

Diffusion Generative Models for EIC Simulations

1

Vinicius M. Mikuni

Generative Models

1 2 3 4 5 6 7 8 9 10

▰ Which of these people you think are **AI generated?**

Generative Models

1 2 3 4 5 6 7 8 9 10

- ▰ Which of these people you think are **AI generated?**
- ▰ **Answer: All of them** <https://generated.photos/faces>

Generative models

Generative models are a class of algorithms trained to transform easy-to-sample noise into data

Source: <https://yang-song.net/blog/2021/score/>

4

QCD

QCD

QUARA

 \bullet

042 010 are Wo 913

BIG DAIA Quantum Chromonovaradics

Beholar zar UPPP Badet Bom 32 GUILD DEEN GROUNDED 856252 88827 **NO BELO LEBO**

131000801000

,,,,

THEORA 000000 198020

 \bullet

UNIVERSITY OF WASHINGTON

Diffusion models

A Mechanical Model of Brownian Motion

D. Dürr*, S. Goldstein**, and J. L. Lebowitz*** Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA

Abstract. We consider a dynamical system consisting of one large massive particle and an infinite number of light point particles. We prove that the motion of the massive particle is, in a suitable limit, described by the Ornstein-Uhlenbeck process. This extends to three dimensions previous results by Holley in one dimension.

The ultimate mathematical idealization of this phenomenon is the Ornstein-Uhlenbeck process for the position and velocity of the Brownian particle (X, Y) , described by the stochastic differential equations

$$
d\underline{X}_t = \underline{V}_t dt \,,\tag{0.1}
$$

 $d\underline{V}_t = -a\underline{V}_t dt + \sqrt{D}d\underline{W}_t$, $a \ge 0$, $D \ge 0$, $\underline{W}_t =$ Wiener process. (0.2)

The position process X_t converges in an appropriate limit (e.g. $a \rightarrow \infty$, $a^2/D = \text{const}$) to a Wiener process.

Communications in **Mathematical Physics** © Springer-Verlag 1981

Diffusion Generative Models

Source: 7 <https://yang-song.net/blog/2021/score/>

Generation

- Langevin dynamics is used to draw samples from **p(x)** using only the **score function**
- High fidelity samples require small time steps,

$$
\mathbf{x}_{i+1} \leftarrow \mathbf{x}_i + \epsilon \nabla_\mathbf{x} \log p(\mathbf{x}) + \sqrt{2\epsilon} \; \mathbf{z}_i, \quad i=0,1,\cdots, K,
$$

Fast Detector Simulation

We can only compare our physics predictions with experiments through the use of **simulations**. Full simulation chain can be computationally expensive

Alternatively, **fast surrogate** models can be used to reduce the simulation time while maintaining similar level of fidelity

The Challenge

Future upgrades of the LHC experiment will aim to increase the likelihood of collisions happening, **exceeding the current computing budget**

Diffusion Generative Models for Detector Simulation

First Diffusion model in High Energy Physics named **CaloScore**. **Up to 50k** Detector Components simulated

- **V. Mikuni** and B. Nachman Phys. Rev. D **106**, 092009
- **V. Mikuni** and B. Nachman 2024 *JINST* **19** P02001

14

Diffusion Generative Models for Detector Simulation

Energy deposition inferred from sum of pixels

Layer number Additional model trained to learn the energy sum

CaloScore v2 8 steps, EMD :0.01

CaloScore v2 1 step. EMD :0.01

 \cdots Geant4

30

40

Improve energy conservation by training **2 conditional diffusion models**: One on normalized pixel responses and one to determine the total energy deposition

 $\nabla \log p(x_{\text{norm}}, E) = \nabla \log p(x_{\text{norm}}|E) + \nabla \log p(E)$

CaloScore v2

- [Progressive distillation](https://arxiv.org/abs/2202.00512) is used to iteratively **reduce the number of time steps** used during generation
- Train a follow up model that learns how to predict **2 steps at a time**
- ▰ Repeat **multiple times**

Diffusion Generative Models for Detector Simulation

Physics Simulator CaloScore CaloScore

F. T. Acosta, **V. Mikuni**, *et al* 2024 *JINST* **19** P05003

- **Calorimeter** design based on the forward hadronic calorimeter of the ePIC detector
- Original dataset consisting of **55** layers with **55x55** cells
- Cells are merged to voxels: **11x11x11 voxels**

Full Simulation Diffusion

 $\frac{5}{2}$ 10

 0.0

\times 10⁻³ \times 10⁻³ Geant4, layer number 1 CaloScore, layer number $\frac{1}{1}^{6.00}$ $\frac{6.00}{5.00}$ $\frac{15}{2}$ 10 4.00
 4.00
 3.00
 0.00
 0.00
 0.00 $4.00\frac{\text{Gy}}{\text{Gy}}$ 6 $\begin{array}{r} \n 3.00 \text{ g} \\
\text{B} \\
\text{D} \n \end{array}$ 2.00 1.00 1.00 2.5 5.0 7.5 10.0 0.0 2.5 7.5 10.0 5.0

x-bin

x-bin

18

- Representing the full detector granularity is **expensive**
- However, most showers are localized and have low
- occupancy **Idea**: Model only the cells with energy depositions: point clouds

F. T. Acosta, **V. Mikuni**, *et al* 2024 *JINST* **19** P05003

Full Simulation Diffusion images Diffusion point cloud

F. T. Acosta, **V. Mikuni**, *et al* 2024 *JINST* **19** P05003

■ Point cloud is trained on the full granularity

F. T. Acosta, **V. Mikuni**, *et al* 2024 *JINST* **19** P05003

■ Projection to voxel space is done only for comparison

F. T. Acosta, **V. Mikuni**, *et al* 2024 *JINST* **19** P05003

■ Point cloud model also requires less disk space and is faster to generate

Point Cloud Simulation

Diffusion models for the EIC

Devlin, Qiu, FR, Sato `23

• Momentum distributions

- Use point clouds instead of images: up to 50 particles
- Able to reproduce the z cutoff without additional transformations

■ Use the scattered electron as a reference and generate other particles conditioned on the electron kinematics

26

Conclusion

- Diffusion Models are accurate generative models
- ▰ Initial image models were used for detector simulation
- Point cloud description of the data is more efficient:
	- \triangleright Helps with data sparsity
	- \triangleright Reduces the dimensionality of the inputs
- Compared to other generative models:
	- \triangleright Flows: Diffusion is more flexible and can also get the data likelihood
	- \triangleright VAES: Diffusion is able to learn sharp distributions more easily
	- \triangleright GANS: Diffusion is easier to train

THANKS!

Any questions?

Generative models

GANS:

▻ Modern GAN architectures haven't really been explored in HEP, mostly the vanilla ones with ok results

▰ **VAE:**

- KL Divergence can behave poorly when generator output changes too fast during training, often needs regularization.
- ▻ Reconstruction loss is often taken as MSE, which learns only averages and makes sharp distributions blurry. For images there are other tailored losses that improve this behaviour
- ▰ **NF:**
	- Since the transformation needs to be invertible. bottleneck layers cannot be used, requiring very large networks for even small problems. Can still be improved by splitting into multiple smaller networks
	- Autoregressive flows are one of the best density estimators but alone are very slow either to train or to sample (O(d^2) in the slowest direction), but can still be overcome with distillation models

31

Score matching/denoising/diffusion

Denoise diffusion models are the newest state-of-the-art generative models for image generation.

Pros:

- ▰ **Stable training**: convex loss function
- ▰ **Scalability**: Network complexity is more sensitive to the architecture than the dimensionality
- **F Access to data likelihood after training**: similar to NFs, but overall normalization is not required during training

Cons:

▰ **Slow sampling**: Possibly **1000s** of model evaluations to generate realistic images

 $\overline{}$

Score-matching

The common choice for $\lambda(t)$ is $\sigma(t)^2$ resulting in the loss function

$$
\frac{1}{2} \mathbb{E}_t \mathbb{E}_{p_t(\tilde{x})} \left[\left\| \sigma(t) s_{\theta}(\tilde{x}, t) + \epsilon(0, 1) \right\|_2^2 \right]
$$

Another important result is when $\lambda(t)$ is $g(t)^2$ that represents an

[upper bound of the data likelihood](https://arxiv.org/abs/2101.09258)

$$
\text{KL}(p_0(\mathbf{x})\|p_\theta(\mathbf{x})) \leq \frac{T}{2}\mathbb{E}_{t \in \mathcal{U}(0,T)} \mathbb{E}_{p_t(\mathbf{x})}[\lambda(t)\|\nabla_{\mathbf{x}} \log p_t(\mathbf{x}) - \mathbf{s}_\theta(\mathbf{x},t)\|_2^2]
$$

 $+$ KL $(p_T \parallel \pi)$.

E Allowing the **maximum-likelihood** training of diffusion models!

- ▰ Data generation can also be achieved by solving the **associated ODE**
	- ▻ Often leads to **worse** samples compared to Langevin dynamics generation
- ▰ On the other hand, we can also use the deterministic ODE recover the **data density!**

SDE
$$
d\mathbf{x} = [\mathbf{f}(\mathbf{x},t) - g^2(t)\nabla_{\mathbf{x}}\log p_t(\mathbf{x})]dt + g(t)d\mathbf{w}
$$

ODE
$$
d\mathbf{x} = \left[\mathbf{f}(\mathbf{x},t) - \frac{1}{2}g^2(t)\nabla_{\mathbf{x}}\log p_t(\mathbf{x})\right]dt
$$

$$
d\mathbf{x} = \tilde{\mathbf{f}}(\mathbf{x}, t) dt,
$$

$$
\log p_0(\mathbf{x}(0)) = \log p_T(\mathbf{x}(T)) + \int_0^T \nabla \cdot \tilde{\mathbf{f}}_{\theta}(\mathbf{x}(t), t) dt,
$$