

INSTITUTE for **NUCLEAR THEORY**

Probing fundamentals of QCD with DIS Event Shapes

Christopher Lee, LANL

in collaboration with June-Haak Ee (LANL), Daekyoung Kang (Fudan), lain Stewart (MIT)

> Heavy-Ion Physics in the EIC Era **INT** Workshop August 9, 2024

Outline of What is Not in This Talk

- No heavy ions (p is heavy enough for me!)
- No actual determination of α_s (but show a path towards it)
- No(t many) results for EIC (will show comparison to HERA data)

Outline of What is in This Talk

- Status of α_s determinations from e⁺e⁻ and DIS jet measurements
- Global measures of jettiness: event shapes
- Factorization and resummation in SCET
- Nonperturbative Effects and Universality
- Predictions for DIS event shapes at HERA and EIC! and sensitivity to α_s

Formation of Jets in QCD

Hadronization at late time at low energy scale

 $\alpha_s \gg 1$

- Jets probe strong interaction over wide range of scales
- Need to resum large perturbative logs
- Separate pert. and non-pert. physics
 - These are problems of scale separation: a job for EFT

 $\alpha_s \ll 1$

(e⁺e⁻) Event shapes to high precision

First N³LL' resummed event shape distributions with state-of-the-art treatment of nonperturbative corrections, e.g.:

Makes e+e- event shapes one of the most precise ways, in principle, to determine α_s

Abbate et al., PRD 83 (2011) 074021

Abbate et al., PRD 83 (2011) 074021

Uncertainties underestimated?

- Some questions have been raised about systematic uncertainties due to understanding of size of nonperturbative power corrections in 3-jet region
- and/or uncertainties due to schemes chosen to subtract renormalon ambiguities the size of unresummed subleading-power logs

Caola et al. [2108.08897, 2204.02247] See: Benitez-Rathgeb et al. [2405.14380] Nason, Zanderighi [2301.03607]

and/or perturbative scales chosen in the non-singular fixed-order prediction in the 3-jet region that probe

Bell, CL, Makris, Talbert, Yan [2311.03990]

Perhaps room for other methods to help resolve!

10

Need to break degeneracies

In tail region, leading nonperturbative effect is a shift by $c_e \Omega_1/Q$ c_{ρ} is an exact observable dependent coefficient, e.g. angularities $c_{\rho} = 2/(1-a)$

or many Q's **Readily accessible in DIS**

11

DIS Kinematics

Not as clean as e+e-, but provides single laboratory to vary x, Q to break $\{\alpha_s, \Omega_1\}$ degeneracies

$$s = (k+P)^2$$

squared centerof-mass energy

 $Q^2 = -q^2$

momentum transfer

 $x = \frac{Q^2}{2P \cdot q}$

Bjorken scaling variable

 $y = \frac{P \cdot q}{P \cdot k}$

lepton energy loss in proton rest frame

1934-2024

$$Q^2 = xys$$

 $p_X = q + P$

total momentum of final hadronic state

$$p_X^2 = \frac{1-x}{x}Q^2$$

invariant mass of final hadronic state

Jets in DIS and the strong coupling

Process	Collab.	Value	Exp.	Th.	Total	(%)
(1) Inc. jets at low Q^2	H1	0.1180	0.0018	+0.0124 -0.0093	+0.0125 -0.0095	$^{+10.6}_{-8.1}$
(2) Dijets at low Q^2	H1	0.1155	0.0018	$+0.0124 \\ -0.0093$	+0.0125 -0.0095	$^{+10.8}_{-8.2}$
(3) Trijets at low Q^2	H1	0.1170	0.0017	+0.0091 -0.0073	+0.0093 -0.0075	$^{+7.9}_{-6.4}$
(4) Combined low Q^2	H1	0.1160	0.0014	+0.0094 -0.0079	+0.0095 -0.0080	$^{+8.2}_{-6.9}$
(5) Trijet/dijet at low Q^2	H1	0.1215	0.0032	+0.0067 -0.0059	+0.0074 -0.0067	$^{+6.1}_{-5.5}$
(6) Inc. jets at medium Q^2	H1	0.1195	0.0010	+0.0052 -0.0040	+0.0053 -0.0041	$^{+4.4}_{-3.4}$
(7) Dijets at medium Q^2	H1	0.1155	0.0009	$+0.0045 \\ -0.0035$	+0.0046 -0.0036	$^{+4.0}_{-3.1}$
(8) Trijets at medium Q^2	H1	0.1172	0.0013	+0.0053 -0.0032	+0.0055 -0.0035	$^{+4.7}_{-3.0}$
(9) Combined medium Q^2	H1	0.1168	0.0007	+0.0049 -0.0034	+0.0049 -0.0035	$^{+4.2}_{-3.0}$
(10) Inc. jets at high Q^2 (anti- k_T)	ZEUS	0.1188	+0.0036 -0.0035	$+0.0022 \\ -0.0022$	$+0.0042 \\ -0.0041$	$^{+3.5}_{-3.5}$
(11) Inc. jets at high Q^2 (SIScone)	ZEUS	0.1186	+0.0036 -0.0035	+0.0025 -0.0025	+0.0044 -0.0043	$^{+3.7}_{-3.6}$
(12) Inc. jets at high Q^2 (k_T ; HERA I)	ZEUS	0.1207	+0.0038 -0.0036	+0.0022 -0.0023	+0.0044 -0.0043	$^{+3.6}_{-3.6}$
(13) Inc. jets at high Q^2 (k_T ; HERA II)	ZEUS	0.1208	+0.0037 -0.0032	$+0.0022 \\ -0.0022$	+0.0043 -0.0039	$^{+3.6}_{-3.2}$
(14) Inc. jets in γp (anti- k_T)	ZEUS	0.1200	$+0.0024 \\ -0.0023$	+0.0043 -0.0032	+0.0049 -0.0039	$^{+4.1}_{-3.3}$
(15) Inc. jets in γp (SIScone)	ZEUS	0.1199	$+0.0022 \\ -0.0022$	+0.0047 -0.0042	+0.0052 -0.0047	$^{+4.3}_{-3.9}$
(16) Inc. jets in γp (k_T)	ZEUS	0.1208	$+0.0024 \\ -0.0023$	+0.0044 -0.0033	$+0.0050 \\ -0.0040$	$^{+4.1}_{-3.3}$
(17) Jet shape	ZEUS	0.1176	+0.0013 -0.0028	+0.0091 -0.0072	+0.0092 -0.0077	$^{+7.8}_{-6.5}$
(18) Subjet multiplicity	ZEUS	0.1187	+0.0029 -0.0019	+0.0093 -0.0076	+0.0097 -0.0078	$^{+8.2}_{-6.6}$
HERA average 2004		0.1186	± 0.0011	± 0.0050	± 0.0051	± 4.3
HERA average 2007		0.1198	± 0.0019	± 0.0026	± 0.0032	± 2.7

Table 1: Values of $\alpha_s(M_Z)$ extracted from jet observables at HERA together with their uncertainties (rows 1 to 18). The 2004 [10] and 2007 [11] HERA averages are shown in the last two rows.

Extractions from exclusive jet cross sections have order 10% uncertainty, dominated by theory

> Improve to level of e⁺e⁻?

C. Glasman, in the Proceedings of the Workshop on Precision Measurements of α_s [1110.0016]

lets in DIS and the strong coupling

Britzger et al. [1712.00480]

H1 inclusive jets[†] 300 GeV high-Q² HERA-I low-Q²

HERA-I high-Q² HERA-II low-Q² HERA-II high-Q²

ZEUS inclusive jets 300 GeV high-Q² HERA-I high-Q²

Multiple data sets H1 inclusive jets [†] ZEUS inclusive jets HERA inclusive jets

World average [PDG18]

[†] previously fit in Ref.

Extractions from inclusive jet cross sections have order 10% uncertainty, exp + theory

> Improve to level of e⁺e⁻?

Britzger et al. [1906.05303]

N-jettiness

•A global event shape measuring degree to which final state is N-jet-like.

I-Jettiness in DIS

D. Kang, CL, I. Stewart [1303.6952]

also Z. Kang, Liu, Mantry, Qiu [1204.5469, 1303.3063, 1312.0301]

$$\tau_1 = \frac{2}{Q^2} \sum_{i \in X} \min\{q_B \cdot p_i, q_J \cdot p_i\}$$

 $q_J = q + xP$

DIS thrust

sensitive to ISR transverse momentum:

In the Breit frame:

$$\tau_1 = \frac{2}{Q^2} \sum_i \min\{q_B \cdot p_i, q_J \cdot p_i\} \qquad \begin{array}{l} q_B = x_J \\ q_J = q + \end{array}$$

same as DIS thrust of Antonelli, Dasgupta, Salam (1999)

ultimately depends only on momentum in jet or "current" hemisphere

 $\stackrel{\text{Breit}}{=} 1 - \frac{2}{Q} \sum_{i \in \mathcal{H}_J^b} p_z^i$

(thanks to momentum conservation)

(not true of au_1^a)

-
$$k_{\perp}$$

 $k_{\perp} \sim Q\lambda$

Cross section:

$$\frac{d\sigma}{dx\,dQ^2\,d\tau} = L_{\mu\nu}(x,Q^2)W^{\mu\nu}(x,Q^2,\tau)$$

Hadronic tensor:

$$W^{\mu\nu}(x,Q^2,\tau) = \int d^4x \, e^{iq \cdot x} \langle P|J^{\mu\dagger}(x)\delta(\tau-\hat{\tau})J^{\nu}(0)|$$

Measure thrust of final state:

$$W^{j}_{\mu\nu}(x,Q^{2},\tau) = \frac{1}{s_{j}} \sum_{n} \int d\Phi_{n} \mathcal{M}^{*}_{\mu}(j(P) \to p_{1} \dots p_{n}) \mathcal{M}_{\nu}(j(P) \to \gamma) \mathcal$$

2-particle phase space:

$$W_{\mu\nu}^{j[2]} = \frac{1}{s_j} \frac{1}{8\pi} \left(\frac{4\pi}{Q^2}\right)^{\epsilon} \frac{1}{\Gamma(1-\epsilon)} \left(\frac{x}{1-x}\right)^{\epsilon} \int_0^1 \frac{dv}{v^{\epsilon}(1-v)^{\epsilon}} \mathcal{M}_{\mu}^* \mathcal{M}_{\nu} \mathcal{M}_{\nu}^* \mathcal{M}_{\nu$$

 $\mathcal{D}\mathcal{D}$ p_1

Fixed-order computation

2-particle phase space:

 p_{1} $\tau = \frac{1-v}{x}$ p_{2}

D. Kang, CL, Stewart [1407.6706]

Fixed-order results

Structure functions:

$$\begin{split} W^{\mu\nu}(x,Q^{2},\tau) &= 4\pi \Big[T_{1}^{\mu\nu} \mathcal{F}_{1}(x,Q^{2},\tau) + T_{2}^{\mu\nu} \frac{\mathcal{F}_{2}(x,Q^{2},\tau)}{P \cdot q} \Big] & T_{1}^{\mu\nu} = -g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^{2}}, \quad T_{2}^{\mu\nu} = \left(P^{\mu} - q^{\mu} \frac{P \cdot q}{q^{2}}\right) \left(P^{\nu} - q^{\nu} + \frac{P \cdot q}{q^{2}}\right) \Big(P^{\nu} - q^{\nu} + \frac{P \cdot q}{q^{2}}\right) \Big(P^{\nu} - q^{\nu} + \frac{P \cdot q}{q^{2}}\right) \left(P^{\nu} - q^{\nu} + \frac{P \cdot q}{q^{2}}\right) \Big(P^{\nu} - q^{\nu} + \frac{P \cdot q}{q^{2}}\right) \Big(P^{\nu} - q^{\nu} + \frac{P \cdot q}{q^{2}}\right) \left(P^{\nu} - q^{\nu} + \frac{P \cdot q}{q^{2}}\right) \left(P^{\nu$$

Group in

$$\begin{split} & \mathcal{T}_{1}^{\mu\nu}\mathcal{F}_{1}(x,Q^{2},\tau) + T_{2}^{\mu\nu}\frac{\mathcal{F}_{2}(x,Q^{2},\tau)}{P \cdot q} \Big] & T_{1}^{\mu\nu} = -g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^{2}}, \quad T_{2}^{\mu\nu} = \left(P^{\mu} - q^{\mu}\frac{P \cdot q}{q^{2}}\right)\left(P^{\nu} - q^{\mu}\frac{P \cdot q}{q^{2}}\right)\left(P^{\nu} - q^{\mu}\frac{P \cdot q}{q^{2}}\right)\left(P^{\nu} - q^{\mu}\frac{P \cdot q}{q^{2}}\right) \\ & \mathcal{F}_{L} \equiv \mathcal{F}_{2} - 2x\mathcal{F}_{1} \\ & \text{singular parts:} & \text{(integrated:)} \\ & F_{1}(x,Q^{2},\tau) = \sum_{i \in \{q,\bar{q},g\}} (A_{i} + B_{i}) & F(x,Q^{2},\tau) = \int_{0}^{\tau} d\tau'\mathcal{F}(x,Q^{2},\tau) \\ & F_{L}(x,Q^{2},\tau) = \sum_{i \in \{q,\bar{q},g\}} 4x A_{i} . & F_{i} = F_{i}^{\sin q} + F_{i}^{\sin} \\ & g^{g} = 0, \\ & g^{g} = \sum_{f} Q_{f}^{2} \left\{ f_{q}(x) \Big[\frac{1}{2} - \frac{\alpha_{s}C_{F}}{4\pi} \Big(\frac{9}{2} + \frac{\pi^{2}}{3} + 3\ln\tau + 2\ln^{2}\tau \Big) \Big] & & \mathsf{Neec} \\ & + \frac{\alpha_{s}C_{F}}{4\pi} \int_{x}^{1} \frac{dz}{z} f_{q}(x/z) \Big[\mathcal{L}_{1}(1-z) (1+z^{2}) + (1-z) + P_{qq}(z) \ln \frac{Q^{2}\tau}{\mu^{2}} \Big] , & \mathsf{Neec} \\ & \ln \tau \\ & g^{g} = \sum_{f} Q_{f}^{2} \frac{\alpha_{s}T_{F}}{2\pi} \int_{x}^{1} \frac{dz}{z} f_{g}(x/z) \Big[1 - P_{qg}(z) + P_{qg}(z) \ln \frac{Q^{2}\tau(1-z)}{\mu^{2}} \Big] . & \mathsf{Neec} \\ \\ \\ & \mathsf{Neec} \\ \\ \\ & \mathsf{N$$

Singular

$$\begin{split} 4\pi \Big[T_1^{\mu\nu} \mathcal{F}_1(x,Q^2,\tau) + T_2^{\mu\nu} \frac{\mathcal{F}_2(x,Q^2,\tau)}{P \cdot q} \Big] & T_1^{\mu\nu} = -g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}, \quad T_2^{\mu\nu} = \left(P^{\mu} - q^{\mu} \frac{P \cdot q}{q^2}\right) \left(P^{\nu} - q^{\mu} \mathcal{F}_2(x,Q^2,\tau) + \mathcal{F}_2(x,Q^2,$$

D. Kang, CL, Stewart [1407.6706]

Fixed-order results

Non-singular terms to $\mathcal{O}(\alpha_s)$: D. Kang, CL, Stewart [1407.6706]

For $\mathcal{O}(\alpha_s^2)$ we use NLOJet++

Z. Nagy [hep-ph/0307268]

$$\begin{split} A_{q}^{\mathrm{ns}} &= \sum_{f} Q_{f}^{2} \frac{\alpha_{s} C_{F}}{4\pi} \Big\{ \Theta_{0} \int_{x}^{\frac{1}{1+\tau}} dz \, f_{q}(\frac{x}{z}) (2z\tau-1) + \int_{x}^{1} dz \, f_{q}(\frac{x}{z}) \Big\} \,, \\ A_{g}^{\mathrm{ns}} &= \sum_{f} Q_{f}^{2} \frac{\alpha_{s} T_{F}}{\pi} \Big\{ \Theta_{0} \int_{x}^{\frac{1}{1+\tau}} dz f_{g}(\frac{x}{z}) (2z\tau-1) (1-z) + \int_{x}^{1} dz \, f_{g}(\frac{x}{z}) (1-z) \Big\} \,, \\ B_{q}^{\mathrm{ns}} &= \sum_{f} Q_{f}^{2} \frac{\alpha_{s} C_{F}}{4\pi} \Big\{ \Theta_{0} \int_{x}^{\frac{1}{1+\tau}} \frac{dz}{z} f_{q}(\frac{x}{z}) \Big[\frac{1-4z}{2(1-z)} (2z\tau-1) + P_{qq}(z) \ln \frac{z\tau}{1-z\tau} \Big] \\ &+ f_{q}(x) (3 \ln \tau + 2 \ln^{2} \tau) + \int_{x}^{1} \frac{dz}{z} f_{q}(\frac{x}{z}) \Big[\mathcal{L}_{0}(1-z) \frac{1-4z}{2} - P_{qq}(z) \ln z\tau \Big] \Big\} \,, \\ B_{g}^{\mathrm{ns}} &= \sum_{f} Q_{f}^{2} \frac{\alpha_{s} T_{F}}{2\pi} \Big\{ \Theta_{0} \int_{x}^{\frac{1}{1+\tau}} \frac{dz}{z} f_{g}(\frac{x}{z}) \Big[-(2z\tau-1) + P_{qg}(z) \ln \frac{z\tau}{1-z\tau} \Big] \\ &- \int_{x}^{1} \frac{dz}{z} f_{g}(\frac{x}{z}) [1 + P_{qg}(z) \ln z\tau] \Big\} \,, \end{split}$$

 $\Theta_0 \equiv \Theta_0(\tau, x) \equiv \theta(\tau)\theta(1-\tau)\theta\left(\frac{1-x}{x}-\tau\right)$

$$P_{qq}(z) \equiv \left[\theta(1-z) \frac{1+z^2}{1-z} \right]_+ = (1+z^2) \mathcal{L}_0(1-z) + \frac{3}{2} \delta(1-z) \left[(1-z)^2 + z^2 \right]_+$$

Singular vs. non-singular

Contributions to differential thrust spectrum:

D. Kang, CL, Stewart (2014)

Singular vs. non-singular

Region where resummation is important is thus a function of x:

Crossing point between singular and non-singular contributions is, empirically, about:

$$t_2 = \frac{1 - \log(x + x_c)}{10}$$
$$x_c = 0.0001234$$

[Based on $\mathcal{O}(\alpha_s)$ results; Remains similar at $\mathcal{O}(\alpha_s^2)$]

$$\int_{0}^{\tau} d\tau \frac{1}{\sigma_{0}} \frac{d\sigma(x, Q^{2})}{d\tau} \sim \left[1 + \frac{\alpha_{s}}{4\pi} \left(F_{12} \ln^{2} \tau - F_{11} \ln \tau + F_{10} \right) + \left(\frac{\alpha_{s}}{4\pi} \right)^{2} \left(F_{24} \ln^{4} \tau + F_{23} \ln^{3} \tau + F_{22} \ln^{2} \tau + F_{21} \ln \tau + F_{20} \right) + \dots \right]$$

• In the narrow-jet limit $\tau \to 0$ the logs grow large and spoil the perturbative expansion. Reorganize the expansion:

Large Logs

• If we calculate event shape τ cross section in QCD perturbation theory, we will find:

- These logs are of large ratios of disparate physical scales
- Need to identify and factor these scales
- Use RG evolution to resum the logs

Momentum scales

coll $P_c \sim (Q, QB^2, QB)$ 1 samesoft $k_s \sim Q(B, B, B)$

SCET modes

Bauer, Fleming, Luke, Pirjol, Stewart (2000-02)

Chiu, Jain, Neill, Rothstein (2011-12)

Start in QCD:

$$\frac{d\sigma(x,Q^2)}{d\tau_1} = L_{\mu\nu}$$

$$W^{\mu\nu}(x,Q^2,\tau_1) = \int d^4x \, e^{iq\cdot x}$$

Measure au_1 :

 $_{\mu\nu}(x,Q^2)W^{\mu\nu}(x,Q^2,\tau_1)$

ptonic tensor

hadronic tensor

of particles crossing the cut

$$\begin{split} & \frac{1}{2} \sum_{n_1,n_2} \int d^3 \tilde{p}_1 d^3 \tilde{p}_2 e^{i(\tilde{p}_2 - \tilde{p}_1) \cdot x} C^*_{\mu}(\tilde{p}_1, \tilde{p}_2) C_{\mu}(\tilde{p}_1, \tilde{p}_2) \\ & \tilde{\tau}_{n_2, \tilde{p}_2}(x) \overline{T}[Y^{\dagger}_{n_2}(x) Y_{n_1}(x)] \chi_{n_1, \tilde{p}_1}(x) \\ & \hat{\tau}_1^{n_1} - \hat{\tau}_1^{n_2} - \tau_1^s) \\ & 0) T[Y^{\dagger}_{n_1}(0) Y_{n_2}(0)] \chi_{n_2, \tilde{p}_2}(0) | P_{n_B} \rangle \end{split}$$

$$\begin{split} & \mathcal{H}^{*x} \sum_{n_{1},n_{2}} \int d^{3} \tilde{p}_{1} d^{3} \tilde{p}_{2} e^{i(\tilde{p}_{2}-\tilde{p}_{1})\cdot x} C_{\mu}^{*}(\tilde{p}_{1},\tilde{p}_{2}) C_{\mu}(\tilde{p}_{1},\tilde{p}_{2}) \\ & \tilde{\chi}_{n_{2},\tilde{p}_{2}}(x) \overline{T}[Y_{n_{2}}^{\dagger}(x)Y_{n_{1}}(x)]\chi_{n_{1},\tilde{p}_{1}}(x) \\ & \hat{\tau}_{1}^{n_{1}} - \hat{\tau}_{1}^{n_{2}} - \tau_{1}^{s}) \\ & O)T[Y_{n_{1}}^{\dagger}(0)Y_{n_{2}}(0)]\chi_{n_{2},\tilde{p}_{2}}(0)|P_{n_{B}}\rangle \end{split}$$

Factor collinear and soft matrix elements:

$$W_{\mu\nu}(x,Q^2,\tau_1) = \int d^2 \tilde{p}_{\perp} \int d\tau_J d\tau_B d\tau_S \ C^*(Q) \\ \times \langle 0 | [Y_{n'_J}^{\dagger} Y_{n'_B}^{\dagger}](0) \delta(k_S - n'_J \cdot \hat{p}) \\ \times \langle P_{n_B} | \bar{\chi}_{n_B}(0) \delta(Q_B \tau_B - n_B \cdot \langle 0 | \chi_{n_J}(0) \delta(Q_J \tau_J - n_J \cdot \hat{p}) \rangle$$

$$\frac{1}{\sigma_0} \frac{d\sigma(x, Q^2)}{d\tau_1^b} = H(Q^2, \mu) \int d^2 p_\perp dt_J dt_B dk_S \delta\left(\tau_1^b - \frac{t_J}{Q^2} - \frac{t_B}{Q^2} - \frac{k_S}{Q}\right)$$
$$\times J_q(t_J - \mathbf{p}_\perp^2, \mu) \mathcal{B}_q(t_B, x, \mathbf{p}_\perp^2, \mu) S(k_S, \mu)$$

 $Q^2,\mu)C(Q^2,\mu)\ \delta\Big(\tau_1-\frac{t_J}{s_J}-\frac{t_B}{s_B}-\frac{\kappa_S}{Q_R}\Big)$ $\hat{b}_{J'} - n'_B \cdot \hat{p}_{B'} [Y_{n'_B} Y_{n'_J}](0) |0\rangle$ $\delta(\hat{p}^{n_B})[\delta(\bar{n}_B \cdot q + \bar{n}_B \cdot \mathcal{P})\delta^2(\tilde{p}_\perp - \mathcal{P}_\perp)\chi_{n_B}](0)|P_{n_B}\rangle$ $\delta(\bar{n}_J \cdot q + \bar{n}_J \cdot \mathcal{P})\delta^2(q_\perp + \tilde{p}_\perp + \mathcal{P}_\perp)\bar{\chi}_{n_J}(0)|0\rangle$

(+ permutations)

Factor collinear and soft matrix elements:

$$W_{\mu\nu}(x,Q^{2},\tau_{1}) = \int d^{2}\tilde{p}_{\perp} \int d\tau_{J}d\tau_{B}d\tau_{S} C^{*}(Q)$$
soft function
$$\times \langle 0|[Y_{n'_{J}}^{\dagger}Y_{n'_{B}}^{\dagger}](0)\delta(k_{S}-n'_{J}\cdot\hat{p})$$
beam function
$$\times \langle P_{n_{B}}|\bar{\chi}_{n_{B}}(0)\delta(Q_{B}\tau_{B}-n_{B}\cdot \chi_{N})\delta(Q_{J}\tau_{J}-n_{J}\cdot\hat{p})$$
jet function
$$\times \langle 0|\chi_{n_{J}}(0)\delta(Q_{J}\tau_{J}-n_{J}\cdot\hat{p})\delta(Q_{J}\tau_{J}-n_{J}\cdot\hat{p})$$

jet function

$$\frac{1}{\sigma_0} \frac{d\sigma(x, Q^2)}{d\tau_1^b} = H(Q^2, \mu) \int d^2 p_\perp dx + J_q(t_J - \mathbf{p}_\perp^2, \mu) \mathcal{B}$$

 $\mathcal{B}_q(t_B, x, \mathbf{p}_\perp^2, \mu) S(k_S, \mu)$

Hard function:

Hard and Jet Functions

$H(Q^2,\mu) = 1 + \frac{\alpha_s(\mu)C_F}{2\pi} \left(-\ln^2 \frac{\mu^2}{Q^2} - 3\ln \frac{\mu^2}{Q^2} - 8 + \frac{\pi^2}{6} \right) + \dots$ known to 3 loops

known to 3 loops

Beam Function and PDFs

transverse momentum dependent beam function:

$$B(\omega k^{+}, x, k_{\perp}^{2}, \mu) = \frac{\theta(\omega)}{\omega} \int \frac{dy^{-}}{4\pi} e^{ik^{+}y^{-}/2} \langle P_{n}(P^{-}) | \bar{\chi}_{n} \left(y^{-}\frac{n}{2}\right) \delta(xP^{-} - n \cdot \mathcal{P}) \delta(k_{\perp}^{2} - \mathcal{P}_{\perp}^{2}) \chi_{n}(0) | P_{n}(P^{-}) \rangle$$

$$match onto PDF$$

$$f(x, \mu) = \theta(\omega) \langle P_{n}(P^{-}) | \bar{\chi}_{n}(0) \delta(xP^{-} - \bar{n} \cdot \mathcal{P}) \chi_{n}(0) | P_{n}(P^{-}) \rangle$$

$$B_{q}(t, x, \mathbf{k}_{\perp}^{2}, \mu) = \sum_{j} \int_{x}^{1} \frac{d\xi}{\xi} \mathcal{I}_{ij} \left(t, \frac{x}{\xi}, \mathbf{k}_{\perp}^{2}, \mu\right) f_{j}(\xi, \mu)$$

$$model{eq:started_started$$

$$\frac{\partial}{\partial t} \int \frac{dy^{-}}{4\pi} e^{ik^{+}y^{-}/2} \langle P_{n}(P^{-}) | \bar{\chi}_{n}\left(y^{-}\frac{n}{2}\right) \delta(xP^{-} - \bar{n} \cdot \mathcal{P}) \delta(k_{\perp}^{2} - \mathcal{P}_{\perp}^{2}) \chi_{n}(0) | P_{n}(P^{-}) \rangle$$
match onto PDF
$$t, \mu) = \theta(\omega) \langle P_{n}(P^{-}) | \bar{\chi}_{n}(0) \delta(xP^{-} - \bar{n} \cdot \mathcal{P}) \chi_{n}(0) | P_{n}(P^{-}) \rangle$$

$$\mathcal{B}_{q}(t, x, \mathbf{k}_{\perp}^{2}, \mu) = \sum_{j} \int_{x}^{1} \frac{d\xi}{\xi} \mathcal{I}_{ij}\left(t, \frac{x}{\xi}, \mathbf{k}_{\perp}^{2}, \mu\right) f_{j}(\xi, \mu)$$
known to 2 loop anomalous dime known to 3 loop
$$\xi$$

$$\xi$$

$$\chi$$

$$(D)$$
Measure small light-cone momentum $k^{+} = t/P^{-}$
and transverse momentum \mathbf{k}_{\perp}
of initial state radiation

• Soft functions for e+e- dijets, DIS I-jettiness, and pp beam thrust:

$$S_{2}(\ell_{1},\ell_{2},\mu) = \frac{1}{N_{C}} \operatorname{Tr} \sum_{i \in X_{s}} \left| \langle X_{s} | T[Y_{n}^{\pm\dagger}(0)Y_{\bar{n}}^{\pm}(0)] | 0 \rangle \right|^{2}$$

$$\times \delta \left(\ell_{1} - \sum_{i \in X_{s}} \theta(\bar{n} \cdot k_{i} - n \cdot k_{i})n \cdot k_{i} \right) \delta \left(\ell_{2} - \sum_{i \in X_{s}} \theta(n \cdot k_{i} - \bar{n} \cdot k_{i})\bar{n} \cdot k_{i} \right),$$

e+e-:	++
DIS:	
<i>ኮ</i> ሶ፡	+-

• Perturbatively, it is known that $S_2^{ee} = S_2^{ep} = S_2^{pp}$

$$S(k_{s},\mu) = \int d\ell_{1} d\ell_{2} \delta(k-\ell_{1}-\ell_{2}) S_{2}(\ell_{1},\ell_{2},\mu) \qquad \qquad \int S(k_{s},\mu) = 1 + \frac{d_{s}(\mu)}{4\pi} \quad \begin{cases} -\frac{8c_{s}}{1-a} \ln^{2} \frac{k_{s}}{\mu} + C_{s}'(1-a) \ln^{2} \frac{k_{s}}{\mu} + C_{s}'(1-a) \ln^{2} \frac{k_{s}}{\mu} \end{cases}$$

Soft function

$$Y_n^{+\dagger}(x) = P \exp\left[ig \int_0^\infty ds \, n \cdot A_s(ns+x)\right]$$
$$Y_n^{-}(x) = P \exp\left[ig \int_{-\infty}^0 ds \, n \cdot A_s(ns+x)\right],$$

D. Kang, Labun, CL (2015); to at least $\mathcal{O}(lpha_s^2)$ Boughezal, Liu, Petriello (2015)

Nonperturbative corrections

• In general, soft function expressed as convolution of perturbative part and nonperturbative shape function:

$$S(k,\mu) = \int dk' S_{\rm PT}(k-k',\mu)$$

• For large enough $\tau(k_S)$, leading effect is a shift:

$$\langle e \rangle = \langle e \rangle_{\rm PT} + c_e \frac{\Omega_1}{Q}$$

• Rigorous proof (and field theory definition of Ω_1) from factorization theorem and boost invariance of soft radiation:

soft radiation sees only direction, not energy, of original collinear partons, invariant to boosts along z

Non-perturbative effects and gapped soft function

• However, both the perturbative soft function and gap parameter suffer renormalon ambiguities.

$$S(k,\mu) = \int dk' S_{\rm PT}(k-k',\mu)$$

‱®ഞ

• $\mathcal{O}(\Lambda_{\text{OCD}})$ ambiguity in gap $\overline{\Delta}_a$

Subtract a series with the same/canceling ambiguity from both PT and NP pieces:

$$\overline{\Delta}_{a} = \Delta_{a}(\mu) + \delta_{a}(\mu) \qquad \xrightarrow{} \qquad \widetilde{S}(\nu,\mu) = \left[e^{-2\nu\Delta_{a}(\mu)}\widetilde{f}_{\mathrm{mod}}(\nu)\right] \left[e^{-2\nu\delta_{a}(\mu)}\widetilde{S}_{\mathrm{PT}}(\nu,\mu)\right]$$

 $\mu) f_{\rm mod}(k' - 2\overline{\Delta}_a)$

 $mm + mOm + mOmOm + \dots$

renormalon free

renormalon free

R_{gap} scheme

Choosing the R_{gap} scheme to cancel the leading renormalon,

$$Re^{\gamma_E} \frac{d}{d \ln \nu} \Big[\ln \widehat{S}_{\text{PT}}(\nu, \mu) \Big]_{\nu = 1/(Re^{\gamma_E})} = 0 - \frac{1}{\widehat{S}_{\text{PT}}(\nu, \mu)} = e^{-2\nu\delta_a(\mu)} \widetilde{S}_{\text{PT}}(\nu, \mu)$$

Gapped and renormalon free soft function $S(k,\mu) = \int dk' S_{\rm PT}$

Final cross section is expanded orderby-order in bracketed term

$$\frac{1}{\sigma_0} \sigma(\tau_a) = \int dk \,\sigma_{\rm PT} \Big(\tau_a - \frac{k}{Q} \Big) \Big[e^{-2\delta_a(\mu_S, R)\frac{d}{dk}} f_{\rm mod} \big(k - 2\Delta_a(\mu_S, R)\big) \Big]$$

Improves small τ_a behavior and perturbative convergence:

$$\longrightarrow \quad \delta_a(\mu, R) = \frac{1}{2} R e^{\gamma_E} \frac{d}{d \ln \nu} \Big[\ln \widetilde{S}_{\rm PT}(\nu, \mu) \Big]_{\nu = 1/(R e^{\gamma_E})},$$

$$\Gamma(k-k',\mu)\left[e^{-2\delta_a(\mu,R)\frac{d}{dk'}}f_{\mathrm{mod}}(k'-2\Delta_a(\mu,R))\right]$$

[0803.4214] [0806.3852]

Evolution and resummation

- Easier to discuss in terms of Laplace transforms (or Fourier transforms to position space)
- Turns factorization theorem into a simple product:
- RGE obeyed by Laplace-space jet and soft functions:

Scale profiles

For DIS, these regions depend on Q, x:

 $\tau < t_0$: nonperturbative

 $t_1 < \tau < t_2$: canonical resummation

 $\tau > t_3$: fixed-order

Gluon PDF could get very large as $x \to 0$.

332700	NNPDF40_nnlo_as_01160 (tarba	ull)	(info file)	101	1
332900	NNPDF40_nnlo_as_01170 (tarba	ull)	(info file)	101	1
333100	NNPDF40_nnlo_as_01175 (tarba	ull)	(info file)	101	1
333300	NNPDF40_nnlo_as_01185 (tarba	ull)	(info file)	101	1
333500	NNPDF40_nnlo_as_01190 (tarba	ull)	(info file)	101	1
333700	NNPDF40_nnlo_as_01200 (tarba	ull)	(info file)	101	1

SCET FT for τ_1^b : **PDF** τ_1^b quark beam function: $\hat{B}_q(t_B, x, \mu) = \int d^2 \mathbf{p}_\perp \mathscr{B}_q(t_B - \mathbf{p}_\perp^2, x, \mathbf{p}_\perp^2, \mu)$ PDF for parton *j* $\mathscr{B}_{a}(t, x, \mathbf{k}_{\perp}^{2}, \mu)$ is the k_{\perp} -dep. beam function, $\mathscr{B}_{i}(t, x, \mathbf{k}_{\perp}^{2}, \mu) = \mathscr{I}_{ij}(t, x/\xi, \mathbf{k}_{\perp}^{2}, \mu) \bigotimes_{\xi} \overline{f_{j}(\xi, \mu)}$

- we use NNPDF4.0 NNLO PDF set implemented in LHAPDF.
- PDFs are determined w.r.t. α_{s} value.
- Should change PDFs for different α_s simultaneously.

DIS thrust cross sections

Ee, Kang, CL, Stewart [2024]

2Д

At N³LL + $\mathcal{O}(\alpha_s^2)$:

 $Q = 50 \text{ GeV}, x = 0.2, \sqrt{s} = 140 \text{ GeV}$

DIS thrust cross sections

Ee, Kang, CL, Stewart [2024]

... 0.20] ⊗ Had) ad (Set1) (Set2) S) 0 0.5 10 0.5

		у [0.050).10]	y [0.10.
Q ² /GeV ² [8000 20000]	♦ H ■ S R	11 Data Sys. unc. Djangoh Rapgap	<mark>──</mark> NNLC ⁻ ── KaTie ── KaTie	JET (O(α₃)⊗)⊗NLL'⊗Hao +Cascade (+Cascade (
Q ² /GeV ² [3500 8000]	— P P — P	Pythia 8.3 Pythia 8.3 (Vincia) Pythia 8.3 (Dire) Powheg+Pythia	Sherp Sherp - Sherp	a 3 (NLO+PS a 2 (Cluster) a 2 (String)
Q ² /GeV ² [1700 3500]	- F - F	lerwig 7.2 lerwig 7.2 (Merging lerwig 7.2 (Matchb	g) ox)	
Q ² /GeV ² [1100 1700]			200 - 100 -	
Q ² /GeV ² [700 1100]	300 200 100			
Q ² /GeV ² [440 700]	400 200			
Q ² /GeV ² [280 440]	600 400 200			
-21 ×2	1000		· · · '†'	_
Q²/GeV² [200 280]	500		+	<u> </u>
O^2/GeV^2	1000		''''''''	
[150 200]	500		 t.	

HERA data

HI Collaboration [2403.10109]

y [0.10...0.20] NLOJET (O(α_s³)⊗ Had) NLO⊗NLL'⊗Had aTie+Cascade (Set1) Tie+Cascade (Set2) erpa 3 (NLO+PS) erpa 2 (Cluster) erpa 2 (String) #3 0 0.5 0.5 10

	y [0.050.10]		
Q ² /GeV ² [8000 20000]	 H1 Data Sys. unc. Djangoh Rapgap 	<mark>─</mark> NN [·] ≁/NN ─ Ka ⁻	
Q ² /GeV ² [3500 8000]	 Pythia 8.3 Winci Pythia 8.3 (Vinci Pythia 8.3 (Dire) Powheg+Pythia Henvig 7.2 	a) She - She	
Q ² /GeV ² [1700 3500]	 Herwig 7.2 (Merging 7.2 (Merging 7.2 (Merging 7.2 (Material descent)) Herwig 7.2 (Material descent) 	ging) chbox)	
Q ² /GeV ² [1100 1700]		200 100	
Q ² /GeV ² [700 1100]	300 200 100	 - - -	
Q ² /GeV ² [440 700]	400 - 200 - 200 - 200	- - -	
Q ² /GeV ² [280 440]	600 400 200		
	1000 -		
Q ² /GeV ² [200 280]	500		
	1000		
Q ² /GeV ² [150 200]	500 -		

HERA data

HI Collaboration [2403.10109]

• Bin #I $1100 < Q^2/\text{GeV} < 1700,$ 0.4 < y < 0.7:

 $x_{\text{mean}} \approx 0.025$

 $Q_{\text{mean}} \approx 37 \text{ GeV}$

$$t_1 \approx \frac{8 \text{ GeV}}{Q_{\text{mean}}} \approx 0.21$$

 $t_2 = t_2(x_{mean}) \approx 0.47$

$$\alpha_s(M_Z) = 0.118, \ \Omega_1 = 350 \text{ MeV}$$

Theory vs HERA:

HI Collaboration [2403.10109]

$$x_{\text{mean}} \approx 0.025$$

$$Q_{\text{mean}} \approx 37 \text{ GeV}$$

$$t_1 \approx \frac{8 \text{ GeV}}{Q_{\text{mean}}} \approx 0.21$$

$$t_2 = t_2(x_{\text{mean}}) \approx 0.47$$

 $\alpha_{s}(M_{Z}) = 0.118, \ \Omega_{1} = 350 \text{ MeV}$

HERA total cross section 23.04(90) pb

Theory total cross section: $20.82^{+1.17}_{-0.85}$ pb

• Bin #2 $440 < Q^2/\text{GeV} < 700$, 0.1 < y < 0.2:

 $x_{\text{mean}} \approx 0.016$ $Q_{\text{mean}} \approx 30 \text{ GeV}$ $t_1 \approx \frac{8 \text{ GeV}}{Q_{\text{mean}}} \approx 0.27$

$$t_2 = t_2(x_{\text{mean}}) \approx 0.51$$

$$\alpha_s(M_Z) = 0.118, \ \Omega_1 = 350 \text{ MeV}$$

Binned equivalently:

$$x_{mean} \approx 0.037$$

 $Q_{mean} \approx 24 \text{ GeV}$
 $t_1 \approx \frac{8 \text{ GeV}}{Q_{mean}} \approx 0.34$

$$t_2 = t_2(x_{\text{mean}}) \approx 0.43$$

$$\alpha_s(M_Z) = 0.118, \ \Omega_1 = 350 \text{ MeV}$$

41.4(1.2) pb

Binned equivalently:

• $\sqrt{s} = 300 \text{ GeV}, Q = 50 \text{ GeV}, x = 0.05$

• Peak:

• Tail:

Sensitivity to α_s

Sensitivity to α_s

• At single x, Q we have potential percent-level sensitivity to α_s

Sensitivity to Ω_1

- At single x, Q we have potential 10%-level sensitivity to Ω_1

Sensitivity to Ω_1

- At single x, Q we have potential 10%-level sensitivity to Ω_1

Current theoretical uncertainty vs. HERA or EIC coverage:

Experimental reach

Many x, Q's will help break degeneracies between $\{\alpha_s, \Omega_1\}$, improve precision on both

- N³LL + $\mathcal{O}(\alpha_s^2)$ resummed + fixed-order predictions for DIS thrust available, our results to appear soon
- Event shapes in DIS promising candidates for precision determination of strong coupling, PDFs, and hadronization corrections, complementary/ orthogonal to e⁺e⁻ and other determinations
- Results from HERA encourage this promise as we enter the EIC era

Outlook

Performance improvement: Summary

Fixed-order singular (5 scale variations)

Original codes: ~ 40 mins

New codes: ~ 10 mins

• We optimized our codes in mostly two ways, one as the bicubic interpolator (both for fixed and resummed) and the other as the convolution integrations (for resummed).

<u>Resummed singular (17 scale variations)</u>

And this is numerically stable!

Contrast with other work

- Same theoretical accuracy, but different definition of DIS 1-jettiness

$$\begin{array}{ll} \textbf{1)} & \tau_{1} = \sum_{k} \min \Big\{ \frac{2q_{B} \cdot p_{k}}{Q_{B}}, \frac{2q_{J} \cdot p_{k}}{Q_{J}} \Big\} \\ & q_{B} = xP, \qquad Q_{B} = x\sqrt{s}. \\ & Q_{J} = 2K_{J_{T}} \cosh y_{K}, \qquad q_{J} = (K_{J_{T}} \cosh y_{K}, \vec{K}_{J_{T}}, K_{J_{T}} \sinh y_{K}). \\ \textbf{2)} & \tau_{1a} = \sum_{k} \min \Big\{ \frac{2q_{B} \cdot p_{k}}{Q^{2}}, \frac{2q_{J} \cdot p_{k}}{Q^{2}} \Big\}. \end{array}$$

- The jet axis is chosen to be along the actual jet momentum found from jet algorithm $\rightarrow \mathbf{p}_{\perp}^2$ is not convoluted between jet and beam functions, so written in terms of the ordinary beam function

Cao, Kang, Liu, Mantry [2401..01941]

• Requires use of jet algorithm

- Does not make use of universal Ω_1 in shape function
- Simpler profile functions
- No renormalon subtractions

Region where resummation is important is thus a function of x:

Crossing point between singular and non-singular contributions is, empirically, about:

$$t_2 = \frac{1 - \log(x + x_c)}{10}$$
$$x_c = 0.0001234$$

