Shear viscosity of the parton matter and application to the AMPT model

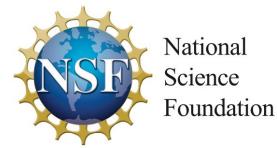
Zi-Wei Lin East Carolina University (ECU)

INT-24-2B: Heavy Ion Physics in the EIC Era July 30, 2024

Outline

- 1) Motivation
- 2) Isotropic versus forward-angle scatterings
- 3) Comparison of η and η/s from different methods
- 4) Application to parton matter in the AMPT model
- 5) Conclusions

Mostly based on Noah MacKay & ZWL, Eur Phys J C 82, 918 (2022)



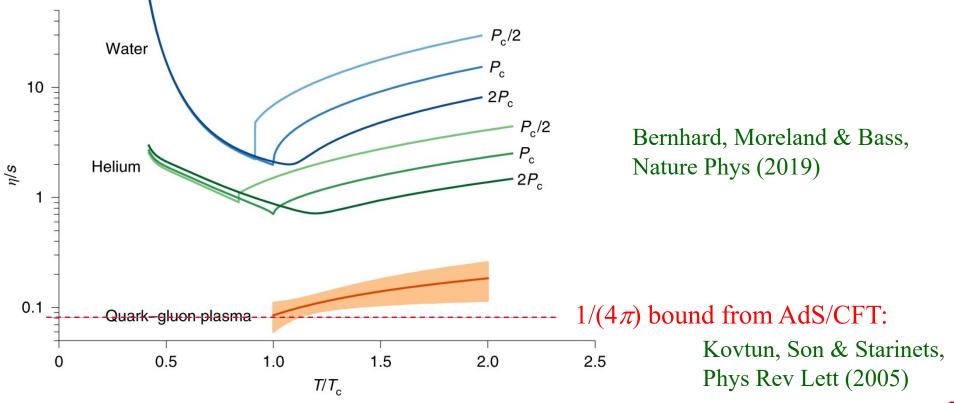
1) Motivation

Shear viscosity η is an important property of the quark–gluon plasma:

$$T^{\mu\nu} = eu^{\mu}u^{\nu} - (p+\Pi)\Delta^{\mu\nu} + \pi^{\mu\nu}$$

 η or η/s :

is an input function to viscous hydrodynamics; is generated by interactions in kinetic theory: relation?



2) Isotropic versus forward-angle two-body scatterings

Here, we only consider a massless parton matter with Boltzmann statistics in thermal equilibrium under 2-to-2 elastic scatterings.

- Isotropic scattering: $\frac{d\sigma}{d\Omega} = constant = \frac{\sigma}{4\pi}$
- Forward-angle scattering: As the example, we take the parton cross section used in AMPT/ZPC/MPC:

$$\frac{d\sigma}{d\hat{t}} = \frac{9\pi\alpha_s^2}{2}(1+a)\frac{1}{(\hat{t}-\mu^2)^2}$$

$$a \equiv \frac{\mu^2}{\hat{s}} \text{ is added to obtain a } \hat{s} \text{-independent cross section: } \sigma = \frac{9\pi\alpha_s^2}{2\mu^2}$$

This is based on the pQCD gg-gg cross section:

$$\frac{d\sigma}{d\hat{t}} \propto 3 - \frac{\hat{t}\,\hat{u}}{\hat{s}^2} - \frac{\hat{s}\,\hat{u}}{\hat{t}^2} - \frac{\hat{s}\,\hat{t}}{\hat{u}^2} + \text{screening mass }\mu$$

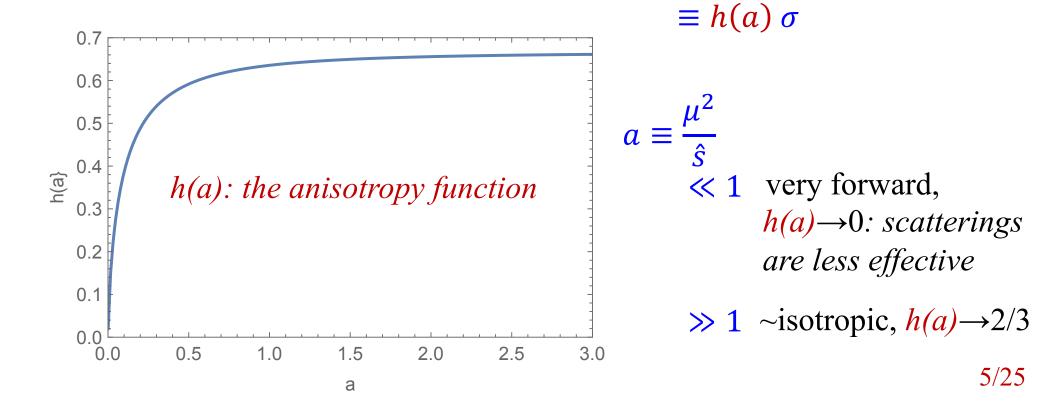
2) Isotropic versus forward-angle two-body scatterings

Transport cross section σ_{tr} often appears in shear viscosity expressions:

$$\sigma_{tr} \equiv \int d\sigma \sin^2 \theta_{cm}$$

θ_{cm}: scattering angle
 in the 2-parton CM frame
 Molnar & Gyulassy, Nucl Phys A (2002)

- Isotropic scattering: $\sigma_{tr} = \frac{2}{3}\sigma$
- Forward-angle scattering: $\sigma_{tr} = 4a(1+a)\left[(1+2a)\ln\left(1+\frac{1}{\sigma}\right)-2\right]\sigma$



2) Isotropic versus forward-angle two-body scatterings

Thermal average:

even if σ is a constant, σ_{tr} is not since it depends $a \equiv \frac{\mu^2}{\hat{c}}$.

For a parton matter in thermal equilibrium at temperature T, the thermal average (for Boltzmann statistics) is Kolb & Raby, Phys Rev D (1983)

$$\langle \sigma_{tr} \rangle = \frac{\sigma}{32} \int_0^\infty du \left[u^4 K_1(u) + 2u^3 K_2(u) \right] h\left(\frac{w^2}{u^2}\right)$$

$$\equiv \sigma h_0(w)$$

$$K_n: \text{Bessel functions}$$

$$w \equiv \frac{\mu}{T}, u \equiv \frac{\sqrt{s}}{T}$$

 $h_0(w)$ is just an average of the anisotropy function h(a), $h_0(w) \rightarrow 0$ for $w \ll 1$ $h_0(w) \rightarrow 2/3$ for $w \gg 1$

Analytical:

• Israel–Stewart (IS) method:

$$\eta^{IS} = \frac{6T}{5\sigma}$$

for isotropic scatt.

$$\eta^{NS} \approx 1.2654 \frac{T}{\sigma}$$
 Further and the formula is the formula in the formula is the formula

- Navier–Stokes (NS) method: de Groot, van Leeuwen & Weert book (1980)
- Relaxation time approximation (RTA) & modified version (RTA*):

$$\eta^{RTA} = \frac{4T}{5\sigma}$$
 $\eta^{RTA*} = \frac{6T}{5\sigma}$ for isotropic scatt.

Anderson & Witting, Physica (1974)

Plumari, Puglisi, Scardina & Greco, Phys Rev C (2012)

• Chapman–Enskog (CE) method:
$$\eta^{CE} = \frac{T \gamma_0^2}{10 c_{00}}$$
, ... Wiranata & Prakash, Phys Rev C (2012)

Numerical:

• Green–Kubo relation: $\eta = \frac{V}{T} \int_0^\infty dt < \bar{\pi}^{xy}(t+t')\bar{\pi}^{xy}(t') > = \frac{4}{15} \varepsilon \tau$

 τ : relaxation time extracted from correlation <...>(t)

Analytical:

• Israel–Stewart (IS) method:

$$\eta^{IS} = \frac{4T}{5\langle\sigma_{tr}\rangle} = \frac{4T}{5\sigma h_0(w)}$$
$$\eta^{NS} \approx 0.8436 \frac{T}{\langle\sigma_{tr}\rangle}$$

Huovinen & Molnar, Phys Rev C (2009)

• Navier–Stokes (NS) method:

generalized to anisotropic scatt. using σ_{tr} instead of σ

• Relaxation time approximation (modified version RTA*):

• Chapman–Enskog (CE) method:
$$\eta^{CE} = \frac{T \gamma_0^2}{10 c_{00}}$$
, ... Wiranata & Prakash, Phys Rev C (2012)

Numerical:

• Green–Kubo relation: $\eta = \frac{V}{T} \int_0^\infty dt < \bar{\pi}^{xy}(t+t')\bar{\pi}^{xy}(t') > = \frac{4}{15} \varepsilon \tau$

 τ : relaxation time extracted from correlation <...>(t)

More on analytical methods:

Plumari, Puglisi, Scardina & Greco, Phys Rev C (2012) MacKay & ZWL, Eur Phys J C (2022)

• Relaxation time approximation (modified version RTA*):

$$\eta^{RTA*} = \frac{4T}{5\langle\sigma_{tr}v_{rel}\rangle} \longrightarrow \frac{4T}{5\sigma h_1(w)}$$

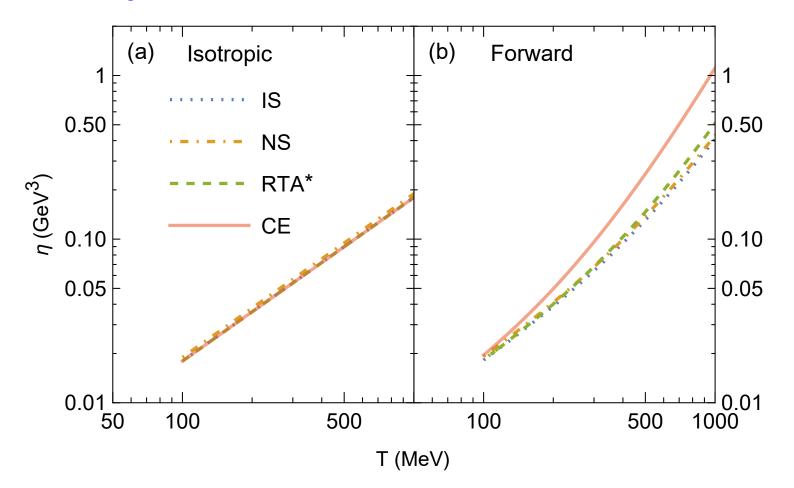
$$\langle \sigma_{tr}v_{rel}\rangle = \frac{8z}{K_2^2(z)} \int_1^\infty dy \, y^2(y^2 - 1)K_1(2zy) \int d\sigma \sin^2\theta_{cm} \qquad \text{in general for massive partons } (z \equiv m/T)$$

$$\rightarrow \frac{\sigma}{16} \int_0^\infty du \, u^4 K_1(u) \, h\left(\frac{w^2}{u^2}\right) \equiv \sigma h_1(w) \qquad \text{for massless partons & AMPT} \frac{d\sigma}{dt}$$

• Chapman–Enskog (CE) method:
$$\eta^{CE} = \frac{T \gamma_0^2}{10 c_{00}} \longrightarrow \frac{4T}{5\sigma h_2(w)}$$
$$\frac{8c_{00}}{\gamma_0^2} = \frac{32z^3}{25K_3^2(z)} \int_1^{\infty} dy (y^2 - 1)^3 \left[\left(y^2 + \frac{1}{3z^2} \right) K_3(2zy) - \frac{y}{z} K_2(2zy) \right] \int d\sigma \sin^2 \theta_{cm} \qquad \text{in general}$$
$$\rightarrow \frac{\sigma}{6400} \int_0^{\infty} du \, u^6 \left[\left(\frac{u^2}{4} + \frac{1}{3} \right) K_3(u) - \frac{u}{2} K_2(u) \right] h \left(\frac{w^2}{u^2} \right) \equiv \sigma h_2(w) \qquad \text{for massless partons & AMPT} \frac{d\sigma}{dt}$$

 $h_1(w) \& h_2(w)$ are different averages of the anisotropy function h(a)

Analytical results of η for massless gluons & σ =2.6 mb (or μ ~0.7GeV at $\alpha_s \approx$ 0.47):



For isotropic scatterings: IS=RTA*=CE
≈NS (~5% higher) • For forward scatterings: IS≈RTA*≈NS < CE *mostly*

 $T \ll \mu \rightarrow almost isotropic$ 10/25

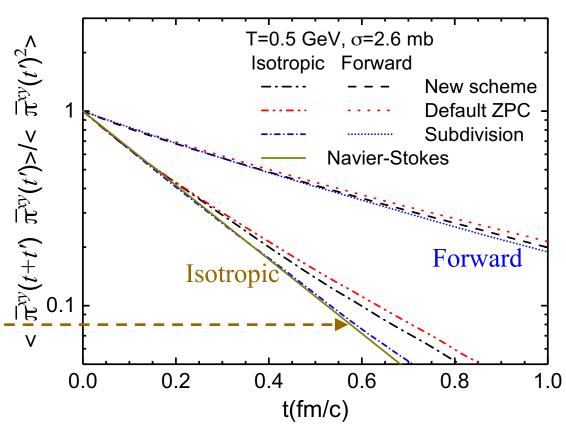
Q: which analytical result of η is accurate? A: compare with numerical results from Green-Kubo:

$$\eta = \frac{V}{T} \int_0^\infty dt < \bar{\pi}^{xy}(t+t') \bar{\pi}^{xy}(t') > = \frac{4}{15} \varepsilon \tau$$

With ZPC parton cascade, we have calculated η of gluons in a box with Green-Kubo relation for 3 cases: *new collision scheme, default ZPC collision scheme, parton subdivision*.

Subdivision (*with factor l=10⁶*): results should be accurate (*no causality violation from cascade*), agree well with the NS expectation for isotropic scatterings.

Zhao, Ma, Ma & ZWL, Phys Rev C (2020)



11/25

We have extracted η/s of gluons in a box versus χ with the Green-Kubo relation for the 3 cases:

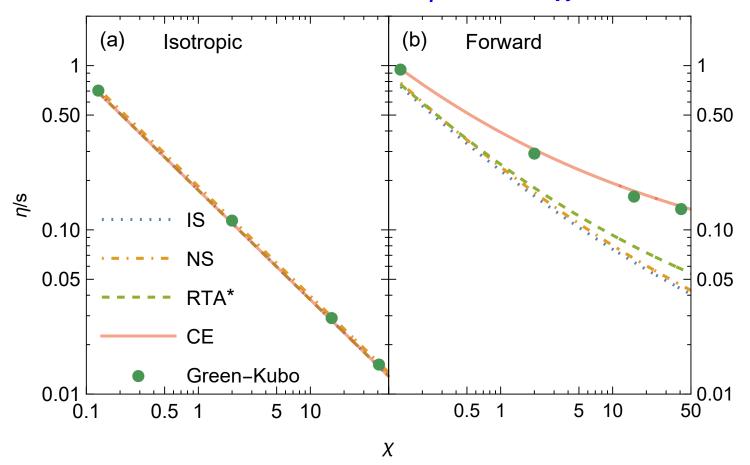
• χ (opacity parameter) \equiv radius of interaction / mean free path

$$\chi = \sqrt{\frac{\sigma}{\pi}} / \lambda = n \sqrt{\frac{\sigma^3}{\pi}}$$

Zhang, Gyulassy & Pang, Phys Rev C (1998)

Forward scattering s/u.1 New scheme • For fixed α_s , - Default scheme η/s is only a function of χ . - Subdivision Navier-Stokes Isotropic scattering For example: $\left(\frac{\eta}{s}\right)^{\text{NS}} \simeq \frac{0.4633}{d_o^{1/3} \chi^{2/3}} = \frac{0.1839}{\chi^{2/3}}$ 0.01└─ 0.1 50 10 1 X Zhao, Ma, Ma & ZWL, Phys Rev C (2020) for gluons ($d_g=16$) under isotropic scatterings

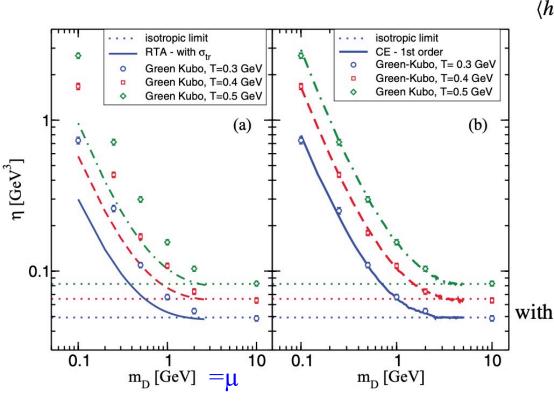
Compare 4 analytical methods MacKay & ZWL, Eur Phys J C (2022) with subdivision Green-Kubo results for η/s versus χ :



- For isotropic scatterings: all methods agree well.
- For anisotropic scatterings:
 CE agrees well with Green-Kubo;
 but the other analytical methods are not accurate.

The fact that Green-Kubo agrees with CE (but not with RTA*)

has been shown in Plumari, Puglisi, Scardina & Greco, Phys Rev C (2012) despite two typos in the η formulae.



$$\begin{split} h(a) \, v_{\rm rel} \rangle &= \frac{8z}{K_2^2(z)} \int_1^\infty dy \, y^2 \, (y^2 - 1) \, h(2zy \, \overline{a}) \, K_1(2zy) \\ &= f(z, \, \overline{a}), \end{split}$$
 (35)

$$\eta_{\text{RTA}}^* = 0.8 \frac{1}{f(z, \frac{T}{m_D})} \frac{T}{\sigma_{\text{tot}}},$$
(36)

• Chapman–Enskog (CE) method:

$$[\eta_s]_{CE}^I = 0.8 \frac{1}{g(z, \overline{a})} \frac{T}{\sigma_{\text{tot}}},\tag{37}$$

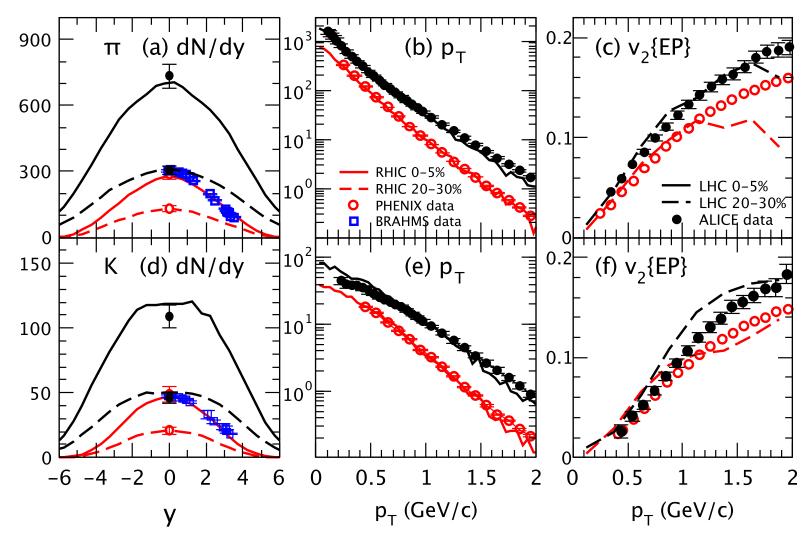
$$g(z, \bar{a}) = \frac{32}{25} \frac{z}{K_3^2(z)} \int_1^\infty dy (y^2 - 1)^3 \frac{h(2zy \bar{a})}{zy K_2(2zy)} \times [(z^2 y^2 + 1/3)K_3(2zy) - zy K_2(2zy)]. \quad (38)$$

should be $h(1/(2zy\bar{a})^2)$

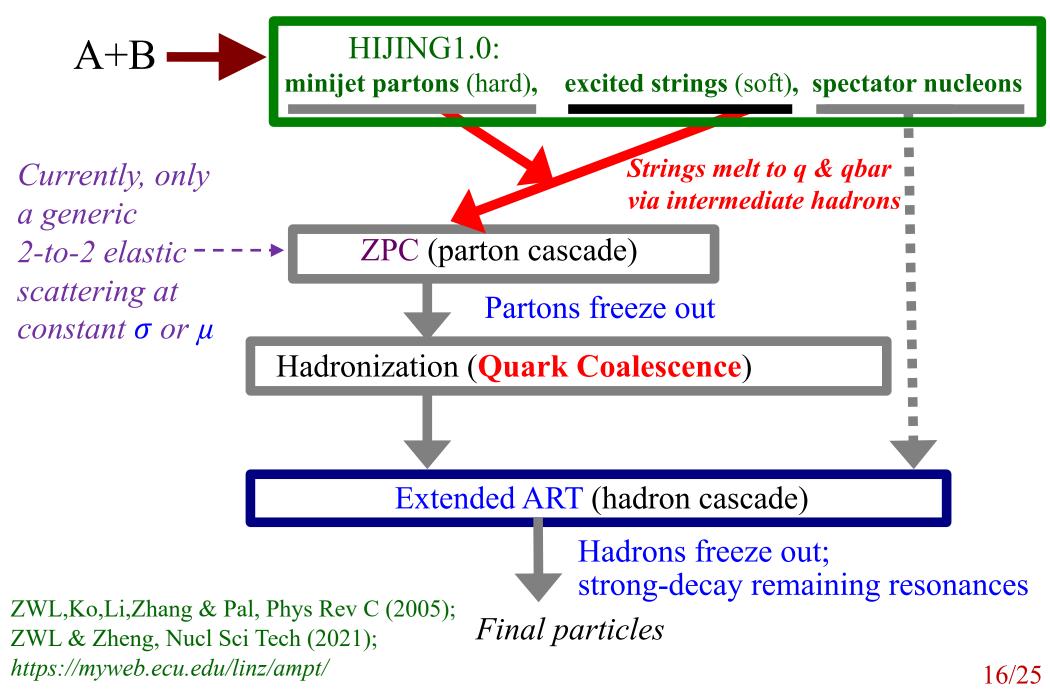
14/25

We now apply the Chapman–Enskog (CE) method to study η and η/s of the parton matter in the string melting AMPT model for A+A.

The kinetic-theory based AMPT model can reasonably describe the bulk matter observables at low p_T in A+A collisions: ZWL, Phys Rev C (2014)



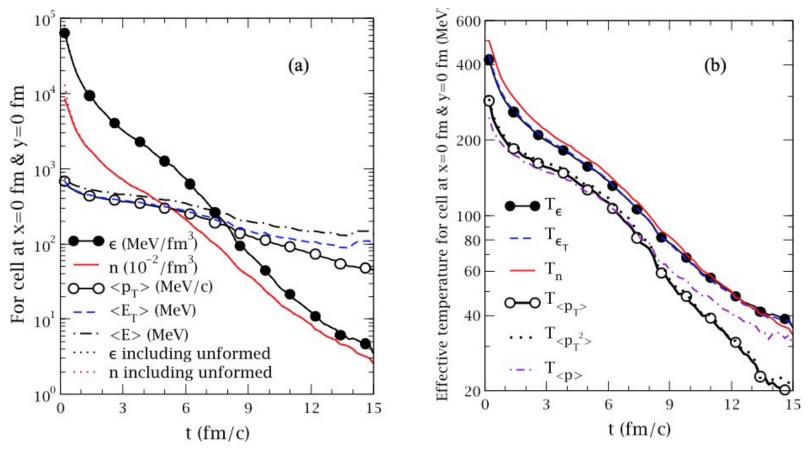
Structure of the String Melting version of AMPT:



For parton matter in the center cell, we have extracted the effective temperatures.

ZWL, Phys Rev C (2014)

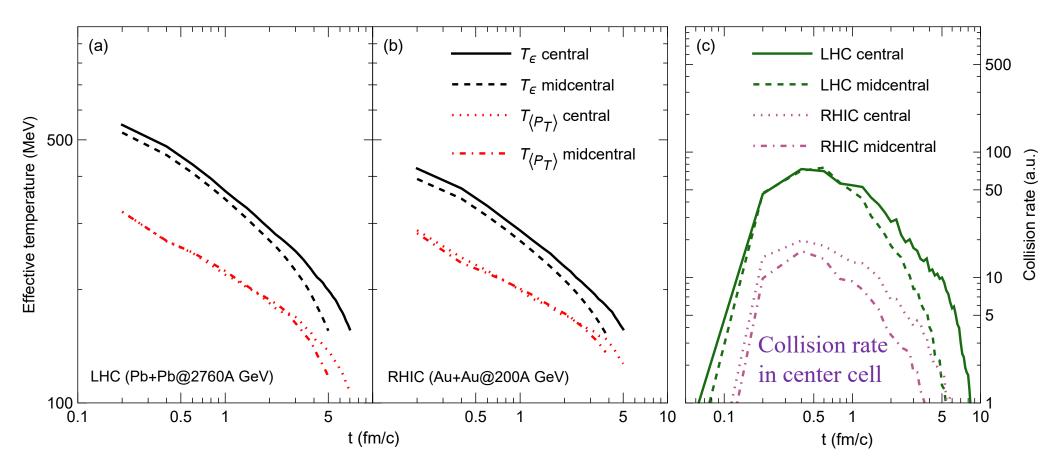
For example, central Au+Au at 200A GeV:



using $\varepsilon = \frac{3g_B}{\pi^2} T_{\varepsilon}^4$, $T_{\langle p_T \rangle} = \frac{4}{3\pi} \langle p_T \rangle$, ...

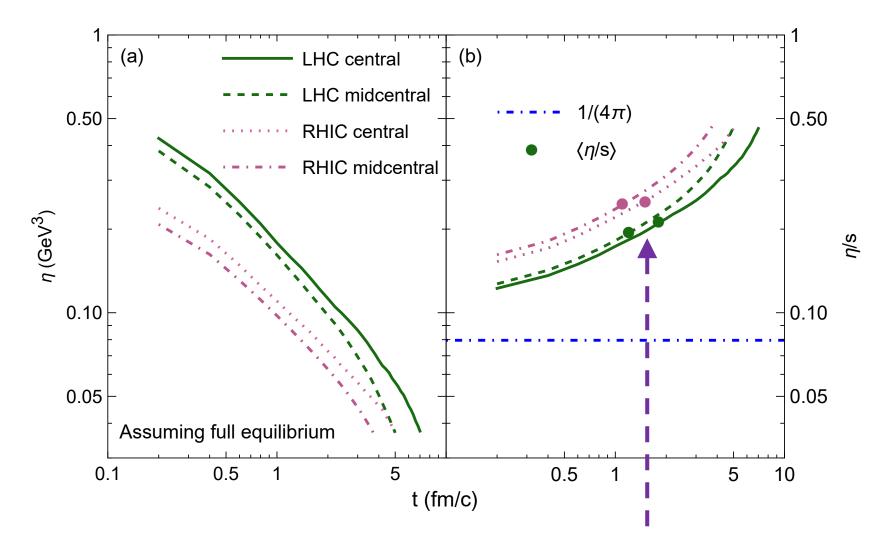
 $T_{\langle p_T \rangle} < T_{\varepsilon} \rightarrow$ the parton matter is not in chemical equilibrium.

We have extracted effective temperatures $T_{\langle p_T \rangle} \& T_{\varepsilon}$ of the center cell for 4 different collision systems: ZWL, Phys Rev C (2014)



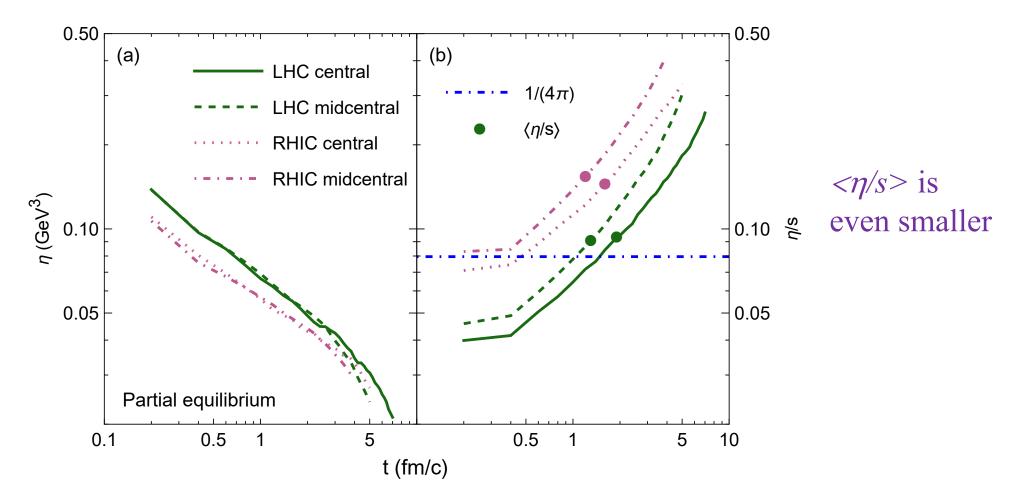
MacKay & ZWL, Eur Phys J C (2022) We use these temperatures to calculate η and η/s of the center cell (a volume around mid-pseudorapidity with 1 fm² in transverse area)

4) Application to parton matter in the AMPT model A) When treating the matter as a QGP in full equilibrium (N_f=3), we use temperature T_{ϵ} to calculate both η and *s*:



- Time-averaged value weighted by collision rates: $\langle \eta/s \rangle$ is quite small.
- Temperature dependence of η/s is "wrong", due to constant σ

B) When treating the matter as a QGP in partial chemical equilibrium, we use temperature $T_{\langle p_T \rangle}$ to calculate η but use T_{ε} to calculate *s*, since η is determined by momentum transfer but not density:



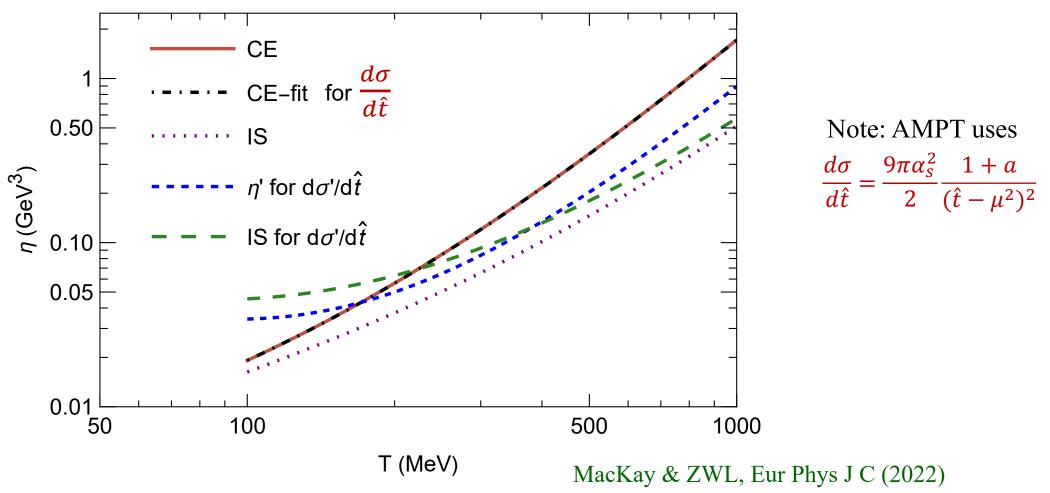
• $\eta \& \eta/s$ are lower in partial equilibrium due to $T_{\langle p_T \rangle} < T_{\varepsilon}$: lower *T* (*at constant* μ) makes scattering more isotropic and effective 20/25

• Our results will improve previous calculations of η for parton matter, such as

$$\eta' = \frac{4 T^3}{5\pi \alpha_s^2 \left[\left(1 + \frac{\mu^2}{9T^2} \right) \ln \left(1 + \frac{18T^2}{\mu^2} \right) - 2 \right]}$$

in Magdy et al., Eur Phys J C (2021) based on IS, using $\frac{d\sigma'}{d\hat{t}} = \frac{9\pi\alpha_s^2}{2}\frac{1}{(\hat{t}-\mu^2)^2}$

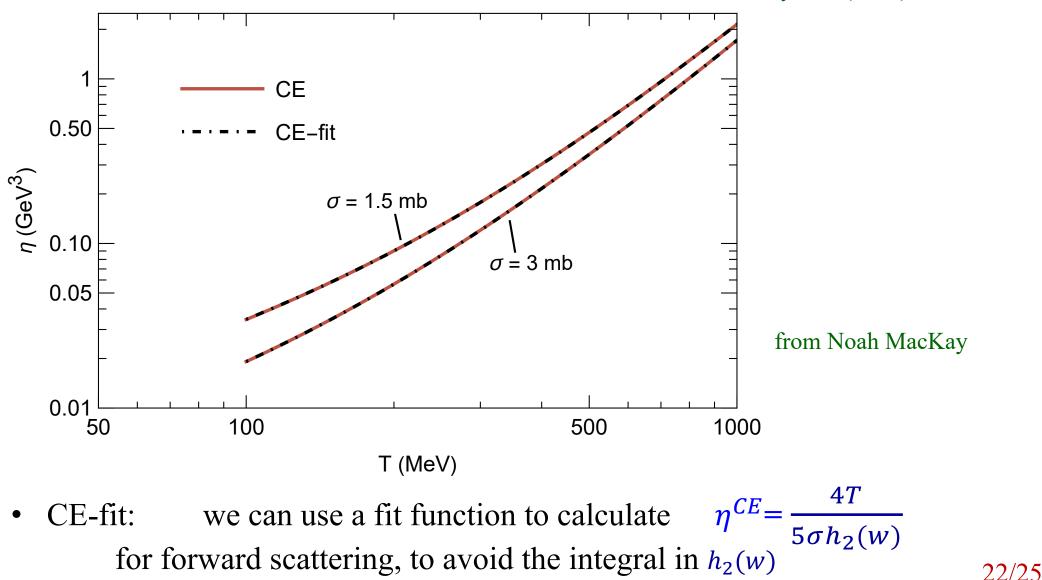
& approximating \hat{s} with $\langle \hat{s} \rangle = 18T^2$

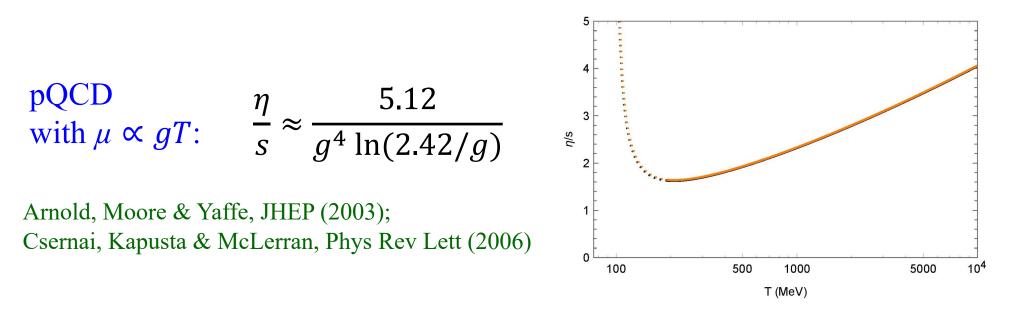


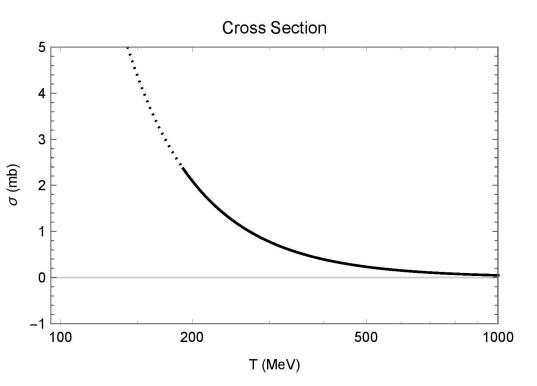
• The preferred σ value for high energy A+A collisions from AMPT is smaller (3mb \rightarrow 1.5mb) when the new quark coalescence model is used.

 \rightarrow increase of $\eta \& \eta/s$

He & ZWL, Phys Rev C (2017); Eur Phys J A (2020)







If we use $\mu \propto gT$

 $\rightarrow \sigma \propto 1/\mu^2$ will be larger at lower T $\rightarrow \eta/s \propto T/\sigma$ will have the expected T- and t-dependences \rightarrow a direction to improve ZPC/AMPT

$ab \leftrightarrow cd$	$\left {{\cal M}^{ab}_{cd}} ight ^2/g^4$	
$ \begin{array}{c} q_1 q_2 \leftrightarrow q_1 q_2 , \\ q_1 \bar{q}_2 \leftrightarrow q_1 \bar{q}_2 , \\ \bar{q}_1 q_2 \leftrightarrow \bar{q}_1 q_2 , \\ \bar{q}_1 \bar{q}_2 \leftrightarrow \bar{q}_1 \bar{q}_2 , \end{array} $	$8 rac{d_{ m F}^2 C_{ m F}^2}{d_{ m A}} \left(rac{s^2+u^2}{\underline{t^2}} ight)$	• Improve ZPC/AMPT by treating all 2-to-2 scatterings
$egin{array}{ll} q_1 q_1 \leftrightarrow q_1 q_1 , \ ar q_1 ar q_1 & \leftrightarrow ar q_1 ar q_1 , \ ar q_1 ar q_1 \leftrightarrow ar q_1 ar q_1 \end{array}$	$=8\frac{d_{\rm F}^2C_{\rm F}^2}{d_{\rm A}}\left(\frac{s^2+u^2}{\underline{t^2}}+\frac{s^2+t^2}{\underline{u^2}}\right)+16d_{\rm F}C_{\rm F}\left(C_{\rm F}-\frac{C_{\rm A}}{2}\right)\frac{s^2}{tu}$	with AMY-like cross sections
$q_1 \bar{q}_1 \leftrightarrow q_1 \bar{q}_1$	$= 8 \frac{d_{\rm F}^2 C_{\rm F}^2}{d_{\rm A}} \left(\frac{s^2 + u^2}{\underline{t^2}} + \frac{t^2 + u^2}{s^2} \right) + 16 d_{\rm F} C_{\rm F} \left(C_{\rm F} - \frac{C_{\rm A}}{2} \right) \frac{u^2}{st}$	
$q_1 \bar{q}_1 \leftrightarrow q_2 \bar{q}_2$	$8rac{d_{ m F}^2C_{ m F}^2}{d_{ m A}}\left(rac{t^2+u^2}{s^2} ight)$	→ toward numerical solution of finite-T QCD kinetic transport
$q_1 ar q_1 \leftrightarrow g g$	$8d_{ m F}C_{ m F}^2\left(rac{u}{\underline{t}}+rac{t}{\underline{u}} ight)-8d_{ m F}C_{ m F}C_{ m A}\left(rac{t^2+u^2}{s^2} ight)$	
$egin{array}{ll} q_1g \leftrightarrow q_1g, \ ar q_1g \leftrightarrow ar q_1g, \ ar q_1g \leftrightarrow ar q_1g \end{array}$	$-8 d_{\rm F} C_{\rm F}^2 \left(\frac{u}{s} + \frac{s}{\underline{u}}\right) + 8 d_{\rm F} C_{\rm F} C_{\rm A} \left(\frac{s^2 + u^2}{\underline{t}^2}\right) $ Arnold	, Moore & Yaffe, JHEP (2003)
$g g \leftrightarrow g g$	$16 d_{\rm A} C_{\rm A}^2 \left(3 - \frac{su}{\underline{t^2}} - \frac{st}{\underline{u^2}} - \frac{tu}{s^2}\right)$	

- Wiranata, Koch, Prakash & Wang, Phys. Rev. C 88 (2013) extended the CE formula to a mixture of hadrons under elastic scatterings.
- Still need to extend the CE formula to include 2-to-2 inelastic scatterings

Conclusions

- The Chapman–Enskog (CE) method gives accurate expression of η for parton matter under anisotropic 2-to-2 scatterings
- Applying the CE method, $\langle \eta / s \rangle$ for parton matter in the center cell of high energy A+A collisions from the AMPT model is very small at $(1-3)/(4\pi)$
- T-dependence or time-dependence of η/s in AMPT is opposite to pQCD expectation, because of the constant σ or screening mass μ
- This problem can be resolved by adopting $\mu \propto gT$; this improvement will lead to a better ZPC/AMPT as a dynamical model for non-equilibrium studies