Transport coefficients in the pre-equilibrium stage

T. Lappi

University of Jyväskylä, Finland

INT, August 2024

1/27

Outline

- ▶ Initial stage of heavy ion collision:
	- ▶ Glasma: color fields
	- ▶ Bottom-up thermalization: QCD kinetic theory
- ▶ Transport: jets and heavy quarks
	- ▶ Glasma: field correlators or Wong's equations
		- ▶ D. Avramescu, V. Greco, A. Ipp, D. I. Müller and M. Ruggieri, [arXiv:2303.05599 [hep-ph]]
		- ▶ D. Avramescu, V. Greco, T.L., H. Mäntysaari, D. I. Müller, in preparation
	- ▶ Bottom-up: kinetic theory calculations K. Boguslavski, A. Kurkela, T. L., F. Lindenbauer, J. Peuron
		- ▶ arXiv:2303.12520 [hep-ph]
		- ▶ arXiv:2303.12595 [hep-ph]
		- ▶ arXiv:2312.11252 [hep-ph]
		- ▶ arXiv:2312.00447 [hep-ph]

Goal: understand interactions of jets & heavy quarks in pre-equilibrium phase

All results here: boost invariant expansion, transversally infinite system

Heavy ion collision in spacetime

The purpose in heavy ion collisions: to create QCD **matter**, i.e. system that is large and lives long compared to the microscopic scale

Heavy ion collision in spacetime

The purpose in heavy ion collisions: to create QCD **matter**, i.e. system that is large and lives long compared to the microscopic scale

Concentrate here on the **earliest stage**: glasma and thermalization

3/27

Gluon saturation and glasma

Small x: the hadron/nucleus wavefunction is characterized by **saturation scale** $Q_s \gg \Lambda_{QCD}$.

Small x: the hadron/nucleus wavefunction is characterized by **saturation scale** $\mathsf{Q}_{\mathsf{s}} \gg \Lambda_{\mathsf{QCD}}$.

- $\mathsf{p} \sim \mathsf{Q}_\mathrm{s}$: strong fields $\mathsf{A}_\mu \sim 1/\mathsf{g}$
	- ▶ occupation numbers $\sim 1/\alpha_s$
	- ▶ classical field approximation.
	- \blacktriangleright small α_s , but nonperturbative

Small x: the hadron/nucleus wavefunction is characterized by **saturation scale** $\mathsf{Q}_{\mathsf{s}} \gg \Lambda_{\mathsf{QCD}}$.

- $\mathsf{p} \sim \mathsf{Q}_\mathrm{s}$: strong fields $\mathsf{A}_\mu \sim 1/\mathsf{g}$
	- ▶ occupation numbers $\sim 1/a_s$
	- ▶ classical field approximation.
	- \blacktriangleright small α_s , but nonperturbative

CGC: Effective theory for wavefunction of nucleus

- \blacktriangleright Large $x =$ color charge ρ , **probability** distribution $W_{\nu}[\rho]$
- \triangleright Small x = classical gluon field A_{11} + quantum flucts.

5/27

Small x: the hadron/nucleus wavefunction is characterized by **saturation scale** $\mathsf{Q}_{\mathsf{s}} \gg \Lambda_{\mathsf{QCD}}$.

- $\mathsf{p} \sim \mathsf{Q}_\mathrm{s}$: strong fields $\mathsf{A}_\mu \sim 1/\mathsf{g}$
	- ▶ occupation numbers $\sim 1/a_s$
	- ▶ classical field approximation.
	- \blacktriangleright small α_s , but nonperturbative

CGC: Effective theory for wavefunction of nucleus

- \blacktriangleright Large $x =$ color charge ρ , **probability** distribution $W_{\nu}[\rho]$
- \triangleright Small $x =$ classical gluon field A_u + quantum flucts.

Glasma: field configuration of two colliding sheets of CGC. (Here $v \sim \ln \sqrt{s}$)

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ ヨ ヨ ロ 9 Q Q

How to obtain intitial glasma fields

Now let two dense color field systems collide

Need LC gauge fields $A^i_{(1,2)} = \frac{1}{6}$ i $\frac{1}{\mathcal{G}}V_{(1,2)}(\mathbf{x})\partial_i V_{(1,2)}^{\shortparallel}(\mathbf{x})$

 $V(\mathbf{x})$ = Wilson line for nuclei (1) and (2) (from ρ)

How to obtain intitial glasma fields

Now let two dense color field systems collide

Need LC gauge fields $A^i_{(1,2)} = \frac{1}{6}$ i $\frac{1}{\mathcal{G}}V_{(1,2)}(\mathbf{x})\partial_i V_{(1,2)}^{\shortparallel}(\mathbf{x})$ $V(\mathbf{x})$ = Wilson line for nuclei (1) and (2) (from ρ) $\tau=0$: match using $[D_\mu,F^{\mu\nu}]=J^\nu$: $A^i\Big|_{\tau=0}$ = $A^i_{(1)} + A^i_{(2)}$ i i i $A^{\eta}|_{\tau=0} = \frac{i g}{2}$ $\frac{9}{2}[A'_{(1)}, A'_{(2)}]$ i i A^{τ} = 0 gauge choice

> 6/27 (ロ) (個) (目) (目) (目) 目目 のQ (V

How to obtain intitial glasma fields

Now let two dense color field systems collide

Need LC gauge fields $A^i_{(1,2)} = \frac{1}{6}$ i $\frac{1}{\mathcal{G}}V_{(1,2)}(\mathbf{x})\partial_i V_{(1,2)}^{\shortparallel}(\mathbf{x})$ $V(\mathbf{x})$ = Wilson line for nuclei (1) and (2) (from ρ) $\tau=0$: match using $[D_\mu,F^{\mu\nu}]=J^\nu$: $A^i\Big|_{\tau=0}$ = $A^i_{(1)} + A^i_{(2)}$ i i i $A^{\eta}|_{\tau=0} = \frac{i g}{2}$ $\frac{9}{2}[A'_{(1)}, A'_{(2)}]$ i i A^{τ} = 0 gauge choice

0 Numerical CYM or approximations

This is the glasma field \implies Then average over initial Wilson lines.

Initial glasma fields

- \blacktriangleright Initial condition is longitudinal E and B field, at $\tau\sim 1/Q_\text{s}$ evolves to $E_z^2\sim B_{\text{z}}^2\sim 2E_\text{x}^2\sim 2B_\text{x}^2\sim 2E_\text{y}^2\sim 2B_\text{y}^2$
- ▶ Depend on transverse coordinate

with correlation length $1/Q_s \implies$ gluon correlations

- ► Fix gauge, Fourier-decompose: Gluons with $p_T \sim Q_s$
- ▶ Boost-invariant $A_u(x) \implies$ anisotropic gluons $\langle p_z \rangle \ll \langle p_T \rangle$

7/27

Bottom-up thermalization

Bottom-up thermalization

Weak coupling QCD description of Glasma → QGP Baier, Mueller, Schiff, Son hep-ph/0009237

3 stages

- 1. Overoccupied, classical field stage $(0 \rightarrow \star)$: growing anisotropy of hard ∼ Q^s modes
- 2. Bath of soft particles develops $(\star \rightarrow \bullet)$
- 3. Radiative breakup of hard particles ($\bullet \rightarrow \blacktriangledown$)

$$
\tau_{\text{BMSS}} = \alpha_{\text{s}}^{-13/5} \textbf{Q}_{\text{s}}^{-1}
$$

Can be tracked with AMY kinetic theory:

$$
-\frac{d}{d\tau}f_{\mathbf{p}} = C^{2 \leftrightarrow 2}[f_{\mathbf{p}}] + C^{1 \leftrightarrow 2}[f_{\mathbf{p}}] + C^{\exp}[f_{\mathbf{p}}].
$$

Attractor: different initial conditions converge (ξ: initial anisotropy, $\lambda = 4\pi N_{\rm c}\alpha_{\rm s}$)

9/27 QQQ

Approach to hydro

- ► Bjorken hydro $\varepsilon \sim 1/\tau^{4/3}$
- ▶ Most of pre-equilibrium: $\varepsilon \sim 1/\tau$

 \blacktriangleright T_{id} = bkwd extrapolated ideal hydro \blacktriangleright $T_\varepsilon \sim \sqrt[4]{\varepsilon}$

Hard probes of pre-equilibrium phase

Hard probes in pre-equilibrium

▶ Timescales for hard $M \sim m_c$, p_T probes:

 $1/M \ll 1/Q_s \ll t_{\text{therm}}$

- ▶ Hard probes $M \sim m_c$, p_T created first \implies cannot neglect pre-equilibrium
- ▶ Even if thermalization is quick, pre-equilibrium is hot, dense \implies large effect

Hard probes in pre-equilibrium

▶ Timescales for hard $M \sim m_c$, p_T probes:

 $1/M \ll 1/Q_s \ll t_{\text{therm}}$

- ▶ Hard probes $M \sim m_c$, p_T created first \implies cannot neglect pre-equilibrium
- ▶ Even if thermalization is quick, pre-equilibrium is hot, dense \implies large effect

Independent scatterings?

- ▶ Do hard probes undergo independent multiple scatterings?
- ▶ If yes, parametrize medium by

$$
\begin{pmatrix} \hat{q} \\ \kappa \end{pmatrix} = \frac{d \langle q_{\perp}^{2} \rangle}{dt} \begin{cases} jet \ (\rho = \infty) \\ H.Q. \ (\text{m} = \infty) \end{cases}
$$

 \blacktriangleright In kinetic theory yes, by construction

Not obvious in glasma!

E.g. isotropic overoccupied YM

K. Boguslavski, A. Kurkela, T.L. and J. Peuron, [arXiv:2005.02418 [hep-ph]]

Overoccupation of IR modes ($k \sim m_D$) \implies **modifies "p diffusion" picture** (Thermal would be $\kappa = \text{cst}$ $\kappa = \text{cst}$ $\kappa = \text{cst}$ [\)](#page-20-0) 13/27
(Thermal would be $\kappa = \text{cst}$)

13/27

Hard probes in glasma

Classical particles in CYM: Wong's equations

 \triangleright $p \to \infty$ or $m \to \infty$: trajectory does not depend on field \implies compute Δp from field correlators A. Ipp, D. I. Muller and D. Schuh, [arXiv:2009.14206 [hep-ph]]

▶ In general: Wong's equations

$$
\frac{dX^{\mu}}{d\tau} = \frac{\rho^{\mu}}{\rho^{\tau}},
$$
\n
$$
\frac{D\rho^{\mu}}{d\tau} = \frac{g}{I_R} tr\{QF^{\mu\nu}\} \frac{\rho_{\nu}}{\rho^{\tau}}
$$
\n
$$
\frac{dQ}{d\tau} = -ig[A_{\mu}, Q] \frac{\rho^{\mu}}{\rho^{\tau}}
$$
\n
$$
\implies \text{solve numerically}
$$

M. Ruggieri, [arXiv:2303.05599 [hep-ph]]

Momentum broadening in glasma

D. Avramescu, V. Greco, A. Ipp, D. I. Müller and M. Ruggieri, [arXiv: 2303.05599 [hep-ph]]

(Note typical glasma: anisotropy between L,T w.r.t. beam)

- ► Coherent, not independent scatterings (which would be $\delta p^2 \sim \tau$)
- \triangleright Not meaningful to extract κ , \hat{q} and do H.Q. diffusion/jet quenching \implies Directly simulate physical observables in glasma

Angular correlations for heavy quark pairs

D. Avramescu, V. Greco, T.L., H. Mäntysaari, D. I. Müller, in preparation

- \triangleright Motivation: prospect of measuring $D\bar{D}$ azimuthal correlations.
- ▶ Presumably flow and non-flow contribute
- ▶ Here: medium modification to non-flow back-to-back correlations
- Initialize QQ pair with $\Delta\phi = \pi$, $\Delta\eta = 0$, follow with Wong's equations

Momentum broadening

Momentum of quark broadens as a ∼ Gaussian:

Which results in $\Delta\phi$, $\Delta\eta$ decorrelation with time:

18/27 $2Q$

리로

Azimuthal decorrelation

- ▶ Significant ∆ϕ broadening
- \blacktriangleright Widths $\sigma_{\Delta\phi}, \sigma_{\Delta\eta}$ naturally decrease with p_T $(\delta p_T^2$ roughly p_T -independent)

Nuclear modification ratio

Also calculate R_{AA} with FONLL spectrum + glasma (with or without nPDFs)

 \triangleright Significant effect on R_{AA} , but not as large as nPDF

Gaussian toy model (width extracted from δp_T^2) is a good description

20/27 KEL KAR KELKEL EE YAN

Hard probes during bottom-up thermalization

Kinetic theory: transport coefficients

Kinetic theory: independent scatterings by construction

$$
\begin{pmatrix} \hat{q} \\ \kappa \end{pmatrix} = \frac{d \langle q_{\perp}^{2} \rangle}{dt} \begin{cases} jet \langle p = \infty \rangle \\ H.Q. \langle m = \infty \rangle \end{cases}
$$

- ▶ Standard for a long time: \hat{q} , κ in thermal system \implies **Input for jet quenching, H.Q. diffusion**
- ▶ Aim: complete the picture from the glasma to hydrodynamics

22/27

Calculating transport coefficients

Momentum broadening from interactions with medium particles:

$$
\frac{\hat{q}}{\kappa} \sim \int_{\mathbf{k}\mathbf{k}'\mathbf{p}'} \frac{q_T^2}{E_\mathbf{p}} (2\pi)^4 \delta^4(P + K - P' - K') |\mathcal{M}|^2 f(\mathbf{k}) (1 + f(\mathbf{k}')),
$$

 \blacktriangleright κ : heavy quark $P = (M, 0)$, $M \rightarrow \infty$

▶ \hat{q} : energetic jet $P^2 = 0, p \to \infty$ (need cutoff $\hat{q} \sim \ln \Lambda_{\perp}$)

These limits: **medium properties**, not probe

23/27 (ロ) (個) (目) (目) (目) 目目 のQ (V

Result: κ

K. Boguslavski, A. Kurkela, T. L., F. Lindenbauer, J. Peuron, arXiv:2303.12520 [hep-ph]

Compare to thermal system with same ε (Landau matching,

thermal with same m_D or T_* is much further)

- ▶ Enhancement first (overoccupied)
- ▶ Then suppression (underoccupied)
- \blacktriangleright Larger $\lambda = 4\pi N_{\rm c}\alpha_{\rm s}$: behavior smoothed out

Result: \hat{q}

K. Boguslavski, A. Kurkela, T. L., F. Lindenbauer, J. Peuron, arXiv:2303.12595 [hep-ph]

- ▶ Large cutoff ^Λ⊥: Enhancement first, then suppression
- ▶ Smaller ^Λ⊥: smoother, overall enhancement

 \triangleright At end of BMSS \blacktriangledown : $\hat{q} \approx$ JETSCAPE estimate (can match by tuning Λ_1)

Anisotropy

- \blacktriangleright Inital overoccupied: $\kappa_I > \kappa_L$, $\hat{q}_I > \hat{q}_L \implies$ Bose enhancement, Glasma
- ▶ Then underoccupied $\kappa_T < \kappa_L$, $\hat{q}_T < \hat{q}_L \implies$ Anisotropy of t

Conclusions

- ▶ Pre-equilibrium stage short, but hot \implies **Significant effect on hard observables**
- \blacktriangleright Glasma:
	- ▶ Classical Yang Mills
		- + classical colored particles
	- **P** broadening coherent, not independent multiple scattering
- ▶ Bottom-up thermalization
	- ▶ QCD kinetic theory: trace system from glasma to hydro
	- ▶ ˆq, κ within ∼ 30 % of thermal system @ same energy density
- ▶ Both stages: anisotropy w.r.t. beam:

EKT $\hat{\mathrm{q}}$ parametrizations available in 2303 . 12595, κ upon request

27/27 **KO > KAP > KE > KE > EHE DAR**

Attractors

Two "limiting attractors"

$$
\tau_R(\lambda,\tau)=\frac{4\pi\frac{\eta}{s}}{T_\varepsilon}
$$

(T^ε from energy density)

- ▶ Isotropization rate near equilibrium
- ▶ "Hydro attractor" in literature

$$
\tau_{\rm BMSS} = \alpha_{\rm s}^{-13/5}/Q_{\rm s}
$$

- ▶ Weak coupling QCD thermalization
- ▶ Timescale for rough isotropy (Then hydro attractor takes over)

2/27

 2990

How different are the timescales?

- ▶ Weak coupling: timescales different
- \blacktriangleright Viscous hydro (relevant scale τ_P) follows from EKT (relevant scale τ_{BMSS}) Contradiction? No!
- $\triangleright \lambda \ll 1 \implies \tau_R \ll \tau_{\text{BMSS}}$ First spend **long** time in BMSS regime then short time on hydro attractor

(τ_R depends on τ, because $\varepsilon(\tau)$ changes)

BMSS regime can matter more than hydro attractor for hard probes. We plot on log scale. E.g. if $\hat{q} \sim \epsilon(\tau) \sim 1/\tau$ 0.1fm $<$ τ $<$ 1fm and 1fm $<$ τ $<$ 10fm contribute equally to $\int\mathsf{d}\tau\hat{\textbf{q}}(\tau)$

3/27

Attractors for \hat{q} and κ

κ anisotropy, 2 attractors

Anisotropy of κ , scaling with the two attractor timescales

Weak coupling BMSS is a better description, over larger range in τ

5/27

KED KARD KED KED EE DAA

ˆq anisotropy, 2 attractors

Anisotropy of \hat{q} , scaling with the two attractor timescales

Weak coupling BMSS is a better description, over larger range in τ

6/27

KED KARD KED KED EE DAA

Extrapolating to weak and strong coupling

How do we construct the attractor curves?

- \blacktriangleright Take fixed value of τ/τ_{BMSS} or τ/τ_R
- \blacktriangleright Linear fit in λ or $1/\lambda$, separately for each τ .
- 7/27 **▶ For BMSS also provide a parametrization of the** τ **-dependence ("** $\lambda \rightarrow 0$ **fit" in plot)**

KED KAD KED KED EE MAA

Relevant microscopic scales

- \triangleright Occupation number f
- \blacktriangleright Coupling α_s
- ▶ Anisotropy $\delta \sim \sqrt{\frac{\langle \rho_2^2 \rangle}{\langle \rho_1^2 \rangle}}$ $\langle p_T^2 \rangle$
- ▶ Hard scale $p_T^2 \sim Q_s^2$
- From these estimate
	- ► Energy density $\varepsilon \sim \delta Q_s^4 t$
	- ▶ Debye scale $m_D^2 \sim \alpha_s \delta$ $Q_s^2 t$
	- ▶ Soft mode eff. temperature $T_* \sim Q_s(f+1)$
	- ► $\kappa \sim m_D^2 T_*$

Understanding the systematics

(Light: T_*, m_D from EKT, dashed: f, δ from EKT)