On the convergence of baryon chiral perturbation theory

Martin Hoferichter

Albert Einstein Center for Fundamental Physics,

Institute for Theoretical Physics, University of Bern

UNIVERSITÄT BERN

b

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Mar 17, 2025

INT workshop on

Chiral EFT: New Perspectives

MH, Ruiz de Elvira, Kubis, Meißner, PRL 115 (2015) 192301

Siemens, Ruiz de Elvira, Epelbaum, MH, Krebs, Kubis, Meißner, PLB 770 (2017) 27

Gupta, Park, MH, Mereghetti, Yoon, Bhattacharya, PRL 127 (2021) 242002; PoS CD2021 (2024) 060

Hall et al., arXiv:2503.09891

MH, Mereghetti, Ruiz de Elvira, Siemens, Walker-Loud, work in progress

On the convergence of baryon chiral perturbation theory

Disclaimers

- This talk is **not** about chiral EFT \Rightarrow won't cover non-perturbative resummations
- This talk is **not** about strangeness \Rightarrow won't cover *SU*(3) uncertainties
- How SU(2) heavy-baryon ChPT is supposed to converge

$$\epsilon_{\pi} = \frac{M_{\pi}}{\Lambda_{\chi}} \simeq \frac{M_{\pi}}{4\pi F_{\pi}} \simeq \frac{M_{\pi}}{m_N} \simeq \frac{M_{\pi}}{M_{
ho}} \simeq 0.12 \dots 0.18$$

- Known reasons this may not be accurate
 - Chiral logarithms: $\simeq M_{\pi}^2 \log M_{\pi}^2$
 - Numerical enhancements: factors π (or even 4π) in non-analytic loop functions
 - Low-lying baryon resonances: the $\Delta(1232)$
- Maybe less known reasons this may not be accurate
 - (Anomalous) thresholds: distorted analytic structure, e.g.,

 $\ln F_1^v(t) \Big|_{\rm HB} \propto (t - 4M_\pi^2)^{1/2}$

• Resonance-enhanced loop effects: the $\Delta(1232)$ at higher orders

Chiral expansion of m_N

$$m_{N} = m_{0} - 4c_{1}M_{\pi}^{2} - \frac{3g_{A}^{2}M_{\pi}^{3}}{32\pi F_{\pi}^{2}} - \frac{3[g_{A}^{2} + m_{N}(-8c_{1} + c_{2} + 4c_{3})]}{32\pi^{2}F_{\pi}^{2}m_{N}}M_{\pi}^{4}\log\frac{M_{\pi}}{m_{N}} + \left\{e_{1} - \frac{3(2g_{A}^{2} - c_{2}m_{N})}{128\pi^{2}F_{\pi}^{2}m_{N}}\right\}M_{\pi}^{4} + \mathcal{O}(M_{\pi}^{5})$$

$$\sigma_{\pi N} = M_{\pi}^{2}\left\{1 - \frac{M_{\pi}^{2}}{32\pi^{2}F_{\pi}^{2}}(I_{3} - 1)\right\}\frac{\partial m_{N}}{\partial M_{\pi}^{2}} = \cdots$$

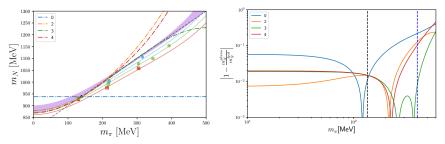
• Let's look at the coefficients:

•
$$\mathcal{O}(\epsilon_{\pi}^{2}): -4c_{1}m_{N} \simeq 2.8$$

• $\mathcal{O}(\epsilon_{\pi}^{3}): -\frac{3\pi g_{A}^{2}}{2} \simeq -7.6$
• $\mathcal{O}(\epsilon_{\pi}^{4}\log \epsilon_{\pi}^{2}): -\frac{3[g_{A}^{2}+m_{N}(-8c_{1}+c_{2}+4c_{3})]}{4} \simeq 6.1$, driven by $m_{N}(-8c_{1}+c_{2}+4c_{3}) \simeq -9.8$
• $\mathcal{O}(\epsilon_{\pi}^{4}): m_{N}^{3}e_{1} - \frac{3(2g_{A}^{2}-c_{2}m_{N})}{8} \simeq 11.2$, driven by e_{1} to match $\sigma_{\pi N}$

 \hookrightarrow apart from maybe $\mathcal{O}(\epsilon_{\pi}^2)$ none of them are $\mathcal{O}(1)!$

Lepage plot for the nucleon mass



Courtesy of André Walker-Loud, INT program "New Physics Searches at the Precision Frontier"

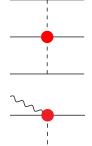
- Comparison of ChPT with lattice data, LECs predicted from phenomenology
- Despite the enhancements, works well up to N²LO
- Agreement becomes worse at N³LO, could be lattice-pheno tension in $\sigma_{\pi N}$, but also large coefficient of $M_{\pi}^4 \log M_{\pi}$
 - \hookrightarrow look at low-energy constants (LECs) next

Low-energy constants of baryon ChPT

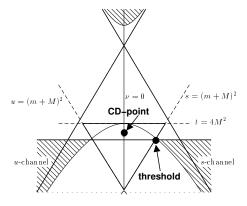
- EFT idea: fix LECs in the simplest process, predict more complicated ones
 - LO meson ChPT: $F, M \rightarrow F_{\pi}, M_{\pi}$
 - LO baryon ChPT: $m, g \rightarrow m_N, g_A$
 - NLO baryon ChPT: c_i
- c_i determine long-range part of
 - NN potential
 - 3N force
 - Axial current
- c_i incorporate the Δ (1232), to LO in M_{π} and $\Delta = m_N m_{\Delta}$

$$c_1^{\Delta} = 0$$
 $c_2^{\Delta} = -c_3^{\Delta} = 2c_4^{\Delta} = \frac{4h_A^2}{9\Delta} = 3.0 \,\mathrm{GeV}^{-1}$

Maybe not even that large, but pion loops compound the issue



The Mandelstam plane for pion-nucleon scattering



$$\begin{aligned} \pi(p) + N(q) &\to \pi(p') + N(q') \\ s &= (p+q)^2 \quad t = (p-p')^2 \quad u = (p-q')^2 \\ s + t + u &= 2m_N^2 + 2M_\pi^2 \\ \nu &= \frac{s-u}{4m_N} \end{aligned}$$

- Subthreshold expansion around $(\nu, t) = (0, 0) \leftrightarrow (s, t) = (m_N^2 + M_{\pi}^2, 0)$
- Threshold expansion around $(\nu, t) = (M_{\pi}, 0) \leftrightarrow (s, t) = ((m_N + M_{\pi})^2, 0)$
- NN potential largely sensitive to $(\nu, t) = (-\frac{M_{\pi}^2}{m_N}, 0) \leftrightarrow (s, t) = (m_N^2 M_{\pi}^2, 0)$ Kaiser 2001

	NLO	N ² LO	N ³ LO	N ³ LO ^{NN}
c ₁	-0.74(2)	-1.07(2)	-1.11(3)	-1.10(3)
<i>c</i> 2	1.81(3)	3.20(3)	3.13(3)	3.57(4)
<i>c</i> 3	-3.61(5)	-5.32(5)	-5.61(6)	-5.54(6)
<i>c</i> ₄	2.17(3)	3.56(3)	4.26(4)	4.17(4)
$\bar{d}_{1} + \bar{d}_{2}$	-	1.04(6)	7.42(8)	6.18(8)
ā3	_	-0.48(2)	-10.46(10)	-8.91(9)
d ₅	_	0.14(5)	0.59(5)	0.86(5)
$\bar{d}_{14} - \bar{d}_{15}$	_	-1.90(6)	-13.02(12)	-12.18(12)

One-to-one correspondence between subthreshold parameters and LECs

- Can solve for LECs analytically
- Maximal distance from threshold singularities
- πN amplitude can be expanded as a polynomial
- Subthreshold parameters from Roy–Steiner equations, input from pionic atoms
- Uncertainties negligible compared to chiral expansion

	NLO	N ² LO	N ³ LO	N ³ LO ^{NN}			
c ₁	-0.74(2)	-1.07(2)	-1.11(3)	-1.10(3)		N ³ LO	N ³ LO ^{NI}
<i>c</i> 2	1.81(3)	3.20(3)	3.13(3)	3.57(4)		0.00(4)	1 10/4
c3	-3.61(5)	-5.32(5)	-5.61(6)	-5.54(6)	ē ₁₄	0.89(4)	1.18(4
c4	2.17(3)	3.56(3)	4.26(4)	4.17(4)	ē ₁₅	-0.97(6)	-2.33(6
$\bar{d}_1 + \bar{d}_2$	_	1.04(6)	7.42(8)	6.18(8)	ē ₁₆	-2.61(3)	-0.23(3
d ₃		-0.48(2)	-10.46(10)	-8.91(9)	ē ₁₇	0.01(6)	-0.18(6
-	_	. ,	· · /	. ,	ē ₁₈	-4.20(5)	-3.24(5
ā ₅	_	0.14(5)	0.59(5)	0.86(5)			
$\bar{d}_{14} - \bar{d}_{15}$	_	-1.90(6)	-13.02(12)	-12.18(12)			

• Sizable shifts due to pion loops at subleading orders that need not cancel in observables, e.g., only partial compensation for 3*N* force and axial current

$$\delta c_1 = -\frac{g_A^2 M_\pi}{64\pi F_\pi^2} \simeq -0.13 \,\text{GeV}^{-1} \qquad \delta c_3 = -\delta c_4 = \frac{g_A^2 M_\pi}{16\pi F_\pi^2} = 0.85 \,\text{GeV}^{-1}$$

Chiral expansion of g_A

$$g_{A} = g_{0} \left[1 - \frac{M_{\pi}^{2}}{16\pi^{2} F_{\pi}^{2}} \left((1 + 2g_{0}^{2}) \log \frac{M_{\pi}^{2}}{\mu^{2}} + g_{0}^{2} \right) + \frac{4M_{\pi}^{2} d_{16}^{\prime}(\mu)}{g_{0}} + \frac{M_{\pi}^{3}}{24\pi F_{\pi}^{2} m_{N}} \left(3(1 + g_{0}^{2}) + 4m_{N}(2c_{4} - c_{3}) \right) \right]$$

• Let's again look at the coefficients:

•
$$\mathcal{O}(\epsilon_{\pi}^2)$$
: $-g_A^2 \simeq -1.6$
• $\mathcal{O}(\epsilon_{\pi}^2 \log \epsilon_{\pi}^2)$: $-(1 + 2g_A^2) \simeq -4.2$
• $\mathcal{O}(\epsilon_{\pi}^3)$: $\frac{2\pi \left[3(1+g_A^2)+4m_N(2c_4-c_3)\right]}{3} \simeq 127.5$, driven by $m_N(2c_4-c_3) \simeq 13.3 \times \text{factor } \frac{8\pi}{3}$

- *g*_A is maybe the worst case imaginable, but in general large *c_i* in loops have the potential to wreak havoc on convergence
- Will come back to g_A later, next: look into convergence in πN scattering, from which c_i are extracted

Low-energy theorems Weinberg 1966

$$\mathbf{a}_{0+}^{-} = \frac{M_{\pi}m_{N}}{8\pi F_{\pi}^{2}(m_{N} + M_{\pi})} \sim 79.4 \times 10^{-3} M_{\pi}^{-1} \qquad \mathbf{a}_{0+}^{+} = 0$$

Chiral suppression of isoscalar channel

- More sensitive to LECs
- Fewer non-trivial orders
- Expect worse chiral convergence
- Related to $\pi N \sigma$ -term via Cheng–Dashen low-energy theorem
- To test the chiral expansion, including role of $1/m_N$ corrections:
 - Fix LECs at subthreshold point
 - 2 Calculate threshold parameters for HB- πN , HB-NN, and covariant formulation
 - Compare to phenomenology

	a	<mark>_</mark> [10 ^{−3} M	- ¹]	a	a_{0+}^+ [10 ⁻³ M_{π}^{-1}]			
	HB-NN	HΒ- <i>πΝ</i>	covariant	HB-NN	HB- <i>πN</i> covarian			
LO	79.4	79.4	79.4	0	0	0		
NLO	79.4	79.4	80.1	-14.2	-24.0	-24.1		
N ² LO	92.2	92.9	89.9	0.5	0.5	-14.8		
N ³ LO	68.5	58.6	83.8	-1.5	-8.0	-5.7		
Pionic atoms		85.4(9)		-0.9(1.4)				

- Expansion of a_{0+}^+ about as good as could be expected, but a_{0+}^- terrible at N³LO
- Why does the scheme make such a big difference? No anomalous thresholds, just normal threshold expansion

• At N³LO: 1-loop diagrams with *c_i* insertions

$$g_A^2(c_3 - c_4) \simeq -15.9 \, {
m GeV^{-1}}$$

 \hookrightarrow suggests to include $\Delta(1232)$ as an explicit degree of freedom

• For full 1-loop amplitudes need (ϵ counting: $m_{\Delta} - m_N = O(M_{\pi})$)

- LO: $h_A = 1.40(5)$ $\pi N\Delta$
- N²LO: $g_1 = 2.32(26)$ $\pi \Delta \Delta$
- N³LO: $b_4 + b_5 = \pm 5 \,\text{GeV}^{-1}$ $\pi N \Delta$

$$b_4 - b_5 = \pm 5 \,\mathrm{GeV}^{-1} \qquad \pi N \Delta$$

• Phenomenology for h_A (Δ width), large- N_c for the others

a_{0+}^{-} [10 ⁻³ M_{π}^{-1}]	HB-NN		HΒ- <i>πN</i>		covariant	
	Δ -less	∆-ful	Δ -less	∆-ful	Δ -less	∆-ful
NLO	79.4	79.4(0)	79.4	79.4(0)	80.1	81.9(1)
N ² LO	92.2	92.7(1.0)	92.9	90.5(9)	89.9	81.7(1.2)
N ³ LO	68.5	96.3(2.0)	58.6	69.1(1.2)	83.8	83.4(1.0)
Pionic atoms			85	i.4(9)		

- Including the Δ(1232) indeed helps
- Still large differences between the schemes, covariant formulation clearly superior
- Overall: HB-NN a little better than HB- πN
- How can $1/m_N$ corrections make such a huge difference?

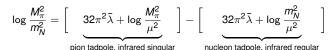
	HB-NN		HΒ-π <i>Ν</i>		covariant		RS
N ³ LO	Q^4	ϵ^4	Q^4	ϵ^4	Q^4	ϵ^4	
$a_{0+}^+[M_\pi^{-1}10^{-3}]$	-1.5	-1.5(8.5)	-8.0	1.4(7.5)	-5.7	-0.7(6.6)	-0.9(1.4)
$a_{0+}^{-}[M_{\pi}^{-1}10^{-3}]$	68.5	96.3(2.0)	58.6	69.1(1.2)	83.8	83.4(1.0)	85.4(9)
$a_{1+}^+[M_\pi^{-3}10^{-3}]$	134.3	136.2(8.2)	132.1	135.8(7.9)	128.0	132.7(7.6)	131.2(1.7)
$a_{1+}^{-}[M_{\pi}^{-3}10^{-3}]$	-80.9	-80.0(3.0)	-90.1	-86.5(3.1)	-78.1	-81.1(2.1)	-80.3(1.1)
$a_{1-}^+[M_\pi^{-3}10^{-3}]$	-55.7	-47.2(5.0)	-73.7	-56.6(4.6)	-53.5	-51.4(4.9)	-50.9(1.9)
$a_{1-}^{-}[M_{\pi}^{-3}10^{-3}]$	-10.0	-6.0(2.9)	-23.7	-15.2(2.8)	-11.8	-10.3(3.9)	-9.9(1.2)
$b_{0+}^+[M_{\pi}^{-3}10^{-3}]$	-42.2	-30.8(7.9)	-44.5	-30.6(7.3)	-54.7	-33.8(6.6)	-45.0(1.0)
$b_{0+}^{-}[M_{\pi}^{-3}10^{-3}]$	-31.6	7.6(2.3)	-65.2	-35.0(2.3)	2.3	2.8(2.8)	4.9(8)

Similar conclusions as before

- Including the $\Delta(1232)$ definitely helps (size of LECs reduced to more natural values)
- Still large variation among schemes
- Covariant best, HB-NN somewhat better than HB-πN

Covariant vs. heavy-baryon ChPT

- The observation that covariant ChPT performs better is not new, e.g. chiral extrapolation of lattice data for baryon masses Martin Camalich et al. 2010, Ren et al. 2014, ...
- In nuclear structure, relativistic corrections typically small, how can they make such a big effect in the single-baryon sector?
- Possible origins (from analytic expressions):
 - Non-analytic functions in M_{π}^2 : $\arctan \frac{M_{\pi}}{m_M}$, factors of π
 - \hookrightarrow not nearly enough to overcome $M_\pi/m_N\simeq 0.15$
 - Higher-order logs: $\log \frac{M_{\pi}^2}{m_N^2} \simeq -3.8$

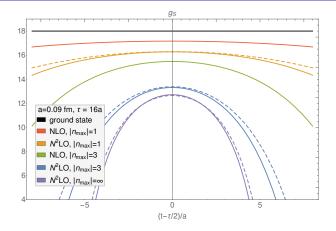


In covariant formulation such logs are included explicitly, but the scale is arbitrary beyond 1-loop: power-counting argument?

M. Hoferichter (Institute for Theoretical Physics)

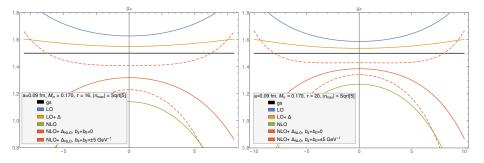
On the convergence of baryon ChPT

Excited-state contamination for $\sigma_{\pi N}$



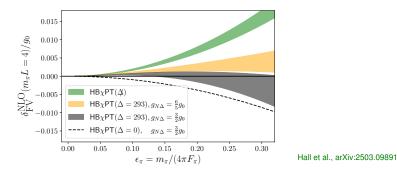
- Sizable c_i effects could help explain tension between lattice and pheno for $\sigma_{\pi N}$
- Dashed lines N²LO + leading Δ (1232) effect
 - \hookrightarrow chiral convergence looks very stable

Excited-state contamination for g_A



- LO result is larger than ground state
 - \hookrightarrow excited-state contamination would have wrong sign
- NLO corrections do flip sign
 - \hookrightarrow again large c_i effects
- Results less stable than for $\sigma_{\pi N}$ when considering explicit Δ degrees of freedom

A recent study of finite-volume corrections in g_A

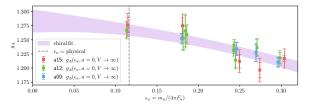


- Finite-volume corrections to g_A change sign when including the $\Delta(1232)$
- (At least) part of the reason: coefficient of chiral log vanishes for $N_c
 ightarrow \infty$

$$\lim_{N_c \to \infty} \left[g_A^3 + \frac{2}{9} g_A h_A^2 - \frac{50}{81} g_1 h_A^2 \right] = 0$$

- \hookrightarrow finite-volume corrections inherit a similar pattern
- Paper includes finite-volume corrections up to N²LO

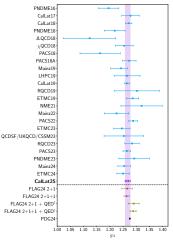
A recent study of finite-volume corrections in g_A



 Main point: finite-volume corrections to become (serious) concern for sub-percent calculations of g_A

• Update for
$$g_A^{\text{QCD}} = 1.2674(96)$$

- Chiral fit gives $2c_4 c_3 = (0.66 0.70) \text{ GeV}^{-1}$
 - \hookrightarrow factor 20 smaller than phenomenological value
- For g_A, chiral expansions without the Δ(1232) look doomed to fail



Conclusions

• Pitfalls in the convergence of SU(2) HB ChPT

- Large numerical coefficients ("π enhancement")
- Large c_i in loops
- Severity depends very much on case at hand, m_N maybe OK, g_A a disaster
- Full 1-loop calculation of πN scattering, including $\Delta(1232)$
 - Strict HB formulation not accurate enough to cover the whole low-energy region, cannot connect subthreshold and physical region
 - Including the Δ(1232) helps, but in addition/instead a covariant formulation improves convergence
 - Possibly related to higher-order chiral logs, but no power-counting argument
- Comparison to lattice QCD for m_N , $\sigma_{\pi N}$, and g_A
 - Excited-state contamination from ChPT: convergence for m_N, σ_{πN} looks fine, g_A again much more unstable
 - Finite-volume corrections for g_A : large- N_c limit suggests significant cancellations
 - Absurd value for $2c_4 c_3$ from chiral fit to lattice data for g_A
 - Comprehensive analysis of m_N and g_A (in analogy to πN) in progress, becoming possible with improved lattice data

M. Hoferichter (Institute for Theoretical Physics)

On the convergence of baryon ChPT