Correlations and Semi-Universal Analytic Inversion of the TOV Equation

J. M. Lattimer

EOS Measurements with Next-Generation Gravitational-Wave Detectors INT-N3AS workshop 24-89W

> Seattle, Washington 26 August - 4 September, 2024

Acknowledgements

Funding Support:

- **DOE** Nuclear Physics
- DOE Toward Exascale Astrophysics of Mergers and Supernovae (TEAMS)
- NASA Neutron Star Interior Composition ExploreR (NICER)
- NSF Neutrinos, Nuclear Astrophysics and Symmetries (PFC N3AS)
- DOE Nuclear Physics from Multi-Messenger Mergers (NP3M)

Recent Collaborators:

Boyang Sun (Stony Brook), Duncan Brown & Soumi De (Syracuse), Christian Drischler, Madappa Prakash & Tianqi Zhao (Ohio), Sophia Han (TDLI), Sanjay Reddy (INT), Achim Schwenk (Darmstadt), Andrew Steiner (Tennessee) & Ingo Tews (LANL)

Pulsar Timing for PSR J0737-3039

J. M. Lattimer

Masses of Pulsars in Binaries from Pulsar Timing

Largest: 2.08 \pm 0.07 M_{\odot} Smallest: 1.174 \pm 0.004 M_{\odot}

Several other NS masses have been measured by other means, including some estimated to be more than $2M_{\odot}$ (e.g., black widow pulsars) and smaller than $1M_{\odot}$ (HESS J1731-347), but their mass uncertainties are generally large A = A = A = A

How Can a Neutron Star's Radius Be Measured?

- Flux = $\frac{\text{Luminosity}}{4\pi D^2} = \frac{4\pi R^2 \sigma_B T_s^4}{4\pi D^2} = \left(\frac{R}{D}\right)^2 \sigma_B T_s^4$ X-ray observations of quiescent neutron stars in low-mass X-ray binaries measure the flux and surface temperature T_s . Distance D somewhat uncertain; GR effects introduce an M dependence.
- $F_{Edd} = \frac{GMc}{\kappa D^2}$ X-ray observations of bursting neutron stars in accreting systems measure the Eddington flux F_{Edd} . κ is the poorly-known opacity; GR effects introduce an R dependence.
- X-ray phase-resolved spectroscopy of millisecond pulsars with nonuniform surface emissions (hot spots). NICER: PSR J0030+0451, PSR J0437-4715 (closest and brightest millisecond pulsar) and PSR J0740+6620 (most massive pulsar).
- $R_{1.4} \simeq (11.5 \pm 0.3) \frac{\mathcal{M}}{M_{\odot}} \left(\frac{\tilde{\Lambda}}{800}\right)^{1/6} \text{km}, \quad \mathcal{M} = \frac{(M_A M_B)^{3/5}}{(M_A + M_B)^{1/5}}$ GW observations of neutron star mergers measure the chirp mass \mathcal{M} and binary tidal deformability $\tilde{\Lambda}$ (GW170817).
- $I_A \propto M_A R_A^2$ Radio observations of extremely relativistic binary pulsars measure masses M_A , M_B and moment of inertia I_A from spin-orbit coupling [PSR J0737-3039 ($P_b = 0.102d$), PSR J1757-1854 (0.164 d), PSR J1946+2052 (0.078 d)].

Summary of Astrophysical Observations

Neutron Star Structure

Tolman-Oppenheimer-Volkov equations

The Radius – Pressure Correlation

The I-Love Relation

F-Mode Properties - Moment of Inertia

Neutron Skin Thickness - L

J. M. Lattimer

Maximum Mass As a Unique Scaling Point

Varying the EOS

J. M. Lattimer

$M_{\max}, R_{\max}, \mathcal{E}_{\max}, P_{\max}$ Correlations

• Ofengeim(2020) fitted \mathcal{E}_{max} and P_{max} with the functions

$$\mathcal{E}_{max}, P_{max} \simeq \left[\frac{a_{\mathcal{E},P}}{R_{max}\cos\phi_{\mathcal{E},P} + (GM_{max}/c^2)\sin\phi_{\mathcal{E},P} + d_{\mathcal{E},P}}\right]^{s_{\mathcal{E},P}}$$

with accuracies of about 3% and 8%, respectively.

• Cai, Li and Zhang (2023) found a perturbative solution of the TOV equations in the parameter $x = P_c/\mathcal{E}_c$:

$$R \simeq \sqrt{\frac{3c^2}{2\pi G \mathcal{E}_c}} \left[\frac{x}{1+4x+3x^2}\right]^{1/2},$$

$$M \simeq \sqrt{\frac{54c^6}{\pi G^3 \mathcal{E}_c}} \left[\frac{x}{1+4x+3x^2}\right]^{3/2}.$$

At M_{max} , accuracies are 7% and 8%; at 1.4 M_{\odot} , they are 2% and 6%.

J. M. Lattimer

$M_{\max}, R_{\max}, \mathcal{E}_{\max}, P_{\max}$ Correlation

Ofengeim et al's finding suggest the power-law correlations

$$\begin{split} \mathcal{E}_{\rm c,max} &= (1.809 \pm 0.36) \left(\frac{R_{\rm max}}{10 \rm km}\right)^{-1.98} \left(\frac{M_{\rm max}}{M_{\odot}}\right)^{-0.171} \rm GeV \ fm^{-3}, \\ P_{\rm c,max} &= (118.5 \pm 6.2) \left(\frac{R_{\rm max}}{10 \rm km}\right)^{-5.24} \left(\frac{M_{\rm max}}{M_{\odot}}\right)^{2.73} \rm MeV \ fm^{-3}, \end{split}$$

which are accurate to about 5% in fitting $\mathcal{E}_{c,max}$ and $P_{c,max}$.

J. M. Lattimer

(M, R) Is Not Equivalent To (\mathcal{E}_c, P_c)

While the maximum mass point (M_{max}, R_{max}) predicts $(\mathcal{E}_{c,max}, P_{c,max})$ to about 5%, and similarly for a given fractional maximum mass fM_{max} , the inversion is not unique. Two different equations of state predicting the same (M, R) (numbers in figure) arrive at those values from integration via different paths in (\mathcal{E}, P) space. Similarly, two equations of state with identical values of (\mathcal{E}_c, P_c) (letters) do not have the same (M, R) values.

Correlations at $M = fM_{\rm max}$

Thus, more information than (M, R) needed. We find precision is greatly improved using a 2nd radius from a grid of fractional M_{max} points, e.g., $f \in [1, 0.95, 0.9, 0.85, 4/5, 3/4, 2/3, 0.6, 0.5, 0.4, 1/3]$.

$$\begin{aligned} \mathcal{E}_{f} &= a_{\mathcal{E},f} \left(\frac{R_{f_{1}}}{10 \mathrm{km}} \right)^{b_{\mathcal{E},f_{1}}} \left(\frac{R_{f_{2}}}{10 \mathrm{km}} \right)^{c_{\mathcal{E},f_{2}}} \left(\frac{M_{max}}{M_{\odot}} \right)^{d_{\mathcal{E},f}}, \\ P_{f} &= a_{P,f} \left(\frac{R_{f_{1}}}{10 \mathrm{km}} \right)^{b_{P,f_{1}}} \left(\frac{R_{f_{2}}}{10 \mathrm{km}} \right)^{c_{P,f_{2}}} \left(\frac{M_{max}}{M_{\odot}} \right)^{d_{P,f}}, \end{aligned}$$

$f = M/M_{\rm max}$	f_1	f ₂	$\Delta(\ln \mathcal{E}_f)$	f_1	f ₂	$\Delta(\ln P_f)$	
1	0.95	0.9	0.00469	1	3/5	0.0123	
0.95	0.95	4/5	0.00275	0.95	3/5	0.00722	pa -:
0.90	0.95	2/3	0.00227	0.95	2/5	0.00517	ŭğ
0.85	0.95	1/2	0.00237	0.9	2/5	0.00491	2 H
4/5	0.9	1/2	0.00230	0.85	2/5	0.00463	a E
3/4	0.85	1/2	0.00239	4/5	2/5	0.00539	5 ⁻ -
2/3	3/4	1/2	0.00277	2/3	2/5	0.00513	≥せ
3/5	3/4	2/5	0.00339	2/3	1/3	0.0172	ie at
1/2	2/3	1/3	0.00477	1/2	2/5	0.00996	jë č
2/5	1/2	1/3	0.00706	1/2	1/3	0.0187	50 ⊐
1/3	1/2	1/3	0.0122	2/5	1/3	0.0259	

J. M. Lattimer

Testing the Inversion

Testing the Inversion for $c_s^2 - P/\mathcal{E}$

Comparing Inversions

Inversion of M - R Data

Instead of inverting an M - R curve one may wish to infer the EOS from M - R data. Traditional Bayesian inversions begin with M - R priors generated by sampling millions of trials using a specific EOS parameter-ization with uniform distributions of parameters within selected ranges.

One problem with our approach is that M_{max} and R_{max} are not known. One can form analytical correlations between (M, R) and (\mathcal{E}_c, P_c) , but these have only moderate accuracy since this inversion is not unique. More information than the M - R point itself is necessary to improve the inversion.

One possibility is to include the inverse slope dR/dM at the (M, R) point. Generally, one can determine a correlation between a quantity $G \in [\mathcal{E}_c, P_c, \text{etc.}]$ and (M, R, dR/dM) in the form

 $\ln G = \ln a_G + b_G \ln M + c_G \ln R + d_G (dR/dM).$

Including dR/dM information improves correlations by factors of about 2. It is also found that inferred values of \mathcal{E}_c and P_c are highly correlated; fits to P_c/\mathcal{E}_c have much smaller uncertainty than fits to \mathcal{E}_c or P_c .

Testing the M - R Inversion

Comparison to Traditional Bayesian Inference

From two M-R regions obtained from observations select random pairs of points and determine dR/dM. Then, using the above correlation formulae, infer two $\mathcal{E}_c - P_c$ uncertainty regions (after rejecting pairs that violate the conditions $0 \le dP_c/d\mathcal{E}_c \le 1$ and $dP_c/dM > 0$).

J. M. Lattimer

Correlations and Semi-Universal Analytic Inversion of the TOV

Importance of $\Delta R = R_{2.0} - R_{1.4}$

Applications

• Analytic inversion of TOV equations with arbitrarily high accuracies (depends on number of R_f values).

 Existing techniques use parameterized 2.2 EOS models in PSR J0740+6620 2.0 probabilistic (Bayesian) ∆R=R_{2.0}-R_{1.4} (Bayesian) approaches having 1.8 GW170817 1.6 PSR J0030+0451 systematic J0437-7415 uncertainties 1.4 stemming from the 1.2 model and parameter choices (prior 10 11 12 13 14 R (km) distributions).

• Since *M* and *R* can't uniquely determine \mathcal{E}_c and P_c , we use the value of (dR/dM) to improve accuracies.

• Correlations of c_s with M, R and dR/dM can be used to further improve the fidelity of inversions and also for interpolating within the $\mathcal{E}_f - P_f$ grid. They could also allow probing the composition of the neutron star interior (phase transitions, etc.).

• Correlations of $\tilde{\Lambda}$, \bar{I} and BE/M with M and R also exist and aren't sensitive to dR/dM.

• This inversion technique might have wider applicability to other physics or engineering problems.

(周) (日) (日)