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Outline

▶ Initial stage of heavy ion collision:
▶ Glasma: color fields
▶ Bottom-up thermalization: QCD kinetic theory

▶ Transport: jets and heavy quarks
▶ Glasma: field correlators or Wong’s equations

▶ D. Avramescu, V. Greco, A. Ipp, D. I. Müller and M. Ruggieri, [arXiv:2303.05599 [hep-ph]]
▶ D. Avramescu, V. Greco, T.L., H. Mäntysaari, D. I. Müller, in preparation

▶ Bottom-up: kinetic theory calculations K. Boguslavski, A. Kurkela, T. L., F. Lindenbauer, J. Peuron
▶ arXiv:2303.12520 [hep-ph]
▶ arXiv:2303.12595 [hep-ph]
▶ arXiv:2312.11252 [hep-ph]
▶ arXiv:2312.00447 [hep-ph]

Goal: understand interactions of jets & heavy quarks in pre-equilibrium phase

All results here: boost invariant expansion, transversally infinite system
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Heavy ion collision in spacetime

The purpose in heavy ion collisions: to create QCD matter,
i.e. system that is large and lives long

compared to the microscopic scale

t ≫ 1
T

L ≫ 1
T

T > 200MeV

z  (beam axis)

t

strong fields

gluons & quarks out of eq.

gluons & quarks in eq.

hadrons in eq.

freeze out

color fields
nonequilibrium quarks, gluons

quark-gluon plasma
hadron gas

freezeout

Concentrate here on the earliest stage: glasma and thermalization
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Gluon saturation and glasma
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Gluon saturation, Glass and Glasma

Small x : the hadron/nucleus wavefunction is
characterized by saturation scale Qs ≫ ΛQCD.

▼
p ∼ Qs: strong fields Aµ ∼ 1/g
▶ occupation numbers ∼ 1/αs

▶ classical field approximation.
▶ small αs, but nonperturbative
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CGC: Effective theory for wavefunction of nucleus
▶ Large x = color charge ρ, probability distribution Wy [ρ]

▶ Small x = classical gluon field Aµ + quantum flucts.
Glasma: field configuration of two colliding sheets of CGC. (Here y ∼ ln

√
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How to obtain intitial glasma fields

Now let two dense color field systems collide

η = cst.

t

z

x+x−

(3)

Aµ = ?

(4)

Aµ = 0

(2)

Aµ = pure gauge 2

(1)

Aµ = pure gauge 1

τ = cst.

Need LC gauge fields Ai
(1,2) =

i
g

V(1,2)(x)∂iV
†
(1,2)(x)

V (x) = Wilson line for nuclei (1) and (2) (from ρ)

τ = 0: match using [Dµ, Fµν ] = Jν :

Ai
∣∣∣
τ=0

= Ai
(1) + Ai

(2)

Aη|τ=0 =
ig
2
[Ai

(1),A
i
(2)]

Aτ = 0 gauge choice

τ > 0 Numerical CYM or approximations

This is the glasma field =⇒ Then average over initial Wilson lines.
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Initial glasma fields
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▶ Initial condition is longitudinal E and B field,
at τ ∼ 1/Qs evolves to E2

z ∼ B2
z ∼ 2E2

x ∼ 2B2
x ∼ 2E2

y ∼ 2B2
y

▶ Depend on transverse coordinate
with correlation length 1/Qs =⇒ gluon correlations

▶ Fix gauge, Fourier-decompose: Gluons with pT ∼ Qs

▶ Boost-invariant Aµ(x) =⇒ anisotropic gluons ⟨pz⟩ ≪ ⟨pT ⟩
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Bottom-up thermalization
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Bottom-up thermalization
Weak coupling QCD description of Glasma =⇒ QGP Baier, Mueller, Schiff, Son hep-ph/0009237

3 stages
1. Overoccupied, classical field stage (0 → ⋆) :

growing anisotropy of hard ∼ Qs modes
2. Bath of soft particles develops (⋆ → •)

3. Radiative breakup of hard particles (• → ▼)

τBMSS = α
−13/5
s Q−1

s

Can be tracked with AMY kinetic theory:

− d
dτ

fp = C2↔2[fp] + C1↔2[fp] + Cexp[fp].

Attractor: different initial conditions converge
(ξ: initial anisotropy, λ = 4πNcαs)
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Approach to hydro

▶ Bjorken hydro ε ∼ 1/τ4/3

▶ Most of pre-equilibrium: ε ∼ 1/τ

10−5 10−4 10−3 10−2 10−1 100

τ/τBMSS

100

101

τ
4/

3
(λ
ε)

Q
8/

3
s

λ = 0.5

λ = 1

λ = 2

λ = 5

λ = 10

10−5 10−4 10−3 10−2 10−1 100

τ/τBMSS

0.0

0.2

0.4

0.6

0.8

1.0

T
ε/
T
id

λ = 0.5

λ = 1

λ = 2

λ = 5

λ = 10

▶ Tid= bkwd extrapolated ideal hydro
▶ Tε ∼ 4

√
ε



11/27

Hard probes of pre-equilibrium phase
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Hard probes in pre-equilibrium

z  (beam axis)

t

strong fields

gluons & quarks out of eq.

gluons & quarks in eq.

hadrons in eq.
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color fields
nonequilibrium quarks, gluons

quark-gluon plasma
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▶ Timescales for hard M ∼ mc,pT probes:

1/M ≪ 1/Qs ≪ ttherm

▶ Hard probes M ∼ mc,pT created first =⇒ cannot neglect pre-equilibrium
▶ Even if thermalization is quick, pre-equilibrium is hot, dense =⇒ large effect
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Independent scatterings?

▶ Do hard probes undergo
independent multiple scatterings?

▶ If yes, parametrize medium by

q̂
κ

}
=

d
〈
q2
⊥
〉

dt

{
jet (p = ∞)

H.Q. (m = ∞)

▶ In kinetic theory yes,
by construction

Not obvious in glasma!

E.g. isotropic overoccupied YM
K. Boguslavski, A. Kurkela, T.L. and J. Peuron,

[arXiv:2005.02418 [hep-ph]]
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Overoccupation of IR modes (k ∼ mD)
=⇒ modifies “p diffusion” picture
(Thermal would be κ =cst)
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Hard probes in glasma
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Classical particles in CYM: Wong’s equations

▶ p → ∞ or m → ∞:
trajectory does not depend on field
=⇒ compute ∆p from field correlators

A. Ipp, D. I. Müller and D. Schuh,

[arXiv:2009.14206 [hep-ph]]

▶ In general: Wong’s equations

dxµ

dτ
=

pµ

pτ
,

Dpµ

dτ
=

g
TR

tr{QFµν}pν

pτ

dQ
dτ

= −ig[Aµ,Q]
pµ

pτ

=⇒ solve numerically D. Avramescu, V. Greco, A. Ipp, D. I. Müller and

M. Ruggieri, [arXiv:2303.05599 [hep-ph]]
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Momentum broadening in glasma
D. Avramescu, V. Greco, A. Ipp, D. I. Müller and M. Ruggieri, [arXiv:2303.05599 [hep-ph]]

⟨δ
p2 ⟩

[G
eV

2 ]

0

2

4

6

beauty quarks@ τform = 0.02 [fm/c]

0

2

4

6

charmquarks@ τform = 0.06 [fm/c]

δτ [fm/c]
0 0.5 1 1.5 2

⟨δ
p L2 ⟩/⟨

δp
T2

⟩

1

2

δτ [fm/c]
0 0.5 1 1.5 2

1

2

2 × ⟨δpL
2
⟩

⟨δpT
2

⟩

2 × ⟨δpL
2
⟩

⟨δpT
2

⟩

pT [GeV] 0 2 5 10
static quarks

(Note typical glasma:
anisotropy between
L,T w.r.t. beam)

▶ Coherent, not independent scatterings (which would be δp2 ∼ τ )

▶ Not meaningful to extract κ, q̂ and do H.Q. diffusion/jet quenching
=⇒ Directly simulate physical observables in glasma
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Angular correlations for heavy quark pairs
D. Avramescu, V. Greco, T.L., H. Mäntysaari, D. I. Müller, in preparation

▶ Motivation: prospect of measuring DD̄ azimuthal correlations.
▶ Presumably flow and non-flow contribute
▶ Here: medium modification to non-flow back-to-back correlations
▶ Initialize QQ̄ pair with ∆ϕ = π,∆η = 0, follow with Wong’s equations
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Momentum broadening

Momentum of quark broadens as a ∼ Gaussian:

Which results in ∆ϕ,∆η decorrelation with time:
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Azimuthal decorrelation

▶ Significant ∆ϕ broadening
▶ Widths σ∆ϕ, σ∆η naturally decrease with pT

(δp2
T roughly pT -independent)
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Nuclear modification ratio

Also calculate RAA with FONLL spectrum + glasma (with or without nPDFs)

▶ Significant effect on RAA, but not as large as nPDF
▶ Gaussian toy model (width extracted from δp2

T ) is a good description
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Hard probes during bottom-up thermalization
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Kinetic theory: transport coefficients

Kinetic theory:
independent scatterings by construction

q̂
κ

}
=

d
〈
q2
⊥
〉

dt

{
jet (p = ∞)

H.Q. (m = ∞)

▶ Standard for a long time:
q̂, κ in thermal system
=⇒ Input for jet quenching, H.Q. diffusion

▶ Aim: complete the picture
from the glasma to hydrodynamics

?
Glasma

Hydrodynamics

Kinetic
theory
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Ejet = 20 GeV
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Calculating transport coefficients

probe P P ′ = P + Q

medium particle K K ′ = K − Q

Q, HTL

Momentum broadening from interactions with medium particles:

q̂
κ

∼
∫

kk′p′

q2
T

Ep
(2π)4δ4(P + K − P ′ − K ′) |M|2 f (k) (1 + f (k′)) ,

▶ κ: heavy quark P = (M,0), M → ∞
▶ q̂: energetic jet P2 = 0,p → ∞ (need cutoff q̂ ∼ ln Λ⊥)

These limits: medium properties, not probe



24/27

Result: κ
K. Boguslavski, A. Kurkela, T. L., F. Lindenbauer, J. Peuron, arXiv:2303.12520 [hep-ph]

Compare to thermal system with same ε
(Landau matching,

thermal with same mD or T∗ is much further)

▶ Enhancement first (overoccupied)
▶ Then suppression (underoccupied)
▶ Larger λ = 4πNcαs:

behavior smoothed out
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Result: q̂
K. Boguslavski, A. Kurkela, T. L., F. Lindenbauer, J. Peuron, arXiv:2303.12595 [hep-ph]

▶ Large cutoff Λ⊥:
Enhancement first, then suppression

▶ Smaller Λ⊥:
smoother, overall enhancement
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▶ ε ∼ 1/τ large
▶ At end of BMSS ▼: q̂ ≈ JETSCAPE estimate (can match by tuning Λ⊥)



26/27

Anisotropy

▶ Inital overoccupied: κT > κL, q̂T > q̂L =⇒ Bose enhancement, Glasma
▶ Then underoccupied κT < κL, q̂T < q̂L =⇒ Anisotropy of f
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Conclusions

▶ Pre-equilibrium stage short, but hot
=⇒ Significant effect on hard observables

▶ Glasma:
▶ Classical Yang Mills

+ classical colored particles
▶ p broadening coherent,

not independent multiple scattering
▶ Bottom-up thermalization

▶ QCD kinetic theory:
trace system from glasma to hydro

▶ q̂, κ within ∼ 30% of thermal system
@ same energy density

▶ Both stages: anisotropy w.r.t. beam:
measurable?

?
Glasma

Hydrodynamics

Kinetic
theory

EKT q̂ parametrizations available in 2303.12595, κ upon request

https://arxiv.org/abs/2303.12595
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Attractors
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Two “limiting attractors”

τR(λ, τ) =
4π η

s

Tε
(Tε from energy density)

▶ Isotropization rate near equilibrium
▶ “Hydro attractor” in literature

τBMSS = α
−13/5
s /Qs

▶ Weak coupling QCD thermalization
▶ Timescale for rough isotropy

(Then hydro attractor takes over)
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How different are the timescales?

▶ Weak coupling: timescales different
▶ Viscous hydro (relevant scale τR)

follows from EKT (relevant scale τBMSS)
Contradiction? No!

▶ λ ≪ 1 =⇒ τR ≪ τBMSS
First spend long time in BMSS regime
then short time on hydro attractor

10−5 10−4 10−3 10−2 10−1 100 101 102 103

τ/τBMSS

10−2

10−1

100

101

τ R
/τ

B
M

S
S

λ = 0.5
λ = 1

λ = 2

λ = 5

λ = 10

λ = 20

(τR depends on τ , because ε(τ) changes)

BMSS regime can matter more than hydro attractor for hard probes.
We plot on log scale. E.g. if q̂ ∼ ϵ(τ) ∼ 1/τ
0.1fm < τ < 1fm and 1fm < τ < 10fm contribute equally to

∫
dτ q̂(τ)



4/27

Attractors for q̂ and κ
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κ anisotropy, 2 attractors

Anisotropy of κ, scaling with the two attractor timescales
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Weak coupling BMSS is a better description, over larger range in τ
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q̂ anisotropy, 2 attractors

Anisotropy of q̂, scaling with the two attractor timescales
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Extrapolating to weak and strong coupling

How do we construct the attractor curves?
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▶ Take fixed value of τ/τBMSS or τ/τR

▶ Linear fit in λ or 1/λ, separately for each τ .
▶ For BMSS also provide a parametrization of the τ -dependence (“λ → 0 fit” in plot)



8/27

Relevant microscopic scales

▶ Occupation number f
▶ Coupling αs

▶ Anisotropy δ ∼
√

⟨p2
z ⟩

⟨p2
T ⟩

▶ Hard scale p2
T ∼ Q2

s

From these estimate
▶ Energy density ε ∼ δQ4

s f
▶ Debye scale m2

D ∼ αsδ Q2
s f

▶ Soft mode eff. temperature
T∗ ∼ Qs(f + 1)

▶ κ ∼ m2
DT∗

Understanding the systematics

10−6 10−5 10−4 10−3 10−2 10−1 100

τ/τBMSS

0.0
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κ
/κ

ε eq λ = 0.5,

λ = 1,

λ = 2,

λ = 5,

λ = 10

κ(δ, f0)

(Light: T∗,mD from EKT, dashed: f , δ from EKT)
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