

The \mathbf{R} ratio

$$
R=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}
$$

$$
R=N_{c} \sum_{i=1}^{n} Q_{i}^{2}= \begin{cases}\frac{2}{3} N_{c} & i=u, d, s \\ \frac{10}{9} N_{c} & i=u, d, s, c \\ \frac{11}{9} N_{c} & i=u, d, s, c, b\end{cases}
$$

$$
a_{\mu}^{\mathrm{Had}}[\mathrm{LO}]=\frac{1}{3}\left(\frac{\alpha}{\pi}\right)^{2} \int_{m_{\pi}^{2}}^{\infty} d s \frac{K(s)}{s} R^{(0)}(s)
$$

The R ratio from lattice $Q C D$

$$
C_{2}(t)=\left\langle J_{\mu}^{\mathrm{em}}(t) J_{\mu}^{\mathrm{em}}(0)\right\rangle=\int d \omega \rho(\omega) e^{-\omega t} \quad R(\omega)=\frac{12 \pi^{2}}{\omega^{2}} \rho(\omega)
$$

$\rho(\omega)$ from solving the inverse problem

The R ratio from lattice $\mathbf{Q C D}$

$$
C_{2}(t)=\left\langle J_{\mu}^{\mathrm{em}}(t) J_{\mu}^{\mathrm{em}}(0)\right\rangle=\int d \omega \rho(\omega) e^{-\omega t} \quad R(\omega)=\frac{12 \pi^{2}}{\omega^{2}} \rho(\omega)
$$

$\rho(\omega)$ from solving the inverse problem

$$
\rho(\omega)=\sum_{n} A_{n} \delta\left(\omega, \omega_{n}\right)
$$

Lattice finite-volume discrete spectrum!

$$
\begin{aligned}
& \rho^{S}(\omega, L, \Delta)=\int d \omega^{\prime} \mathcal{S}\left(\omega, \omega^{\prime}\right) \rho\left(\omega^{\prime}, L\right) \\
& \rho(\omega)=\lim _{\Delta \rightarrow 0} \lim _{L \rightarrow \infty} \rho^{S}(\omega, L, \Delta)
\end{aligned}
$$

The R ratio from lattice QCD

Our setup

Label	L/T	Mpi (MeV)	a (fm)	L (fm)
48I	$48 / 96$	139	0.11406	5.47
64I	$64 / 128$	139	0.08365	5.35
24D	$24 / 64$	139	0.1940	4.656
32D	$32 / 64$	139	0.1940	6.208
48D	$48 / 96$	139	0.1940	9.312

R. Arthur et al., PRD87, 094514 (2013) T. Blum et al., PRD93, 074505 (2016) P. Boyle et al., PRD 93, 054502 (2016)

Overlap fermions on RBC/UKQCD domain wall gauge ensembles at the physical point with different lattice spacings and volumes

High-precision current-current correlation functions for both u / d and s

Gen Wang et al., Phys. Rev. D 107, 034513 (2023)

Bayesian reconstruction (BR) algorithm for solving the inverse problem. High resolution so the smearing can be applied afterwards
Y. Burnier and A. Rothkopf, PRL 111, 182003 (2013)

Comprehensive systematic uncertainty study

Results without smearing

Additional ϕ peek by applying separate BR on light and strange correlators

Prior dependence

Constant priors ranging from $2 \times 10^{-4} \sim 2 \times 10^{1}$

Smearing and the prior uncertainty

$$
\rho^{S}(\omega, L, \Delta)=\int d \omega^{\prime} \mathcal{S}_{\Delta}\left(\omega, \omega^{\prime}\right) \rho\left(\omega^{\prime}, L\right)
$$

$$
\delta_{\Delta}\left(\omega, \omega^{\prime}\right) \sim \exp \left(-\frac{\left(\omega-\omega^{\prime}\right)^{2}}{2 \Delta^{2}}\right)
$$

Continuum extrapolation

The systematic uncertainty of the continuum extrapolation is estimated to be the difference between the extrapolated results and the results of the finest lattice

Volume dependence

$$
\rho(\omega)=\sum_{n} A_{n} \delta\left(\omega, \omega_{n}\right)
$$

Lattice finite-volume discrete spectrum!

R ratio with all systematic uncertainties

Outlook

SND collaboration, JHEP01, 113 (2021)

Summary

The BR method is used for reconstructing the R-ratio from lattice correlators. With proper smearing, the lattice results match the (smeared) experimental data very well.

The systematic uncertainties are carefully estimated.
It demonstrates that this is a feasible prescription to treat the problem of handling resonances and multi-particle states with lattice QCD.

It paves the way for further lattice calculations of many other interesting quantities such as the hadronic tensor.

Summary

The BR method is used for reconstructing the R-ratio from lattice correlators. With proper smearing, the lattice results match the (smeared) experimental data very well.

The systematic uncertainties are carefully estimated.
It demonstrates that this is a feasible prescription to treat the problem of handling resonances and multi-particle states with lattice QCD.

It paves the way for further lattice calculations of many other interesting quantities such as the hadronic tensor.

> Thank you

Bayesian Reconstruction

$$
P[\rho \mid D, \alpha, m] \propto e^{Q(\rho)}
$$

- Hyper parameter α is integrated over

$$
Q=\alpha S-L-\gamma\left(L-N_{\tau}\right)^{2}
$$

$$
S=\sum_{\omega}\left[1-\frac{\rho(\omega)}{m(\omega)}+\log \left(\frac{\rho(\omega)}{m(\omega)}\right)\right] \Delta \omega
$$

- Maximum search is in the entire parameter space $\left(O\left(10^{3}\right)\right)$
- High precision architecture (e.g.,512-bit floating point number).

$$
P[\rho \mid D, m]=\frac{P[D \mid \rho, I]}{P[D \mid m]} \int d \alpha P[\alpha \mid D, m]
$$

Outlook

BR and significance

