Constraining twin stars with cold neutron star cooling data

Melissa Mendes

TU Darmstadt

Established by the European Commission

- 4 E N

Outline

D Constraining the core EOS with neutron star luminosities

- Motivation
- Research questions
- EOS we work with
 - Hadronic
 - Hybrid

3

Constraints on hybrid EOS phase transition densities

• Reproducing sources' luminosities

Based on MM et al, 2024 (submitted to PRD, ArXiv:2408.05287)

Outline

1 Constraining the core EOS with neutron star luminosities

- Motivation
- Research questions

2 EOS we work with

- Hadronic
- Hybrid

Constraints on hybrid EOS phase transition densities
 Reproducing sources' luminosities

3 + + 3 + 3 = 1 + 1 + 1 + 1

Temperature observations can constrain the core EOS

Transiently-accreting stars provide luminosity as a function of accreted mass By observing several cycles of accretion, we estimate how fast they cool down

From Potekhin et al, 2023 (MNRAS), ArXiv:[2303.08716]

Melissa Mendes

Research questions

- Are there twin-star EOS that are inconsistent with current luminosity data?
- Can we constrain the quark-hadron phase transition with cooling calculations?

Outline

Constraining the core EOS with neutron star luminosities

- Motivation
- Research questions
- 2 EOS we work with• Hadronic
 - Hybrid

Constraints on hybrid EOS phase transition densities
 Reproducing sources' luminosities

0 P C = E 4 E + 4 E

Nucleon interactions are modelled by the exchange of mesons, whose interaction strengths are estimated with the relativistic mean field approximation.

The Lagrangian is

$$\begin{aligned} \mathcal{L}_{0} &= \bar{\psi} \left(i \gamma^{\mu} \partial_{\mu} - \boldsymbol{m}^{*} \right) \psi + \frac{1}{2} \left(\partial_{\mu} \phi \partial^{\mu} \phi - \boldsymbol{m}_{s}^{2} \phi^{2} \right) + \frac{1}{2} \boldsymbol{m}_{v}^{2} \boldsymbol{V}_{\mu} \boldsymbol{V}^{\mu} - \\ &- \frac{1}{4} \boldsymbol{F}_{\mu \nu} \boldsymbol{F}^{\mu \nu} + \frac{1}{2} \boldsymbol{m}_{\rho}^{2} \boldsymbol{b}_{\mu} \cdot \boldsymbol{b}^{\mu} - \frac{1}{4} \boldsymbol{V}_{\mu \nu} \boldsymbol{V}^{\mu \nu} - \frac{1}{4} \boldsymbol{b}_{\mu \nu} \cdot \boldsymbol{b}^{\mu \nu} \end{aligned}$$
$$\begin{aligned} \mathcal{L}_{\text{int}} &= \bar{\psi} \left[\boldsymbol{g}_{s} \phi - \left(\boldsymbol{g}_{v} \boldsymbol{V}_{\mu} + \frac{\boldsymbol{g}_{\rho}}{2} \tau \cdot \boldsymbol{b}_{\mu} + \frac{\boldsymbol{e}}{2} \left(1 + \tau_{3} \right) \boldsymbol{A}_{\mu} \right) \gamma^{\mu} \right] \psi - \frac{\kappa}{3!} \left(\boldsymbol{g}_{s} \phi \right)^{3} \\ &- \frac{\lambda}{4!} \left(\boldsymbol{g}_{s} \phi \right)^{4} + \frac{\zeta}{4!} \left(\boldsymbol{g}_{v}^{2} \boldsymbol{V}_{\mu} \boldsymbol{V}^{\mu} \right)^{2} + \Lambda_{V} \left(\boldsymbol{g}_{v}^{2} \boldsymbol{V}_{\mu} \boldsymbol{V}^{\mu} \right) \left(\boldsymbol{g}_{\rho}^{2} \boldsymbol{b}_{\mu} \cdot \boldsymbol{b}^{\mu} \right) \end{aligned}$$

Melissa Mendes

The EOS can be expanded as

$$E(n,\alpha) = E(n,0) + E_{sym}(n)\alpha^2 + \cdots$$
(1)

with $\alpha = 1 - 2y$ being the asymmetry parameter with $y = n_P/(n_N + n_P)$

$$E(n,0) = \epsilon_0 + \frac{1}{2}Kx^2 + \cdots,$$
 (2)

and

$$E_{\rm sym}(n) = J + Lx + \frac{1}{2}K_{\rm sym}x^2 + \cdots, \qquad (3)$$

where $x = (n - n_{\text{sat}})/3$

Hadronic RMF EOS, with e^- and μ^-

We work with EOS with different values of L, Dirac m^* and ζ

- 4 E

Reactions like
$$n \rightarrow p + l + \bar{\nu}_l$$
, $p + l \rightarrow n + \nu_l$

for NS in beta-equilibrium, can only happen when energy and momentum are conserved, that is, for electrons only:

$$P_{Fn} \leq P_{Fp} + P_{Fe} \Rightarrow \quad Y_p \geq \left[(Y_n)^{1/3} - (Y_e)^{1/3} \right]^3$$

such that neutrino dUrca emissivity $Q_0^{dUrca} = \frac{457\pi}{10080} G_{\rm F}^2 \cos^2 \theta_{\rm C} \left(1 + 3g_{\rm A}^{*2}\right) \frac{m_n^* m_p^* m_e}{h^{10} c^3} (k_{\rm B} T)^6 \Theta_{npe}$ with $g_A^* \simeq g_A \left(1 - \frac{n}{4.15(n_{sat} + n)}\right)$.

Melissa Mendes

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のなの

First-order Maxwell construction, quark phase analytically given by:

$$\begin{array}{l} \epsilon(p) = \epsilon_{\mathsf{hadronic}} \left(p \right), p < p_{\mathsf{trans}} \\ \epsilon(p) = \epsilon_{\mathsf{hadronic}} \left(p_{\mathsf{trans}} \right) + \Delta \epsilon + c_{\mathcal{QM}}^{-2} \left(p - p_{\mathsf{trans}} \right), p \geq p_{\mathsf{trans}} \end{array}$$

$$n = n_{\text{hadronic}}, n < n_{\text{trans}}$$

$$n = \frac{(p_{\text{trans}} + \epsilon_{\text{hadronic}} (p_{\text{trans}}) + \Delta \epsilon) n_{\text{hadronic}} (p_{\text{trans}})}{p_{\text{trans}} + \epsilon_{\text{hadronic}} (p_{\text{trans}})} \sqrt{\frac{\epsilon + p}{\epsilon_{\text{hadronic}} (p_{\text{trans}}) + p_{\text{trans}}}}$$

we choose $c_{QM} = 1$ to maximize the phase space

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Quark-hadron hybrid (twin) stars

Hybrid stars with two mass-radius branches, consistent with observations Phase transition density arbitrarily chosen

- ∢ ≣ →

Similarly, reactions like $d
ightarrow u + e^- + ar{
u}_e, \quad u + e^-
ightarrow d +
u_e$

result in quark dUrca emissivity

$$Q^{\rm q\,dUrca} = \frac{914}{315} \frac{G_{\rm F}^2 \cos^2 \theta_{\rm C}}{\hbar^{10} c^6} (3Y_e)^{1/3} \alpha \pi^2 \hbar^3 n \, (k_{\rm B}T)^6,$$

if quark masses neglected and $n_q^i=n_q^j,~n_e=n_\mu=0$

(We assume $\alpha = 0.1$ and $Y_e = 10^{-5}$)

Melissa Mendes

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 のの⊙

Outline

Constraining the core EOS with neutron star luminosities

- Motivation
- Research questions
- 2 EOS we work with
 - Hadronic
 - Hybrid

3 Constraints on hybrid EOS phase transition densities

• Reproducing sources' luminosities

⇒ ↓ ≡ ↓ ≡ |= √Q ∩

Can we reproduce MXB 1659-29's inferred luminosity?

Melissa Mendes

When superfluidity or superconductivity are considered, $Q^{dUrca} = Q_0^{dUrca} R$ where, for neutron triplets $(P_2^3, m = 0)$,

$$\tau = T/T_{c}$$

$$v_{\rm T} = \sqrt{1 - \tau} \left(0.7893 + \frac{1.188}{\tau} \right)$$

$$R_{\rm L} = \left[0.2546 + \sqrt{(0.7454)^{2} + (0.1284 v_{\rm T})^{2}} \right]^{5} \exp\left(2.701 - \sqrt{(2.701)^{2} + v_{\rm T}^{2}} \right)$$

When proton and neutron pairing are simultaneously present, $R_L \sim \min(R_{L \text{ singlet}}, R_{L \text{ triplet}})$

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のなの

Many possible parametrizations, Ho et al, 2015 (PRC) [ArXiv:1412.7759]

-

∃ ► < ∃ ►</p>

With nuclear superfluidity

Including nuclear pairing doesn't improve the situation necessarily

Melissa Mendes

With nuclear superfluidity

Including nuclear pairing doesn't improve the situation necessarily

Melissa Mendes

Can we reproduce SAX 1808.4-3625's inferred luminosity?

Not always, especially for low density quark-hadron phase transitions

A B b

Can we reproduce SAX 1808.4-3625's inferred luminosity?

Not always, especially for low density quark-hadron phase transitions

Cooling processes efficiency rates

Results sensitive to efficiency rates of the cooling processes

- It's challenging to build twin stars that respect mass-radius, tidal deformability and luminosity constraints
- Low density phase transitions (below 1.7 $n_{\rm sat})$ fail to reproduce cold neutron stars
- Further investigating the sensitivity of these results would be interesting

Thank you!

melissa.mendes@physik.tu-darmstadt.de

Outline

Melissa Mendes

Crust reactions release

$$Q_{
m nuc}~pprox 1-2{
m MeV}/m_{
m u},$$

per accreted nucleon. Hence the luminosity entering the core can be estimated

$$L_{\nu}(\tilde{T}) + L_{\gamma}(\tilde{T}) \approx \langle \dot{M} \rangle Q_{
m nuc}$$

But don't forget that

$$\tilde{T} = 7.0 \times 10^7 \text{ K} \left(\frac{T_{\text{eff}}^{\infty}}{63.1 \text{eV}} \right)^{1.82}$$
 (Fe envelope)
 $\tilde{T} = 3.1 \times 10^7 \text{ K} \left(\frac{T_{\text{eff}}^{\infty}}{63.1 \text{eV}} \right)^{1.65}$ (He envelope)

▶ ▲ 글 ▶ _ 글 날

The total heat capacity is a combination of specific volumetric heat capacities,

$$C_{v} = \int_{0}^{R} \frac{4\pi r^{2} \sum c_{x}}{\left(1 - \left(2Gm(r)/c^{2}r\right)\right)^{1/2}} dr,$$

where
$$c_x = rac{2k_{
m B}^2T}{(2\pi\hbar)^3}\int d{f k}_x \left(\epsilon_x - \mu_x\right) rac{df_x}{dT}.$$

If strongly degenerate, $c_{\rm x} = rac{m_{\rm x}^* k_{\rm F}~_{\rm x} k_{\rm B}^2 T}{3 \hbar^3}$

If superfluid/superconducting, $c_x^{paired} = c_x R$, where R is a function of T/T_c and depends on nuclear pairing channel

イロト (過) (ヨト (ヨト) 三日 ののの

Heat capacity calculation details

Given the individual heat capacities of each species C_x , we find the total heat capacity by

$$C_{\rm total}^{\rm core} = \int_0^{R_{\rm core}} \frac{4\pi r^2 \sum C_x}{\left(1 - (2Gm(r)/c^2 r)\right)^{1/2}} dr$$

where $C_x = \frac{m_x^* p_{F,x}}{3\hbar^3} k_B^2 T$. With superfluidity, it gets reduced such that $C_x^{pairing} = C_x R$. For neutron triplets,

$$\begin{aligned} \tau &= T/T_c \\ u_{\rm T} &= \sqrt{1-\tau} (5.596 + 8.424/\tau) \\ R_c &= \left[0.6893 + \sqrt{(0.790)^2 + (0.03983 \, u_{\rm T})^2} \right]^2 \exp\left(1.934 - \sqrt{(1.934)^2 + \frac{u_{\rm T}^2}{16\pi}} \right), \end{aligned}$$

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のなの