# A nonparametric tour of neutron-star matter with gravitational waves

#### Philippe Landry • Canadian Institute for Theoretical Astrophysics

based on work with Reed Essick, Katerina Chatziioannou, Isaac Legred, Sophia Han, Ingo Tews, Sanjay Reddy, and many other collaborators



INT-N3AS 24-89W – 6 Sep 2024





| ∽√ GraceDB Public Alerts - Latest Search Documentation Login |                               |             |                               |                                     |          |                        |  |  |  |
|--------------------------------------------------------------|-------------------------------|-------------|-------------------------------|-------------------------------------|----------|------------------------|--|--|--|
| Event ID                                                     | Possible Source (Probability) | Significant | UTC                           | GCN                                 | Location | FAR                    |  |  |  |
| S240902bq                                                    | BBH (>99%)                    | Yes         | Sept. 2, 2024<br>14:33:06 UTC | GCN Circular Query<br>Notices   VOE |          | 1 per 12.505 years     |  |  |  |
| S240830gn                                                    | BBH (89%), NSBH (11%)         | Yes         | Aug. 30, 2024<br>21:11:20 UTC | GCN Circular Query<br>Notices   VOE |          | 1 per 50.02 years      |  |  |  |
| S240825ar                                                    | BBH (97%), NSBH (3%)          | Yes         | Aug. 25, 2024<br>05:51:46 UTC | GCN Circular Query<br>Notices   VOE |          | 1 per 10.004 years     |  |  |  |
| S240813d                                                     | BBH (>99%)                    | Yes         | Aug. 13, 2024<br>04:39:13 UTC | GCN Circular Query<br>Notices   VOE |          | 1 per 1.7544e+10 years |  |  |  |

real-time public alerts

#### gracedb.ligo.org

### open data



|     | 14:33:06 UTC                  | 1 |                 |         |                  |              |                               |                               | Get Data                     | Tutorials                       | Software                        | Abou                            |
|-----|-------------------------------|---|-----------------|---------|------------------|--------------|-------------------------------|-------------------------------|------------------------------|---------------------------------|---------------------------------|---------------------------------|
| Yes | Aug. 30, 2024<br>21:11:20 UTC | ( | GWUSL           |         |                  |              | GW                            | /тс                           |                              |                                 | ₿ <u>New Se</u>                 | arch 🕒 Help                     |
|     |                               |   | Name            | Version | Release          | GPS          | Mass 1 (M <sub>☉</sub> )      | Mass 2 (M <sub>☉</sub> )      | Network SNR                  | Distance (Mpc)                  | Xeff                            | Total Mass                      |
| Yes | Aug. 25, 2024<br>05:51:46 UTC |   | GW200322_091133 | vl      | GWTC-3-confident | 1268903511.3 | +130<br>38 <sub>-22</sub>     | +24.3<br>11.3 <sub>-6.0</sub> | +2.7<br>4.5 <sub>-3.0</sub>  | +12500<br>3500 <sub>-2200</sub> | +0.54<br>0.27 <sub>-0.58</sub>  | +132<br>50 <sub>-22</sub>       |
|     |                               |   | GW200316_215756 | vl      | GWTC-3-confident | 1268431094.1 | +10.2<br>13.1 <sub>-2.9</sub> | +2.0<br>7.8 <sub>-2.9</sub>   | +0.4<br>10.3 <sub>-0.7</sub> | +480<br>1120 .440               | +0.27<br>0.13 .0.10             | +7.2<br>21.2 <sub>-2.0</sub>    |
|     |                               | 1 | GW200311_115853 | vl      | GWTC-3-confident | 1267963151.3 | +6.4<br>34.2 <sub>-3.8</sub>  | *4.1<br>27.7 <sub>-5.9</sub>  | +0.2<br>17.8 <sub>-0.2</sub> | +280<br>1170 <sub>-400</sub>    | +0.16<br>-0.02 <sub>-0.20</sub> | +5.3<br>61.9 <sub>-4.2</sub>    |
|     |                               |   | GW200308_173609 | vl      | GWTC-3-confident | 1267724187.7 | +166<br>60 <sub>-29</sub>     | +36<br>24 .13                 | +2.5<br>4.7 <sub>-2.9</sub>  | +13900<br>7100 -4400            | +0.58<br>0.16 <sub>-0.49</sub>  | +169.0<br>92.0 <sub>-48.0</sub> |
| Yes | Aug. 13, 2024<br>04:39:13 UTC |   | GW200306_093714 | vl      | GWTC-3-confident | 1267522652.1 | +17.1<br>28.3 .7.7            | +6.5<br>14.8 <sub>-6.4</sub>  | +0.4<br>7.8 <sub>-0.6</sub>  | +1700<br>2100 <sub>-1100</sub>  | +0.28<br>0.32 <sub>-0.46</sub>  | +11.8<br>43.9 <sub>-7.5</sub>   |
|     |                               |   | GW200302_015811 | vl      | GWTC-3-confident | 1267149509.5 | +8.7<br>37.8 <sub>-8.5</sub>  | +8.1<br>20.0 <sub>-5.7</sub>  | +0.3<br>10.8 <sub>-0.4</sub> | +1020<br>1480 <sub>-700</sub>   | +0.25<br>0.01 <sub>-0.26</sub>  | +9.6<br>57.8 <sub>-6.9</sub>    |
|     |                               |   | GW200225_060421 | vl      | GWTC-3-confident | 1266645879.3 | +5.0<br>19.3 <sub>-3.0</sub>  | +2.8<br>14.0 <sub>-3.5</sub>  | +0.3<br>12.5 <sub>-0.4</sub> | +510<br>1150 <sub>-530</sub>    | +0.17<br>-0.12 <sub>-0.28</sub> | +3.6<br>33.5 <sub>-3.0</sub>    |
|     |                               |   |                 |         |                  |              |                               |                               |                              |                                 |                                 |                                 |

Sept. 2, 2024 S240902ba BBH (>99%) Yes S240830an BBH (89%), NSBH (11%) S240825ar BBH (97%), NSBH (3%)

BBH (>99%)

S240813d

# real-time public alerts

gracedb.ligo.org

# LVK O4 & beyond

#### observing prospects

Abbott+ LRR 23 3 (2020)



Colombo+ ApJ 937 79 (2022), Patricelli+ MNRAS 513 3 (2022) predict one multimessenger BNS detection during O4

#### Cosmic Explorer: a US-led next-gen GW observatory project

20 and 40 km L-shaped surface interferometers, 10x LIGO A+ sensitivity





#### Einstein Telescope: Europe's next-gen GW observatory

3 co-located detectors, each with highand low-frequency interferometers, in 10 km triangular design, underground

**CE+ET BNS** survey is complete to z~0.5 and sensitive to entire merging population



Landry, Essick+Chatziioannou PRD 101 123007 (2020)

$$P(\cos | d) \propto P(\cos) \prod_{i} \int P(d_i | m_{1,2}^i, \Lambda_{1,2}^i) P(m_{1,2}^i, \Lambda_{1,2}^i | \cos) dm_{1,2}^i d\Lambda_{1,2}^i$$
EOS posterior EOS prior EOS prior EOS likelihood



#### **EOS prior**

- → EOS model
- → prior support
- → shape of prior

Landry, Essick+Chatziioannou PRD 101 123007 (2020)

Chatziioannou GRG 52 109 (2020)



#### $m-\Lambda$ relation

- **EOS model** →
- **TOV** solver →
- interpolation →

Landry, Essick+Chatziioannou PRD 101 123007 (2020)

$$P(\cos|d) \propto P(\cos) \prod_{i} \int P(d_i|m_{1,2}^i, \Lambda_{1,2}^i) P(m_{1,2}^i, \Lambda_{1,2}^i|\cos) dm_{1,2}^i d\Lambda_{1,2}^i$$

**EOS posterior** 

**EOS prior** 

**EOS likelihood** 

Landry, Essick+Chatziioannou PRD 101 123007 (2020)

LVC (incl. PL) PRL 2018



#### **GW** likelihood

- waveform model →
- sampling →
- interpolation →

**GW parameter** estimation likelihood EOS  $m-\Lambda$  relation

$$P(\cos|d) \propto P(\cos) \prod_{i} \int P(d_i|m_{1,2}^i, \Lambda_{1,2}^i) P(m_{1,2}^i, \Lambda_{1,2}^i|\cos) dm_{1,2}^i d\Lambda_{1,2}^i$$

**EOS posterior** 

**EOS prior** 

**EOS likelihood** 

Landry, Essick+Chatziioannou PRD 101 123007 (2020)

LVC (incl. PL) PRL 2018



#### **EOS likelihood**

- **EOS model** →
- non-GW data →
- sampling →

**GW** parameter estimation likelihood EOS  $m-\Lambda$  relation

$$P(\cos|d) \propto P(\cos) \prod_{i} \int P(d_i|m_{1,2}^i, \Lambda_{1,2}^i) P(m_{1,2}^i, \Lambda_{1,2}^i|\cos) dm_{1,2}^i d\Lambda_{1,2}^i$$

**EOS posterior** 

**EOS prior** 

**EOS likelihood** 



#### **EOS prior**

- → EOS model
- → prior support
- → shape of prior

Landry, Essick+Chatziioannou PRD 101 123007 (2020)

**GW** parameter  
**estimation likelihood EOS m-A relation**  

$$P(\cos|d) \propto P(\cos) \prod_{i} \int P(d_i|m_{1,2}^i, \Lambda_{1,2}^i) P(m_{1,2}^i, \Lambda_{1,2}^i|\cos) dm_{1,2}^i d\Lambda_{1,2}^i$$
**EOS posterior EOS prior EOS prior EOS likelihood**













Landry+Essick PRD 99 084049 (2019), Essick, Landry+Holz PRD 101 063007 (2020)



#### implicit correlations in Legred+ (incl. PL) PRD 105 043016 (2022) parametric EOS models

nonparametric

parametric



Legred+ (incl. PL) PRD 104 063003 (2021)





Legred+ (incl. PL) PRD 104 063003 (2021)



Legred+ (incl. PL) PRD 104 063003 (2021)



# where does XEFT break down?

Essick+ (incl. PL) PRC 102 055803 (2020)



# joint nuclear & astro inference



Essick+ (incl. PL) PRL 127 192701 (2021) PRC 104 065804 (2021)





# public EOS inference code

#### git.ligo.org/reed.essick/lwp



Published April 28, 2022 | Version v1

Dataset 🕒 Open

Impact of the PSR J0740+6620 radius constraint on the properties of high-density matter: Neutron star equation of state posterior samples

Legred, Isaac<sup>1</sup> (b); Chatziioannou, Katerina<sup>1</sup> (b); Essick, Reed<sup>2</sup> (b); Han, Sophia<sup>3</sup> (b); Landry, Philippe<sup>4</sup> (b)

Show affiliations

Equation of state posterior samples associated with Legred et al., "Impact of the PSR J0740+6620 radius constraint on the properties of high-density matter," Phys. Rev. D 104, 063003 (2021); doi:10.1103/PhysRevD.104.063003

#### EOS posterior samples zenodo.org/records/6502467



Landry, Essick+Chatziioannou PRD 101 123007 (2020)

#### population-scale data

- → population model
- → selection function
- hierarchical inference

$$P(\cos|d) \propto P(\cos) \prod_{i} \int \frac{P(d_{i}|m_{1,2}^{i}, \Lambda_{1,2}^{i})P(m_{1,2}^{i}, \Lambda_{1,2}^{i}|eos, \operatorname{pop})P(\operatorname{pop}) \operatorname{dpop} dm_{1,2}^{i} d\Lambda_{1,2}^{i}}{\zeta(\operatorname{pop})} \operatorname{selection effects}$$

EOS posterior EOS prior

#### Simultaneous population & EOS inference

Wysocki+ arXiv:2001.01747

imposing the wrong population -level mass prior can bias the inferred EOS after O(10) BNS observations



#### Simultaneous population & EOS inference

#### Biscoveanu+Talbot+Vitale MNRAS 2022



incorrectly assuming NSs spin slowly can bias the inferred maximum mass in the population after O(10) BNS observations

### summary and outlook

#### Existing observations of neutron stars suggest that...

- NSs are small-ish (R ≈ 12 km): nuclear interactions not so repulsive
- despite near-constant R(M), cores may harbour exotic matter: hints from c.?

#### With next-gen observatories like Cosmic Explorer, we can expect...

• O(100) BNSs per yr with SNR > 100 for precise tidal measurements

#### R&D for next-gen dense matter science is underway

 nonparametric EOS inference is well suited for the opportunities and challenges of population-scale, high-precision BNS observations

# join the Cosmic Explorer Consortium!

#### cosmicexplorer.org



34

#### Thanks!

P.L. is supported by the Natural Sciences & Engineering Research Council of Canada (NSERC).

Many collaborators inside and outside the LIGO-Virgo-KAGRA collaboration and the Cosmic Explorer project are acknowledged, especially Reed Essick (CITA), Katerina Chatziioannou and Isaac Legred (Caltech).

#### twin stars in CE+ET

1000 30 BNS (XG 1d) strong phase transitions can give rise to hadronic and hybrid 100 BNS (XG 1w) 800  $\nabla \nabla$ twins with the same mass but different R and  $\Lambda$ 500 BNS (XG 1m) 600 400 PL+Chakravarti arXiv:2212.09733  $\mathbf{A}M$ 2000 1.0 1.2 1.6 1.8 1.4 2.0  $M_t [M_{\odot}]$  $10^{4}$  $10^{3}$  $10^{3}$  Λ<sub>1.4</sub> R N  $< 10^{2}$  $10^{2}$ twins are distinguishable via population  $10^{1}$ no PT  $M_{\rm TOV}$  $10^{1}$  $\Lambda_{\text{TOV}}$ strong PT w/ twins  $10^{0}$ 1.0 1.2 1.4 1.6 1.8 2.0 2.2 1.2 1.6 1.8 0.8 1.0 14 2.0 $m [M_{\odot}]$ 37  $\mathcal{M}[M_{\odot}]$ 

1400

1200

+ SKI5\_2009

10 BNS (A+ 1y) 20 BNS (A+ 2y)