Transport coefficients in the pre-equilibrium stage

T. Lappi

University of Jyväskylä, Finland

INT, August 2024

Outline

Initial stage of heavy ion collision:

- Glasma: color fields
- Bottom-up thermalization: QCD kinetic theory
- Transport: jets and heavy quarks
 - Glasma: field correlators or Wong's equations
 - D. Avramescu, V. Greco, A. Ipp, D. I. Müller and M. Ruggieri, [arXiv:2303.05599 [hep-ph]]
 - D. Avramescu, V. Greco, T.L., H. Mäntysaari, D. I. Müller, in preparation
 - Bottom-up: kinetic theory calculations K. Boguslavski, A. Kurkela, T. L., F. Lindenbauer, J. Peuron
 - arXiv:2303.12520 [hep-ph]
 - arXiv:2303.12595 [hep-ph]
 - arXiv:2312.11252 [hep-ph]
 - arXiv:2312.00447 [hep-ph]

Goal: understand interactions of jets & heavy quarks in pre-equilibrium phase

All results here: boost invariant expansion, transversally infinite system

Heavy ion collision in spacetime

The purpose in heavy ion collisions: to create QCD **matter**, i.e. system that is large and lives long compared to the microscopic scale

Heavy ion collision in spacetime

The purpose in heavy ion collisions: to create QCD **matter**, i.e. system that is large and lives long compared to the microscopic scale

Concentrate here on the earliest stage: glasma and thermalization

Gluon saturation and glasma

Small x: the hadron/nucleus wavefunction is characterized by saturation scale $Q_s \gg \Lambda_{QCD}$.

Small x: the hadron/nucleus wavefunction is characterized by saturation scale $Q_s \gg \Lambda_{QCD}$.

- ${f p}\sim {m Q}_{
 m s}$: strong fields $A_{\mu}\sim 1/g$
 - occupation numbers $\sim 1/\alpha_s$
 - classical field approximation.
 - small α_s , but nonperturbative

Small x: the hadron/nucleus wavefunction is characterized by saturation scale $Q_s \gg \Lambda_{QCD}$.

- ${f p}\sim {m Q}_{
 m s}$: strong fields $A_{\mu}\sim 1/g$
 - occupation numbers $\sim 1/\alpha_s$
 - classical field approximation.
 - small α_s , but nonperturbative

CGC: Effective theory for wavefunction of nucleus

- Large $x = \text{color charge } \rho$, **probability** distribution $W_{\gamma}[\rho]$
- Small x = classical gluon field A_{μ} + quantum flucts.

Small x: the hadron/nucleus wavefunction is characterized by saturation scale $Q_s \gg \Lambda_{QCD}$.

- ${f p}\sim {m Q}_{
 m s}$: strong fields $A_{\mu}\sim 1/g$
 - occupation numbers $\sim 1/\alpha_s$
 - classical field approximation.
 - small α_s , but nonperturbative

CGC: Effective theory for wavefunction of nucleus

- Large $x = \text{color charge } \rho$, **probability** distribution $W_{\gamma}[\rho]$
- Small x = classical gluon field A_{μ} + quantum flucts.

Glasma: field configuration of two colliding sheets of CGC. (Here $y \sim \ln \sqrt{s}$)

How to obtain intitial glasma fields

Now let two dense color field systems collide

Need LC gauge fields $A_{(1,2)}^i = \frac{i}{g} V_{(1,2)}(\mathbf{x}) \partial_i V_{(1,2)}^{\dagger}(\mathbf{x})$

 $V(\mathbf{x})$ = Wilson line for nuclei (1) and (2) (from ρ)

How to obtain intitial glasma fields

Now let two dense color field systems collide

Need LC gauge fields $A_{(1,2)}^i = \frac{i}{g} V_{(1,2)}(\mathbf{x}) \partial_i V_{(1,2)}^{\dagger}(\mathbf{x})$ $V(\mathbf{x})$ = Wilson line for nuclei (1) and (2) (from ρ) $\tau = 0$: match using $[D_{\mu}, F^{\mu\nu}] = J^{\nu}$: $A^i \Big|_{\tau=0} = A_{(1)}^i + A_{(2)}^i$ $A^{\eta} \Big|_{\tau=0} = \frac{ig}{2} [A_{(1)}^i, A_{(2)}^i]$

$$A^{\tau} = 0$$
 gauge choice

6/27 《 마 > 《 쿱 > 《 클 > 《 클 > · 클 = · 이 Q @

How to obtain intitial glasma fields

Now let two dense color field systems collide

leed LC gauge fields
$$A_{(1,2)}^i = \frac{i}{g} V_{(1,2)}(\mathbf{x}) \partial_i V_{(1,2)}^{\dagger}(\mathbf{x})$$

 $I'(\mathbf{x}) =$ Wilson line for nuclei (1) and (2) (from ρ)
 $= 0$: match using $[D_{\mu}, F^{\mu\nu}] = J^{\nu}$:
 $A^i \Big|_{\tau=0} = A_{(1)}^i + A_{(2)}^i$
 $A^{\eta} \Big|_{\tau=0} = \frac{ig}{2} [A_{(1)}^i, A_{(2)}^i]$
 $A^{\tau} = 0$ gauge choice

 $au > \mathbf{0}$ Numerical **CYM** or approximations

This is the **glasma** field \implies Then average over initial Wilson lines.

Initial glasma fields

- ► Initial condition is longitudinal *E* and *B* field, at $\tau \sim 1/Q_s$ evolves to $E_7^2 \sim B_7^2 \sim 2E_x^2 \sim 2B_y^2 \sim 2E_y^2 \sim 2B_y^2$
- Depend on transverse coordinate

with correlation length $1/Q_s \implies$ gluon correlations

- ▶ Fix gauge, Fourier-decompose: Gluons with $p_T \sim Q_s$
- Boost-invariant $A_{\mu}(x) \implies$ anisotropic gluons $\langle p_z \rangle \ll \langle p_T \rangle$

Bottom-up thermalization

Bottom-up thermalization

Weak coupling QCD description of Glasma \implies QGP Baier, Mueller, Schiff, Son hep-ph/0009237

3 stages

- 1. Overoccupied, classical field stage $(0 \rightarrow \star)$: growing anisotropy of hard $\sim Q_s$ modes
- 2. Bath of soft particles develops (* \rightarrow •)
- 3. Radiative breakup of hard particles ($\bullet \rightarrow \mathbf{v}$)

$$\tau_{\rm BMSS} = \alpha_{\rm s}^{-13/5} \mathcal{Q}_{\rm s}^{-1}$$

Can be tracked with AMY kinetic theory:

$$-\frac{\mathrm{d}}{\mathrm{d}\tau}f_{\mathbf{p}} = \mathcal{C}^{2\leftrightarrow 2}[f_{\mathbf{p}}] + \mathcal{C}^{1\leftrightarrow 2}[f_{\mathbf{p}}] + \mathcal{C}^{\mathrm{exp}}[f_{\mathbf{p}}].$$

Attractor: different initial conditions converge (ξ : initial anisotropy, $\lambda = 4\pi N_c \alpha_s$)

Approach to hydro

- Bjorken hydro $\varepsilon \sim 1/\tau^{4/3}$
- Most of pre-equilibrium: $\varepsilon \sim 1/\tau$

• T_{id} = bkwd extrapolated ideal hydro • $T_{\epsilon} \sim \sqrt[4]{\epsilon}$

Hard probes of pre-equilibrium phase

Hard probes in pre-equilibrium

• Timescales for hard $M \sim m_c, p_T$ probes:

 $1/M \ll 1/Q_{s} \ll t_{therm}$

- Hard probes $M \sim m_c$, p_T created first \implies cannot neglect pre-equilibrium
- \blacktriangleright Even if thermalization is quick, pre-equilibrium is hot, dense \implies large effect

Hard probes in pre-equilibrium

• Timescales for hard $M \sim m_c, p_T$ probes:

 $1/M \ll 1/Q_{s} \ll t_{therm}$

- ▶ Hard probes $M \sim m_c, p_T$ created first \implies cannot neglect pre-equilibrium
- \blacktriangleright Even if thermalization is quick, pre-equilibrium is hot, dense \implies large effect

Independent scatterings?

- Do hard probes undergo independent multiple scatterinas?
- If yes, parametrize medium by

$$\hat{\mathbf{q}} \\ \kappa \\ \end{bmatrix} = \frac{\mathsf{d} \langle \boldsymbol{q}_{\perp}^2 \rangle}{\mathsf{d}t} \quad \left\{ \begin{array}{c} \mathsf{jet} \left(\boldsymbol{p} = \boldsymbol{\infty} \right) \\ \mathsf{H.Q.} \left(\boldsymbol{m} = \boldsymbol{\infty} \right) \\ \end{array} \right.$$

In kinetic theory yes, by construction

Not obvious in alasma!

E.g. isotropic overoccupied YM

K. Boguslavski, A. Kurkela, T.L. and J. Peuron, [arXiv:2005.02418 [hep-ph]]

Overoccupation of IR modes $(k \sim m_D)$ \implies modifies "*p* diffusion" picture (Thermal would be $\kappa = cst$)

Hard probes in glasma

Classical particles in CYM: Wong's equations

▶ $p \rightarrow \infty$ or $m \rightarrow \infty$: trajectory does not depend on field \implies compute Δp from field correlators A. lpp, D. I. Müller and D. Schuh, [arXiv:2009.14206 [hep-ph]]

In general: Wong's equations

$$\begin{split} \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau} &= \frac{\mathcal{P}^{\mu}}{\mathcal{P}^{\tau}},\\ \frac{\mathrm{D}\mathcal{P}^{\mu}}{\mathrm{d}\tau} &= \frac{\mathcal{G}}{\mathcal{I}_{R}}\operatorname{tr}\{\mathcal{Q}\mathcal{F}^{\mu\nu}\}\frac{\mathcal{P}_{\nu}}{\mathcal{P}^{\tau}}\\ \frac{\mathrm{d}\mathcal{Q}}{\mathrm{d}\tau} &= -\mathrm{i}\mathcal{G}[\mathcal{A}_{\mu},\mathcal{Q}]\frac{\mathcal{P}^{\mu}}{\mathcal{P}^{\tau}}\\ \Longrightarrow \text{ solve numerically} \end{split}$$

M. Ruggieri, [arXiv:2303.05599 [hep-ph]]

Momentum broadening in glasma

D. Avramescu, V. Greco, A. Ipp, D. I. Müller and M. Ruggieri, [arXiv:2303.05599 [hep-ph]]

(Note typical glasma: anisotropy between L,T w.r.t. beam)

- Coherent, not independent scatterings (which would be $\delta p^2 \sim \tau$)
- Not meaningful to extract κ , \hat{q} and do H.Q. diffusion/jet quenching
 - \implies Directly simulate physical observables in glasma

Angular correlations for heavy quark pairs

D. Avramescu, V. Greco, T.L., H. Mäntysaari, D. I. Müller, in preparation

- Motivation: prospect of measuring $D\bar{D}$ azimuthal correlations.
- Presumably flow and non-flow contribute
- Here: medium modification to non-flow back-to-back correlations
- ▶ Initialize $Q\bar{Q}$ pair with $\Delta \phi = \pi, \Delta \eta = 0$, follow with Wong's equations

Momentum broadening

Momentum of quark broadens as a \sim Gaussian:

Which results in $\Delta \phi$, $\Delta \eta$ decorrelation with time:

Azimuthal decorrelation

- Significant $\Delta \phi$ broadening
- Widths $\sigma_{\Delta\phi}, \sigma_{\Delta\eta}$ naturally decrease with p_T (δp_T^2 roughly p_T -independent)

Nuclear modification ratio

Also calculate R_{AA} with FONLL spectrum + glasma (with or without nPDFs)

Significant effect on R_{AA} , but not as large as nPDF

• Gaussian toy model (width extracted from δp_T^2) is a good description

Hard probes during bottom-up thermalization

Kinetic theory: transport coefficients

Kinetic theory: independent scatterings by construction

- Standard for a long time:
 ĝ, κ in thermal system
 Input for jet quenching, H.Q. diffusion
- Aim: complete the picture from the glasma to hydrodynamics

Calculating transport coefficients

Momentum broadening from interactions with medium particles:

$$\hat{\mathbf{q}}_{\kappa} \sim \int_{\mathbf{k}\mathbf{k}'\mathbf{p}'} rac{Q_{T}^{2}}{E_{\mathbf{p}}} (2\pi)^{4} \delta^{4}(P+K-P'-K') \left|\mathcal{M}\right|^{2} f(\mathbf{k}) \left(1+f(\mathbf{k}')\right),$$

• κ : heavy quark $P = (M, \mathbf{0}), M \to \infty$

• \hat{q} : energetic jet $P^2 = 0, p \to \infty$ (need cutoff $\hat{q} \sim \ln \Lambda_{\perp}$)

These limits: medium properties, not probe

Result: κ

K. Boguslavski, A. Kurkela, T. L., <u>F. Lindenbauer</u>, <u>J. Peuron</u>, arXiv:2303.12520 [hep-ph]

Compare to thermal system with same $\ensuremath{\varepsilon}$ (Landau matching,

thermal with same m_D or T_* is much further)

- Enhancement first (overoccupied)
- Then suppression (underoccupied)
- Larger $\lambda = 4\pi N_c \alpha_s$: behavior smoothed out

Result: \hat{q}

K. Boguslavski, A. Kurkela, T. L., <u>F. Lindenbauer</u>, <u>J. Peuron</u>, arXiv:2303.12595 [hep-ph]

- Large cutoff Λ_⊥: Enhancement first, then suppression
- Smaller Λ_⊥: smoother, overall enhancement

• At end of BMSS **v**: $\hat{q} \approx$ JETSCAPE estimate (can match by tuning Λ_{\perp})

Anisotropy

- ► Inital overoccupied: $\kappa_T > \kappa_L$, $\hat{q}_T > \hat{q}_L \implies$ Bose enhancement, Glasma
- ▶ Then underoccupied $\kappa_T < \kappa_L$, $\hat{q}_T < \hat{q}_L \implies$ Anisotropy of f

Conclusions

- Pre-equilibrium stage short, but hot
 Significant effect on hard observables
- Glasma:
 - Classical Yang Mills
 - + classical colored particles
 - *p* broadening coherent, not independent multiple scattering
- Bottom-up thermalization
 - QCD kinetic theory: trace system from glasma to hydro
 - q̂, κ within ~ 30% of thermal system
 @ same energy density
- Both stages: anisotropy w.r.t. beam: measurable?

EKT $\hat{\mathbf{q}}$ parametrizations available in 2303.12595, κ upon request

Attractors

Two "limiting attractors"

$$\tau_{R}(\lambda,\tau)=\frac{4\pi\frac{\eta}{s}}{T_{\varepsilon}}$$

(T_{ε} from energy density)

- Isotropization rate near equilibrium
- "Hydro attractor" in literature

$$\tau_{\rm BMSS} = \alpha_{\rm s}^{-13/5}/Q_{\rm s}$$

- Weak coupling QCD thermalization
- Timescale for rough isotropy (Then hydro attractor takes over)

How different are the timescales?

- Weak coupling: timescales different
- Viscous hydro (relevant scale τ_R) follows from EKT (relevant scale τ_{BMSS}) Contradiction? No!
- $\lambda \ll 1 \implies \tau_R \ll \tau_{BMSS}$ First spend long time in BMSS regime then short time on hydro attractor

(τ_R depends on τ , because $\varepsilon(\tau)$ changes)

BMSS regime can matter more than hydro attractor for hard probes. We plot on log scale. E.g. if $\hat{q} \sim \epsilon(\tau) \sim 1/\tau$ $0.1 \text{fm} < \tau < 1 \text{fm}$ and $1 \text{fm} < \tau < 10 \text{fm}$ contribute equally to $\int d\tau \hat{q}(\tau)$

Attractors for \hat{q} and κ

κ anisotropy, 2 attractors

Anisotropy of κ , scaling with the two attractor timescales

Weak coupling BMSS is a better description, over larger range in au

$\hat{\mathrm{q}}$ anisotropy, 2 attractors

Anisotropy of $\hat{\mathbf{q}}$, scaling with the two attractor timescales

Weak coupling BMSS is a better description, over larger range in au

Extrapolating to weak and strong coupling

How do we construct the attractor curves?

- Take fixed value of $\tau/\tau_{\rm BMSS}$ or $\tau/\tau_{\rm R}$
- Linear fit in λ or $1/\lambda$, separately for each τ .
- ► For BMSS also provide a parametrization of the τ -dependence (" $\lambda \rightarrow 0$ fit" in plot)

Relevant microscopic scales

- Occupation number f
- Coupling α_s
- Anisotropy $\delta \sim \sqrt{\frac{\langle \rho_z^2 \rangle}{\langle \rho_7^2 \rangle}}$
- \blacktriangleright Hard scale ${\cal P}_{T}^{2}\sim {\cal Q}_{s}^{2}$
- From these estimate
 - Energy density $\varepsilon \sim \delta Q_s^4 f$
 - Debye scale $m_D^2 \sim \alpha_{\rm s} \delta \ Q_{\rm s}^2 f$
 - Soft mode eff. temperature $T_* \sim Q_s(f+1)$
 - $\blacktriangleright \kappa \sim m_D^2 T_*$

Understanding the systematics

(Light: T_*, m_D from EKT, dashed: f, δ from EKT)