PHYSICS SYNERGIES Between the Atlas Heavy Ion Program and the Eic

Riccardo Longo

On behalf of the ATLAS Collaboration

August 19th 2024

INT Heavy lon physics in the LHC era workshop

UNIVERSITY OF LLLINOIS URBANA-CHAMPAIGN

18.42 N

FACILITIES: (HL-) LHC

LHC: until 2025 (or 2026)

First Pb+Pb run in 2023. More to come this year and the next (+ Oxygen pilot run)

Possible extension to 2026 under discussion

HL-LHC: starting 2029++

Will be the **only high-energy p+A/A+A collider after RHIC shutdown** and transition to the EIC.

HI program officially in the schedule

No substantial changes expected foreseen for HI luminosity on LHC side

Discussion about HI in Run 5 and beyond to ramp up soon

FACILITIES: ATLAS

High-performance multi-purpose detector: can detect with high efficiency both p+p and heavy-ion collisions

FACILITIES: ATLAS PHASE-II UPGRADE FOR HL-LHC

Several Upgrades to get ATLAS ready for the HL era

- Upgrade of Trigger and DAQ
- New Inner Tracking System
- New HL-ZDC & RPD (Heavy Ion only)
- Upgrade of Muon System
- Upgrade of LUCID (Luminosity)

ATLAS ITK upgrade setup (overlaid w/ ePIC tracker, sketch courtesy of P.Steinberg)

- New High Granularity Timing Detector
- Upgrade of Calorimeter

Rates	Phase I	Phase II				
Trigger input	40 MHz					
L0/L1 trigger	100 kHz	1 MHz				
Event Farm	1 kHz	10 kHz				

New outstanding tracking coverage ($|\eta| < 4$) and trigger capabilities will further boost ATLAS capabilities in detecting and analyzing HI events!

FACILITIES: ATLAS PHASE-II UPGRADE FOR HL-LHC

Several Upgrades to get ATLAS ready for the HL era

- Upgrade of Trigger and DAQ
- New Inner Tracking System
- New HL-ZDC & RPD (Heavy Ion only)

1st joint hardware project ATLAS/CMS

• Upgrade of LUCID (Luminosity)

Riccardo Longo

- New High Granularity Timing Detector
- Upgrade of Calorimeter

FACILITIES: EIC

Riccardo Longo

EIC: from RHIC to the next generation experiments

Beam versatility, polarization, high luminisity

- - $e^- + (p^{\uparrow}, d^{\uparrow}, \text{He}^{\uparrow}, \text{unpolarized ions with different } A)$
 - ~70% polarization for polarizable hadron/ion beams
- High luminosity machine:
 - $e^- + p: \mathscr{L} =$

• Use existing hadron stage ring energy: 41 - 275 GeV• Add e⁻ storage ring in RHIC tunnel energy: 5 - 18 GeV

• Electron beam combined with different (un)polarized beams

$$= 10^{33-34} \text{cm}^{-2} \text{s}^{-1}$$
, $L = 10 - 100 \,\text{fb}^{-1}/\text{year}$

• $e^- + A$: $\mathscr{L} = 10^{32} \text{cm}^{-2} \text{s}^{-1}$, $L = 1 \text{ fb}^{-1}/\text{year}$

HL-LHC & EIC: TIMELINES

<u>LHC Long</u>	<u>j term</u>	<u>schedule</u> <u>NRE HERE</u> <u>NOU ARE HERE</u> <u>NOU ARE VERY DYNAMIC PICTURE.</u> <u>DON'T MARK YOUR CALENDARS (YET!)</u>													
Facility/Year	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	
LHC	LS	S2	Run 3				HL-LHC Upgrade			Run 4				۲S	
EIC	R&D and Design Phase							Construction & Instal				tion Operat			

Currently, great alternation between EIC and HL-LHC schedule

the strong force and QCD

Allows for parallel deployment of scientific effort on both sides to enhance the understanding of

EIC MAIN PHYSICS GOALS

Origin of nucleon spin

Passage of color charge through cold nuclear matter

Multi-dimensional imaging of the nucleon in momentum and impact parameter space

Nuclear modification of parton distribution functions

Origin of nucleon mass

Search for saturation onset

ATLAS & EPIC: PHYSICS SYNERGIES

Passage of color charge through cold nuclear matter & **color fluctuations**

Riccardo Longo

Nuclear modification of parton distribution functions

Study of collectivity in small system

Search for saturation onset

DISCOVERIES IN HOT ACD FROM THE LHC

EXPERIMEN

QGP: nearly perfect fluid following hydrodynamic expansion

Heavy lon collisions at multi-TeV scale

- Creation of QGP droplets, observed via different signatures:
 - Collectivity
 - Energy Loss

Riccardo Longo

PRL 110, 012302

2-particle correlations

To study azimuthal ($\Delta \phi$) and longitudinal ($\Delta \eta$) correlations between pairs of particles

QGP: nearly perfect fluid following hydrodynamic expansion

Heavy Ion collisions at multi-TeV scale

- Creation of QGP droplets, observed via different signatures:
 - Collectivity
 - Energy Loss

Riccardo Longo

PRL 110, 012302

2-particle correlations

To study azimuthal ($\Delta \phi$) and longitudinal ($\Delta \eta$) correlations between pairs of particles

Hydrodynamic calculations well capture the physics observed PRL 110, 012302 (2013)

Heavy lon collisions at multi-TeV scale

- Creation of QGP droplets, observed via different signatures:
 - Collectivity
 - Energy Loss

Energy loss of hard scattered partons in the QGP before hadronization

Dijets are ideal probes to experimentally access the path-length dependence of the energy loss

19 August 2024

New! arXiv:2407.18796

Extensive characterization of QGP microscopic properties via measurement of dijet asymmetry using jets of different radii

- Creation of QGP droplets, observed via different signatures:
 - Collectivity
 - Energy Loss

COLD QCD AND NUCLEAR MODIFICATION

COLD NUCLEAR MATTER MODIFICATION IN $p/e^- + A$

NAS report on EIC (2018)

The EIC will have the unique opportunity to study hadronization by varying the virtual photon energy and selecting different hadronization regimes (in or out nucleus)

Riccardo Longo

To understand the microscopic behavior of the QGP requires also a comprehensive understanding of the initial state

p+A collisions @ LHC provide experimental access to study nuclear matter effects

- ➡ Search for QGP-signatures (Hot)
- Investigation of Cold nuclear matter effects

9 August 2024

OGP-LKE SIGNATURE: ENERGY LOSS ?

Comparison to Angantyr:

Riccardo Longo

- No final state interactions e.g. no jet quenching
- Consistent with data on both sides no large effect from nPDFs

Phys. Rev. Lett. 131 (2023) 072301

No evidence of Jet quenching in I_{pPb} observable Parton energy loss constraint: 0.2 ± 0.5% and < 1.4% at 90% confidence level

HGH PT PUZZLE: NO ENERGY LOSS BUT COLLEC

HIGH PT PUZZLE IN SMALL-SYSTEMS

- No jet quenching
- Clear v₂ signal similar to mid-central Pb-Pb
- \cdot Models that predict collective behavior largely overestimate $R_{
 m pPb}$ suppression

Eur. Phys. J. C 80 (2020) 73

TURNING OFF THE COLLECTIVITY?

Pb+Pb

0.5<p_{_{}_{}^{a,b}}<5 GeV ATLAS p+Pb √s_{NN}=5.02 TeV, 28 nb⁻¹ N^{rec}≥220 20.1⊄ (⊽¹/∇ O 0.98 2 ∕√ø

Pb+Pb: collective, strongly-coupled longdistance behavior

p+Pb: unexpected near-side ridge. QGP still on?

WHAT ABOUT $\gamma + Pb$?

Pb+Pb

WHAT ABOUT $\gamma + Pb?$

Pb+Pb

Hierarchy?

features similar to those observed in pp collision

p+Pb

HOW γ + Pb AND p + Pb COMPARE?

QGP-like signature found by ATLAS in **UPCs** via resolved photons

Pb+Pb

Hierarchy?

Riccardo Longo

3+1D hydrodynamics suggests v₂ hierarchy between p+Pb and γ +Pb driven by flow decorrelations

p+Pb

Same model predicts ~same radial flow for both systems \rightarrow same $\langle p_{\rm T} \rangle$

- Analysis in the same multiplicity region for both γ +Pb and p+Pb
- • γ +Pb distribution highly asymmetric (E_{γ} << energy per nucleon in the Pb)
- p+Pb distribution nearly simmetric

ATLAS-CONF-2023-059 $1/N_{ev} dN_{ch}/d\eta$ **ATLAS** Preliminary Pb+Pb, 1.7 nb⁻¹, 5.02 TeV, 0nXn, $\Sigma_{\gamma} \Delta \eta^{rec} > 2.5$ 20 p+Pb, 0.10 nb⁻¹, 5.02 TeV $25 < N_{ch}^{rec} \le 60$ Extrap. to $p_{T} > 0 \text{ GeV}$ 15 10 5 p+Pb -**O**-Pb+Pb UPC -2 2 -1 0 Service Servic η

- in the Pb going direction (as predicted by theory)
- Currently working on K_S^0 , Λ and Ξ^- to enhance sensitivity to radial flow

COLLECTIVITY ONSET - THE EIC ROLE

Lately, several searches in smaller systems were carried out

EXPERIMEN

(x,Q²) Phase space coverage of data currently available on the market

Taken from Klasen & Paukkunen Ann. Rev. Nucl. Part. Sci. 2024. 74:1–41

Large variety of data from different experiments, spanning over a wide (x,Q^2) range, down to $x \sim 10^{-5}$

Different combinations of these data included in different nPDF parametrizations: EPPS21 TUJU21 nCTEQ15HQ nNNPDF3.0 KSAG20

DIJETS IN P+PB FOR NPDF CONSTRAINTS: EPPS21 EXAM

Adapted from Eur. Phys. J. C (2022) 82:413

DIJETS IN P+PB FOR NPDF CONSTRAINTS: ATLAS INPUT

NPDF STUDIES VIA *tt* production in P+PB

Adapted from **Eur. Phys. J. C (2022) 82:413**

Riccardo Longo

- Top quarks provide novel probes of nuclear modifications of parton distribution functions (nPDF) [H.Khanpour et al., PRD 93, 014026 (2016)].
- $t\bar{t}$ cross-section measured in p+Pb in the combined ℓ +jets and dilepton channels →First measurement including the dilepton channels
- - \rightarrow Most precise $t\bar{t}$ cross-section measurement in nuclear collisions to date
- Good agreement with NNLO calculation based on several nPDF sets

p +Pb $\sqrt{s_{NN}} = 8.1$	6 TeV,	165 nb ⁻¹
	(tot.)	(stat.)
$\mu_{t\bar{t}} = 1.14$	+0.31 -0.29	+0.13 -0.12
$\mu_{t\bar{t}} = 0.69$	+0.29 0.24	+0.11 -0.11
$\mu_{t\bar{t}} = 0.98$	+0.12 0.11	+0.06 -0.06
$\mu_{t\bar{t}} = 1.00$	+0.11 0.10	+0.06 -0.06
$\mu_{t\bar{t}} = 1.23$	+0.31 -0.33	+0.19 -0.17
$\mu_{t\bar{t}} = 1.23$	+0.20 -0.17	+0.13 -0.12
$\mu_{t\bar{t}} = 1.04$	+0.09 -0.09	+0.04 -0.03
5 2 2.5	3	3.5
		$\mu_{t\bar{t}}$

 $\sigma_{t\bar{t}} = 58.1 \pm 2.0 \text{ (stat.)} {}^{+4.8}_{-4.4} \text{(syst.)} \text{ nb}$

ATLAS UPC DIJETS

ATLAS UPC DIJETS

Adapted from Eur. Phys. J. C (2022) 82:413

- nPDF are **poorly constrained** at intermediate Q² and low-*x* • Nuclear shadowing at low-x draws particular theoretical interest
- (see **PoS HardProbes2018 (2018) 118**)

SCANNING THE NUCLEUS USING UPC PHOTONS

Adapted from Eur. Phys. J. C (2022) 82:413

The measured cross-sections are unfolded in 3 dimensions to correct for detector effects

ATLAS-CONF-2022-021

Comparison with Pythia8 with photon flux and nuclear breakup description

> Final analysis with improved systematic uncertainties near completion

19 August 2024

UPC DIJETS: AN LHC - EIC PHYSICS BRIDGE

Adapted from **Eur. Phys. J. C (2022) 82:413**

- •Continuity in the (x,Q²) phase space coverages
- both cases

UPC dijets represent a natural **bridge** between the LHC and the EIC:

Investigating the nucleus structure with photon probes in

19 August 2024

THE EIC CONTRIBUTION

Adapted from Eur. Phys. J. C (2022) 82:413

Riccardo Longo

e-+A: much cleaner compared to p+A; easier to disentangle cold nuclear matter effects from other higher twist effects

Precision measurements to constraint nPDF at low-x

A-dependence of nPDFs

NPDF STUDIES AT ATLAS: NEAR FUTURE

- 1.5/2 nb⁻¹ of p+O data taking (first ever @ LHC!) expected next year
 - Limited luminosity officially an 'LHC pilot run'
 - Still great physics potential first opportunity to explore O nuclear structure
 - Also tied to understanding O+O collisions @ LHC (Run 3 novelty)!
- Rest of Run 3 and beyond: High statistic sample for UPC nPDF studies; no p+Pb run scheduled at the moment; outlook may change if Run 3 is extended by one full year
 - The community recently gathered at CERN (<u>Physics with high-</u> <u>luminosity proton-nucleus collisions at the LHC - Workshop</u>) to discuss possible scenarios on short and medium-term
 - p+A program at LHC will continue into Run 4 upgraded ATLAS detector

P.Paakkinen PRD 105, L031504 (2022)

Dijet measurements to inform 0 nPDF parameterizations

COLOR FLUCTUATION

0-10%/6<mark>0-90</mark> $s_{\rm NN} = 5.02 \, {\rm TeV}$ 20-30%/60-90%

Riccardo Longo s = 5.00 TeV

₽_∓ [6€V]

PLB 748 (2015) 392-413:

β_∓ [6€∛]

- +08 < $x^* < -008$ • R_{pPb} results: no evidence for large modification of the total yield of jets relative to the geometric expectation observed
- $\cdot R_{\rm CP}$ results: suppression of central events compared to peripheral found to be function of the jet energy, suggesting =08

p containing a parton with large x interacts with a nuclear target with a smaller than average cross-section and smaller than average size (manifestation of color fluctuations)

Model with x_p -dependent shrinking of the average interaction strength at a given collision energy capable of describing both RHIC and LHC data

PLB 748 (2015) 392-413

COLOR FLUCTUATIONS EFFECTS IN DIJET EVENTS

PLB 748 (2015) 392-413

COLOR FLUCTUATIONS EFFECTS IN DIJET EVENTS

Riccardo Longo

Phys. Rev. Lett. 132 (2024) 102301

How well do we understand the nuclear breakup in *p*+Pb collisions?

• So far - very little modeling available from HI generators

In addition - new idea proposed by Alvioli, Guzey and Strikman in PRC 110, 025205 (2024) for UPC collisions in Pb+Pb

- Study nuclear breakup primarily in γA scatterings to provide new access to small-x dynamics
- Correlation between the number of forward neutrons emitted in the nuclear breakup, the number of wounded nucleons, and the mechanism of nuclear shadowing
- Model dependence: impact of color fluctuations?
- Can we study similar effects in p+Pb?

In both cases - synergies with UPC dijet measurements

 γA in A + A collisions via resolved photon

p + A collisions

COLOR FLUCTUATIONS @ EIC?

How well do we understand the nuclear breakup in e+A collisions?

• Can we rely on forward neutrons to characterize the event geometry in e+A collisions (approach proposed) by Zheng et al, Eur. Phys. J. A (2014) 50: 189) or could there be biases from kinematic-driven effects?

Characterization of neutron multiplicities in p+A and in **UPCs at the LHC can inform** geometry determination in e+A

PRC 110, 025205 (2024)

Riccardo Longo

Also: γA in $e^- + A$ collisions via resolved photon

CFs are also relevant for result interpretation at RHIC energies, see D.Perepelitsa, Phys. Rev. C 110, L011901, for a recent use of the CF model to interpret PHENIX data

Wounded nucleons

BEYOND CF: DIJETS IN P+PB TO SEARCH FOR SATURATION

Search for azimuthal broadening or forward dijet conditional yield suppression as a manifestation of CGC (see Eur.Phys.J.C 83 (2023) 10, 947)

Struck gluon in the nucleus scatters over other gluons before forming a jet \rightarrow azimuthal broadening signature

Incoming parton recoils off the lead nucleus coherently \rightarrow **mono-jet** signature

BEYOND CF: DIJETS IN P+PB TO SEARCH FOR SATURATION O

Search for azimuthal broadening or forward dijet conditional yield suppression as a manifestation of CGC (see Eur.Phys.J.C 83 (2023) 10, 947)

Van Hameren et al., Eur.Phys.J.C 83 (2023) 10, 947

SUPPRESSION OF CONDITIONAL YIELDS OF FORWARD DIJETS. LIMITED PRECISION OTHER EFFECTS (E.G. NPDFS?)

Incoming parton recoils off the lead nucleus coherently \rightarrow mono-jet signature

See talk by D.Perepelitsa on Thursday!

J/PSI @ ATLAS

New TRT FastOr Level 1 trigger implemented in Run 3:

- Provides efficient L1 triggers for measurements based on low p_T dileptons
- Enable high-statistics coherent J/ψ analysis in UPC @ ATLAS
 - Will contribute to the exciting vector meson program at RHIC and the LHC
 - Coherent J/ψ measurements also major targets of the EIC program

THANK YOU FOR YOUR ATTENTION!

NUMARY

The ATLAS Heavy Ion Physics Program & the EIC have several points of contact

- Results on both sides will be complementary in boosting our understanding of hot and cold QCD.
- LHC data will provide significant physics input that will also benefit the advancement of the EIC physics case.
 - Passage of color charge through cold nuclear matter:
 - Cold Nuclear Matter & Color Fluctuation studies in p+A

Nuclear PDFs •

- Constrain nPDFs over a broad (x,Q²) range using different channels (dijets in p+A & UPCs, ttbar...)
- Provide input for different nuclei (Pb, 0, ++) that could be investigated also at the EIC

Search for the onset of gluon saturation •

- Forward dijet broadening and yield modification to be studied with high-stat & good pp reference
- New j/Psi opportunities with ATLAS Phase I and II upgrades

• Search for the onset of collectivity in small systems

• EIC as potential tie-breaker to understand the origin of long-range behavior observed in many collision systems

9 August 2024

FACILITIES: EIC & EPIC

Riccardo Longo

Hermetic barrel coverage ($|\eta| < 4$)

~Hermetic Far Forward detection capabilities, including *p* tagging and detection ion remnants

- Tracking
- PID
- EM Calorimeter
- HAD Calorimeter

OGP-LIKE SIGNATURE: ENERGY LOSS ?

Phys. Rev. Lett. 131 (2023) 072301

Classification of event centrality by using Pb-going ZDC energy to reduce any selection correlation with central barrel activity

Riccardo Longo

Phys. Rev. Lett. 131 (2023) 072301

Comparison to Angantyr:

Riccardo Longo

- No final state interactions e.g. no jet quenching
- Consistent with data on both sides no large effect from nPDFs

No evidence of **Jet quenching** in $I_{p\mathrm{Pb}}$ observable Parton energy loss constraint: 0.2 ± 0.5% and < 1.4% at 90% confidence level

PHYSICS OPPORTUNITIES IN RUN 3 P+0

Neutron Proton Alpha particle Oxygen nucleus

D.Behera et al EPJ A 58, 175, (2022)

Tetrahedral structure of oxygen?

PRC 99, 044904 (2019)

Peak at Npart = 5 expected from *p* collision with an α particle in the O

P+O COLLISIONS TO UNDERSTAND OXYGEN STRUCTURE

P.Paakkinen PRD 105, L031504 <u>(2022)</u>

Dijet measurements to inform nPDF parameterizations

ATLAS DETECTOR IN RUN3: NEW ZDC OPPORTUNITIES

Refurbished Zero Degree Calorimeter

- New radiation hard fused silica rods
- New FE electronics with 320 MHz sampling
- New fully digital trigger
- New low-dispersion air-core cables
- New Reaction Plane Detector

IMPROVED FORWARD NEUTRON DETECTION + NEW DETERMINATION OF THE REACTION PLANE USING THE SPECTATOR NEUTRONS

20

10

0

-20

-10

A.Huss et al., At what system size can we observe the onset of PRL 126, 192301 (2021) energy loss effects? proposed [1812.06772] XeXe XeXe 30-50% Lighter ion collisions with different geometry but 100 • PbPb 50-70% $\langle N_{\rm coll} \rangle$ size similar to p+Pb could help in solving the puzzle XeXe 50-70% 1070-80% XeXe OXYGEN IS THE $\begin{array}{c} p_T^h = [35.2, 41.6] \text{GeV} \quad p_T^j = [100, 112] \text{GeV} \\ p_T^{h, \text{Xe}} = [35.2, 48] \text{GeV} \end{array}$ 1.2NEXT STEP! 0.8 $R^{h,j}_{\rm AA}$ 0.3 **(a)** 0.25 **(b)** t = 4.0 fm/ct = 2.0 fm/ct = 1.0 fm/cy [fm] 0.4CMS hadrons ATLAS jets 0.2 0.15 PbPb 5.02 TeV 0.2pPb 5.02 TeV 0.1 XeXe 5.44 TeV 0.05 0 IC O+O10100 -4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4 $\langle N_{\rm part} \rangle$ x [fm] x [fm] x [fm] x [fm]

S.H. Lim et al Phys. Rev. C 99, 044904 (2019)

HCF+ZDC OPPORTUNITIES IN RUN 3 P+O

LHCf + ZDC (pic from 2022 pp run) Setup for *p*-going direction in *p*+O

Unprecedented data taking & forward detection capabilities for neutral particles Several opportunities for cosmic-ray interpretation-related measurements!

Full ZDC+RPD on Pb-going side

UPC DIJETS - SCANNING THE NUCLEUS W/ PHOTONS

Riccardo Longo

NPDF - CURRENT PICTURE

(x,Q²) Phase space coverage of data currently available on the market

Taken from Klasen & Paukkunen Ann. Rev. Nucl. Part. Sci. 2024. 74:1–41

Large variety of data from different experiments, spanning over a wide (x,Q²) range, down to x ~ 10⁻⁵

Different combinations of these data included in different nPDF parametrizations: EPPS21 TUJU21 nCTEQ15HQ nNNPDF3.0 KSAG20

COLOR FLUCTUATIONS RELEVANCE: MOST RECENT EXAMPLE

Color fluctuations modeling recently helped in explaining recent PHENIX 'controversial' results on the production of high $p_T \ \pi^0$ and direct γ in d+Au collisions

D.Perepelitsa, Phys. Rev. C 110, L011901

RUN4: NPDF ORIENTED MEASUREMENTS

High-precision nPDF-related measurements with improved detection performance thanks to extended tracking & calorimeter upgrade

<u> ATL-PHYS-PUB-2018-039</u>

WAND Z BOSONS PRODUCTION

Projections do not account for extended tracking acceptance yet

RUN4: NPDF ORIENTED MEASUREMENTS

Y+JET PRODUCTION

High-precision nPDF-related measurements with improved detection performance thanks to extended tracking & calorimeter upgrade

ATL-PHYS-<u>PUB-2018-039</u>

DIJET5

Multi-differential cross-section extraction using full acceptance of **ATLAS** calorimeter

Van Hameren et al., Eur.Phys.J.C 83 (2023) 10, 947 Forward dijets to search for saturation onset

P+A@ATLAS HISTORY

 $1 \,\mu b^{-1}$

2013 29.8 nb⁻¹

JHEP 07 (2023) 074

RUN4JET+Z

Advantages: theoretically \rightarrow the large Z boson mass sharply reduces fragmentation and decay contributions; experimentally \rightarrow smaller backgrounds Study of CNM effects and nPDFs

do not yet

NPDF STUDIES VIA PROMPT PHOTONS IN P+PB

Riccardo Longo

19

