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Large-Nc expansion and nucleon interactions
- Constraints on NN and 3N interactions from considering 


- Largely in agreement with data where available


- NN scattering


- External currents


- Neutrinoless double beta decay


- Parity violation and time reversal invariance violation (?)

Nc → ∞



Large-Nc expectation vs Nĳmegen

Kaplan, Manohar (1997)
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NN scattering in the large-Nc expansion
- Baryon-baryon scattering amplitude 


- Large-Nc analysis applied to potential


- Effective Hamiltonian 
 

- Building blocks

∼ O(Nc)

Witten (1979); Dashen, Jenkins, Manohar (1994); Kaplan, Savage (1996); Kaplan, Manohar (1997)
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Fig. 36. Constituent interchange without  gluon exchange. 

the kinetic and interaction energy are each of order N, the total Hamiltonian H of 
the two-baryon sector can be written H =N[I,  where/ / i s  a reduced Hamiltonian. 
The eigenvectors of H, and therefore also the scattering cross sections, are not 
affected by the overall factor of N. 

Proceeding now to a mathematical treatment of baryon-baryon scattering, we 
may reason as follows. To study a two-baryon process, we must study the 
Schr6dinger equation in the sector with 2N quarks. Two baryons initially at rest 
will not remain at rest (they will attract or repel each other), and therefore it is 
not convenient to use the time-independent Schr6dinger equation;we will consider 
instead the time-dependent Schr6dinger equation in the sector with 2N quarks. 

In the previous discussion of one-baryon problems, we placed all N quarks, with 
different colors, in the same space-spin wave function. Now that we have 2N 
quarks, and only N colors, the exclusion principle does not permit us to place all 
the quarks in the same space-spin wave function. The appropriate procedure (exact 
for large N) is to introduce a pair of time-dependent, space-spin wave functions 
~bi(x, t), i = 1, 2, and to place N quarks in $1 and the other N quarks in ~2, antisym- 
metrizing with respect to which quarks have which colors and are in which of the 
~i" The ~i are  required to be orthonormal, ($il(aj) = ~ij" 

In other words, the many body wave function ~(xl ,  ... X2N, t) should be written 

N N 

¢(x I ... X2N, t) = ~ ( - - 1 )  P I-I ckl(xi, t) 1-[ ¢2(xj, t) 
P i = 1 j= 1 

(25) 

as a sum of products, with N quarks xi, i = 1 ... N, in ~1, and the other N quarks xi, 
] = 1 ... N, in ~2, and antisymmetrized with respect to which quarks are in the first 
group and which in the second group, and which colors they have. 

To determine the time dependence of ~1 and ¢2, one makes use of the usual 
time-dependent variational principle. Varying f dt(~ [1t-  i(~/~t)l~) with respect to 
4, one obtains the exact Schr6dinger equation i(b~/at) = H~.  If one believes that 
the ansatz (25) is exact for large N, then one may insert this ansatz into the varia- 
tional principle and vary only with respect to ~1 and ~b 2, obtaining in this way a 
pair of  coupled equations for ~l and ¢2 which describe the large N limit of baryon- 
baryon scattering. 

E. Witten / Baryons in the 1IN expansion 91 

mathematical treatment let us first ask heuristically how strong is the baryon- 
baryon interaction. It will turn out that the dominant baryon-baryon interaction 
comes, for large N, from the exchange (fig. 35) of a pair of constituents. One quark 
from each baryon jumps to the other baryon, with exchange of a gluon between the 
two quarks. The N dependence of such an amplitude can be determined as follows. 
There is a factor of N from choosing a quark from the first baryon, a factor of N 
from choosing a quark in the second baryon, and a factor of 1IN from the gluon 
couplings. Altogether, then, the amplitude for this process is of order N2(1/N) = 
N. 

Actually (fig. 36)) the two quarks could also have jumped places without 
exchanging a gluon. The diagram of fig. 36, which comes with a factor of ( -1 ) ,  is 
simply a diagrammatic way to express the fact that the quark wave functions in 
the first baryon must be orthogonal to the quark wave functions in the second 
baryon. In this case of gluonless quark interchange, the exchanged quarks must 
have the same SU(N) quantum numbers, so as to preserve the color neutrality of 
the two baryons. (In the previous case, this neutrality could be restored by 
exchange of a gluon.) As a result we may choose arbitrarily a quark from the first 
baryon - giving a factor o f N  - but the other quark that is exchanged must then be 
chosen to have the same quantum numbers as the first one. Thus, we obtain only a 
single factor of N from selecting the first quark, and the amplitude for gluonless 
quark interchange, like the amplitude for quark interchange accompanied by 
exchange of a gluon, is of order N. 

At first sight, this result may appear disastrous. How can baryon-baryon scatter- 
ing have a smooth large N limit, if the baryon-baryon force is growing in propor- 
tion to N? At this point we must remember that the baryon mass is also of  order 
N. As a result, for given velocity the baryon kinetic energy -~/BV 2 is of order N. The 
fact that the baryon-baryon interaction energy is of order N is precisely what is 
needed in order for this interaction to be of the same order of magnitude as the 
kinetic energy. This makes possible a smooth and non-trivial large N limit for the 
scattering cross sections. Had the baryon-baryon interaction been of order one, it 
would have been negligible compared to the kinetic energy, and the scattering cross 
sections would have vanished at large N. 

Roughly speaking, the situation can be described in the following way. Because 
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Fig. 35. Baryon-baryon scattering by constituent interchange, with gluon exchange. 

V(p−, p+) = ⟨N(p′ 1), N(p′ 2) |H |N(p1), N(p2)⟩

H = Nc ∑
s,t,u

vstu ( S
Nc )

s

( I
Nc )

t

( G
Nc )

u

Si = q† σi

2
q, Ia = q† τa

2
q, Gia = q† σiτa

4
q



Large-Nc scaling
- Leading-in-Nc matrix elements factorize


- Nucleon matrix elements 
 
 

- Momenta (in t-channel) 
 
 

- Coefficients (excluding momenta) 
 
 

 
⟨N′ |Gia |N⟩ ∼ ⟨N′ |1 |N⟩ ∼ O(Nc)

⟨N′ |Si |N⟩ ∼ ⟨N′ | Ia |N⟩ ∼ O(1)

p− = (p′ 1 − p′ 2) − (p1 − p2) ∼ O(1)
p+ = (p′ 1 − p′ 2) + (p1 − p2) ∼ 1/MN ∼ O(1/Nc)

ṽstu ∼ 1

Dashen, Jenkins, Manohar (1994,95); Kaplan, Savage (1996); Kaplan, Manohar (1997)



Why care about the Δ?
- Intermediate  states ignored


- Large-Nc scaling based on (contracted) SU(4) spin-flavor symmetry in 
baryon spectrum 
 
 

- Requires degenerate baryons with , (i.e., )


- Meson-exchange of NN potential picture:  intermediate states needed for consistency

Δ

u ↑ , u ↓ , d ↑ , d ↓

I = J =
1
2

,
3
2

, … MΔ − MN → 0

Δ

Dashen, Jenkins, Manohar (1994), Banerjee, Cohen, Gelman (2002)

Given importance of Δ states - why the reasonable agreement?



Pionless (and -less) EFT and the large-Nc expansionΔ
- LO S-wave interactions


- Spin-isospin structure of operators 
 

- Large-Nc scaling of LECs 
 

- In large-Nc limit 
 

Kaplan, Savage (1996)

C(1S0) = C(3S1)

(N†N)(N†N) ∼ 11 ⋅ 12 (N†σiN)(N†σiN) ∼ ̂S1 ⋅ ̂S2

CS ∼ O(Nc) CT ∼ O(1/Nc)

ℒ = −
1
2

CS (N†N)(N†N) −
1
2

CT (N†σiN)(N†σiN)



Renormalization-point dependence
- Unnaturally large scattering lengths dominate for small 


- Agreement with large-Nc expected errors for  (in PDS)

μ

μ ≳ mπ
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Kaplan, Savage (1996)



LO SU(4)-symmetric Lagrangian
- N and Δ ground states in same SU(4) multiplet 


- LO Lagrangian in large-Nc limit is SU(4) symmetric 
 
 

- Describes , and  S-wave interactions 


- SU(4)-symmetric Lagrangian contains two independent LECs 
 
 

ψ ABC

NN, NΔ ΔΔ

Kaplan, Savage (1996)

ℒ = − ã (ψ†
ABCψ ABC)

2
− b̃ ψ†

ABCψ ABDψ†
EFDψEFC

 relationships between , and  LECs in different S waves⇒ NN, NΔ ΔΔ



ΔΔ intermediate states in NN scattering
- Resummation of intermediate  states in S-wave  scattering 

 
 
 
 

 effective  parameters 
 
 
 
where :  loop integral

ΔΔ NN

⇒ NN

IΔ Δ

Savage (1996)

+ + …

C̃E(p) = CNN +
(CNΔ)2IΔ(p)

1 − CΔΔIΔ(p)



Relating  and  channels1S0
3S1

- 20-dim representation in terms of  and  
 
 

- Additional invariance under spin-isospin exchange (“flip” ) 


- Under : 
 

- LECs in -full theory: 
 

N Δ

F a ↔ α, …

F

Δ

ΨABC → Ψabc
αβγ = Δabc

αβγ +
1

18 (Na
αϵbcϵβγ + Nb

βϵacϵαγ + Nc
γ ϵab)

Kaplan, Savage (1996); Richardson, MRS, Springer (2024)

𝒪(1S0)
NN

F⟷ 𝒪(3S1)
NN , 𝒪(1S0)

ΔN
F⟷ 𝒪(3S1)

ΔN , 𝒪(1S0)
ΔΔ

F⟷ 𝒪(3S1)
ΔΔ

C(1S0)
NN = C(3S1)

NN , C(1S0)
NΔ = C(3S1)

NΔ , C(1S0)
ΔΔ = C(3S1)

ΔΔ



Relating  and  channels1S0
3S1

- LO amplitudes   
 

- Matching amplitudes to -less theory: 
 
 
 
 
 

- Does not imply 


- Also holds for two-derivative S-wave interactions

Δ

C(S)
NN = C(S)

NN, /Δ

Kaplan, Savage (1996); Richardson, MRS, Springer (2024)

C(1S0)
NN, /Δ = C(3S1)

NN, /Δ

Same result as applying large-Nc scaling rules to -less theory directlyΔ

𝒜(1S0)
NN,LO = 𝒜(3S1)

NN,LO



Other partial waves
- For  NN interactions in -less theory perturbative  assume also holds for  

interactions 

- Exception: interactions mixing S and higher partial waves (S-D, parity violation, etc)


- Additional mixing operators with  fields


- Can again resum  intermediate states


- Example:

L ≥ 1 Δ → Δ

Δ

ΔΔ

  contributes at higher order⇒ Δ

Richardson, MRS, Springer (2024)

C̃ (S−P)
NN (p) ≡ [C(S−P)

NN + C(S−P)
NΔ

C(S)
ΔNIΔ

1 − C(S)
ΔΔIN ]



SU(4) constraints on LECs
- SU(4) symmetric Lagrangian depends on two LECs  and  

 
 

- : 
 
 

- :

ã b̃

NN

NΔ

 Constraints on  LECs⇒ NN, NΔ, ΔΔ

C(1S0)
NN = 2 (ã −

b̃
27 ) = C(3S1)

NN

Kaplan, Savage (1996); Richardson, MRS, Springer (2024)

C(1S0)
ΔN =

8 5
27

b̃ = C(3S1)
ΔN



- :ΔΔ


C(0,1)
ΔΔ = 2 (ã +

b̃
27 ) = C(1,0)

ΔΔ

C(0,3)
ΔΔ = 2 (ã −

b̃
3 ) = C(3,0)

ΔΔ


C(1,2)
ΔΔ = 2 (ã −

b̃
27 ) = C(2,1)

ΔΔ

C(3,2)
ΔΔ = 2 (ã +

b̃
3 ) = C(2,3)

ΔΔ

- Equality  LECs  information from  not sufficient to determine  and 


- Combine  with  scattering (e.g., )  lattice [ ]?

NN ⇒ NN ã b̃

NN ΔΔ S = 3, I = 0 → d⋆(2380)

Gongyo et al. (2020)



Unitary limit
- Take unitary limit for  scattering


- Amplitudes in other channels -dependent unless 


- Amplitudes in other channels also in unitary limit


- For : 
 
 
 
 

- , 

NN

μ b̃(μ) = 0

b̃(μ) = 0

C̃(S−D)
NN /C̃(S)

NN → C(S−D)
NN, /Δ /C(S)

NN, /Δ C̃(S−P)
NN /C̃(S)

NN → C(S−P)
NN, /Δ /C(S)

NN, /Δ

C(1S0)
ΔN = 0 = C(3S1)

ΔN

Decoupling of  sector from ΔΔ NN



b̃(μ) = 0
- Unitary limit not required, also consequence of finite  (cf Wigner)


- No effect on large-Nc expectations for  S-wave interactions: 
 
 

-  and all 

aNN = a(3,0)
ΔΔ

NN

CΔN = 0 CNN = CΔΔ = 2ã

 for any value of of C(1S0)
NN = C(3S1)

NN b̃



Including strangeness
- Extension to three flavors  SU(6) symmetry in large-Nc limit


- Octet and decuplet in 56-dim representation


- Constraints on Savage-Wise (octet-octet) coefficients  
 only  dependent on 


- Lattice calculations  suppression of ?


- If SU(16) symmetry in octet-octet interactions


- Also corresponds to suppression of spin entanglement in octet-octet scattering

⇒

c1, …, c6
⇒ c5 ã

→ b̃

b̃ = 0 ⇒

Kaplan, Savage (1996); NPLQCD (2017, 2021); Klco et al (2018)



Including strangeness
- Extend to decuplet interactions 

 
 

- HAL QCD:  scattering in  channel close to unitary limit 
 
 
 

- SU(56) symmetry

ΩΩ 1S0

Richardson, MRS, Springer (2024); Gongyo et al (2018)

C(1S0)
ΩΩ = C(0,3)

ΔΔ = C(3,0)
ΔΔ

b̃(μ) = 0



Conclusions
-  plays important role in baryon sector in large-Nc limit


- Large-Nc applied to NN interactions without reasonable agreement  


- In pionless EFT in large-Nc limit:


- S waves: ratios of LECs identical in theories with and without 


- Higher partial waves: perturbative,  contributes at higher order


- Potential issue: S-D mixing, parity-violating S-P interactions

Δ

Δ →

Δ

Δ



Conclusions
- SU(4) constraints on baryon-baryon LECs


- Unitary limit  decoupling of  sector


- Similar conclusions for three flavor SU(6)

⇒ Δ


