INT 23-2: Astrophysical Neutrinos and the Origin of the Elements

A "Beta" Look at Post-Merger Nucleosynthesis

> Kelsey Lund 09 August 2023

This document approved for unlimited release, assigned LA-UR-23-29182

Kilonovae

Kilonova (KN): electromagnetic transient event associated with compact object mergers (at least one neutron star).

GW170817'S accompanying multi-spectral EM transient shows decay on long and short timescales.

Simplest model: red (high opacity) + blue (low opacity) components

Important heating mechanism: radioactive decay of r-process nuclei

Rapid neutron capture builds up population that decays on time scales of hours-days (and beyond)

Time Scales*

Time Scales*

kalund@ncsu.edu

r-Process Site: Post-Merger Disk

Magnetically driven accretion disk forms after merger event

r-Process occurs in different ejection "sites":

- Wind driven off material in mid-plane
- Material gets entrained in semi-relativistic jet

Scope

NILLE NO.

DOI 10.3847/1538-4357/acaf56 with J. Engel, G. McLaughlin, M. Mumpower, E. Ney, R. Surman

INT 23-2 5

Scope

Willer 2013

"Trajectory"

Thermodynamic evolution as a function of time: necessary for nucleosynthesis.

Parameterized Y_e

Linear Combinations: Single Trajectory: 200 100 z -100 0.23 0.08 -200 0.02 0.18 0.21 200 0.20 -200₋₁₀₀ 0 -100100 200 Average Y_e -200 Weight More neutron rich 0.16 Less fission 0.00 0.13 0.35 0.00 0.210.28 0.07 0.14

kalund@ncsu.edu

Initial Electron Fraction

Sources of Nuclear Uncertainty

Mass Model

Most basic nuclear property: mass

Common approach: fit parameters to experimental data, extrapolate to make predictions about unknown nuclei

Each mass model associated with fission barrier height model

*Experimental data from AME2016 (Wang+2017, Audi+2017)

Beta Decay Rates

kalund@ncsu.edu

INT 23-2 10

Nuclear Heating

Effective Nuclear Heating

$$\dot{\mathbf{Q}}(t) = \sum_{i} f_{i}(M_{ej}, v_{ej}, t) \dot{q}_{i}(t) M_{ej}$$

$$\underbrace{\mathbf{Q}}_{i}(t) = \sum_{i} f_{i}(M_{ej}, v_{ej}, t) \dot{q}_{i}(t) M_{ej}$$

$$\underbrace{\mathbf{Q}}_{i}(t) = \sum_{i} f_{i}(M_{ej}, v_{ej}, t) \mathbf{Q}_{i}(t) M_{ej}$$

$$\underbrace{\mathbf{Q}}_{i}(t) = \sum_{i} f_{i}(M_{ej}, t) \mathbf{Q}_{i}(t) M_{ej}$$

$$\underbrace{\mathbf{Q}}_{i}(t) = \sum_{i} f_{i}(M_{ej}, t) \mathbf{Q}_{i}(t) M_{ej}$$

$$\underbrace{\mathbf{Q}}_{i}(t) = \sum_{i} f_{i}(t) M_{ej}$$

$$\underbrace{\mathbf{Q}}_{i}(t) = \sum_{i} f_{i}(M_{ej}, t) \mathbf{Q}_{i}(t) M_{ej}$$

$$\underbrace{\mathbf{Q}}_{i}(t) M_{ej}$$

$$\underbrace{\mathbf{Q}}_{i}(t) = \sum_{i} f_{i}(M_{ej}, t$$

Thermalization efficiency: how effectively decay products can heat ejecta (function of time, ejecta mass, and characteristic velocity)

Thermalization based on Kasen & Barnes (2019)

Uncertainties in Effective Nuclear Heating

- Upper limit of heating uncertainty set by fission of few mass models
- Beta models differ in behavior of dominating fission heating

kalund@ncsu.edu

Uncertainties in Effective Nuclear Heating

 Alpha heating becomes more important <100 days

Beta models differ in predicting when alpha tends to dominate + late-time tail shape of fission heating

Uncertainties in Effective Nuclear Heating

Much more overlap, total heating tends to be set by beta (and some alpha) decay

 Overall effect on beta decay heating is small

Light Curve Shell Model

Similar procedure as effective heating calculation (ref Metzger 2017)

Shell model for ejecta: the mass of each shell, M_{ν} , depends on the velocity, ν , of that shell (100 shells evenly distributed between 0.1c and 0.4c)

Time evolution of the energy of a shell:

Luminosity

Light Curves

~70% more heating can yield ~50% brighter light curve (NES:MLR)

~40% less heating can yield ~50% dimmer light curve (MKT:MLR)

Critical Nuclei: Alpha Decay

Differences in beta decay rates affect heating from alpha heaters with measured decay times, especially:

Critical Nuclei: Spontaneous Fission (et al)

Theoretical branching ratios affect spontaneous fission heating

Nuclear Cosmochronometry

r-Process Enhanced Stars

A star's metallicity (Fe) can be taken as a proxy for age.

Some stars have very low metallicity (metal-poor) but high content of r-process material. These r-process enhanced stars are taken to have been enriched by a single r-process event.

Ages from Nuclear Physics

Basic Initial Assumption: Each star has been enriched by some single r-process event

How to Find Ages

Basic Initial Assumption: Each star has been enriched by some single r-process event

$$t = 46.67 \,\text{Gyr} \left[-\log_{\epsilon} \left(\frac{\text{Th}}{\text{Eu}} \right)_{\text{obs}} + \log_{\epsilon} \left(\frac{\text{Th}}{\text{Eu}} \right)_{0} \right]$$
$$t = 14.84 \,\text{Gyr} \left[-\log_{\epsilon} \left(\frac{\text{U}}{\text{Eu}} \right)_{\text{obs}} + \log_{\epsilon} \left(\frac{\text{U}}{\text{Eu}} \right)_{0} \right]$$
$$t = 21.80 \,\text{Gyr} \left[-\log_{\epsilon} \left(\frac{\text{U}}{\text{Th}} \right)_{\text{obs}} + \log_{\epsilon} \left(\frac{\text{U}}{\text{Th}} \right)_{0} \right]$$

Final abundance of NSM simulation = "Initial " r-process enrichment

²³² Th & ²³⁸ U: produced exclusively via r-process (t_{1/2} = 14 Gyr, 4.486 Gyr respectively)

Astronomical Sample: Uranium

Star Name	Reference	
HE1523-0901	Frebel+2007	
CS29497-004	Hill+2017	Ø
J2038-0023	Placco+2017	-*
CS31082-001	Siquiera Mello+2013	JINA – CEE
J0954+5246	Holmbeck+2018	JINAbase

Increasing actinide enhancement

Abundances for Cosmochronometry

- Europium production highly sensitive to average Ye and fission yield
- Underabundance of actinides can lead to negative age predictions

kalund@ncsu.edu

Abundances for Cosmochronometry

- Europium production highly sensitive to average Ye and fission yield
- Underabundance of actinides can lead to negative age predictions

kalund@ncsu.edu

Ages Can Agree*

...if observational error bars are taken into consideration:

- Ages equal using all three chronometer pairs: $\binom{Th}{Eu} = \binom{U}{Eu} = \binom{U}{Th}$
- Age estimate and overlap depends on beta-decay model

"Fit" to Observation

- Run nucleosynthesis calculations out to selected age
- Compare full abundance pattern to observation

A peek at some ongoing work

Scope

WI191×2013

Evolution of Post-Merger Disk

Neutrinos in the disk are neither trapped nor free-streaming, therefore neutrino transport is essential

kalund@ncsu.edu

INT 23-2 25

Variable Field Strength

Procedure

Some Preliminary Results

Some Preliminary Results

Jets capable of producing overall small amounts of actinides, but high mass fraction High entropy jets allow for higher Ye for lanthanide/actinide production Stronger initial B field yields higher ejecta mass, with higher lanthanide and actinide richness

kalund@ncsu.edu

There is a wealth of physics in the unknown properties of nuclei far from stability that can impact key kilonova related quantities

- Identified key measured and unmeasured nuclei important for nuclear heating on light curve-relevant time scales.
- Explored a variety of theoretical nuclear models as a source of uncertainty for nuclear energy generation.
- Probed lanthanide/actinide abundances for cosmic dating of r-process enhanced metal-poor stars.

Thank you!