summary and outlook

Bosons

- removal of deep trimers enables large-cutoff calculations
- tetramer ground state energy converges to known universal value
- good convergence of four-boson radius at NLO

Nucleons

- range corrections shift ³H and ⁴He radii towards experiment
- small modifications enable perturbative-pion expansion
- four-nucleon at NLO still needed with perturbative pions
- perturbative pions have only minor effects on radii

Summary and outlook

Bosons

- removal of deep trimers enables large-cutoff calculations
- tetramer ground state energy converges to known universal value
- good convergence of four-boson radius at NLO

Nucleons

- range corrections shift ³H and ⁴He radii towards experiment
- small modifications enable perturbative-pion expansion
- four-nucleon at NLO still needed with perturbative pions
- perturbative pions have only minor effects on radii

Outlook

- comprehensive study of tetramer excited state
- full nuclear unitarity expansion at NLO
- push four-nucleon calculations to larger cutoffs

Thanks...

...to my collaborators...

- Feng Wu (IJCLab Orsay), Xincheng Lin (NCSU)
- U. van Kolck (IJCLab Orsay, U. Arizona, ECT* Trento)
- B. Long, R. Peng (Sichuan U.), S. Lyu (INFN Naples)
- G. Hupin (IJCLab Orsay), K. Kravvaris (LLNL)
- H.-W. Hammer TU Darmstadt), H. Griesshammer (George Washington U.)

... for support, funding, and computing time...

• NCSU HPC Services, Jülich Supercomputing Center

Thanks...

...to my collaborators...

- Feng Wu (IJCLab Orsay), Xincheng Lin (NCSU)
- U. van Kolck (IJCLab Orsay, U. Arizona, ECT* Trento)
- B. Long, R. Peng (Sichuan U.), S. Lyu (INFN Naples)
- G. Hupin (IJCLab Orsay), K. Kravvaris (LLNL)
- H.-W. Hammer TU Darmstadt), H. Griesshammer (George Washington U.)

... for support, funding, and computing time...

• NCSU HPC Services, Jülich Supercomputing Center

...and to you, for your attention!