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Generative Models
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▰ Which of these people you think are AI generated?
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Generative Models
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▰ Which of these people you think are AI generated?
▰ Answer: All of them https://generated.photos/faces
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https://generated.photos/faces


Generative models
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Generative models are a class of algorithms trained to 
transform easy-to-sample noise into data

Source: 
https://yang-song.net/blog/2021/score/

https://yang-song.net/blog/2021/score/
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Diffusion Generative Models
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https://yang-song.net/blog/2021/score/

https://yang-song.net/blog/2021/score/


Generation
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▰ Langevin dynamics is used to draw 
samples from p(x) using only the 
score function

▰ High fidelity samples require small 
time steps,



Fast Detector Simulation
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Physics Theory Physics 
Simulation

Detector 
Simulator Simulated data

Nature Detector 
interaction Measured data

We can only compare our physics predictions with 
experiments through the use of simulations. 
Full simulation chain can be computationally expensive



Introduction
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Physics Theory Physics 
Simulation

Detector 
Simulator Simulated data

Nature Detector 
interaction Measured data

Alternatively, fast surrogate models can be used to reduce 
the simulation time while maintaining similar level of fidelity



The Challenge
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Source: CMS-NOTE-2022-008

FuturePresent

Future upgrades of the LHC 
experiment will aim to 
increase the likelihood of 
collisions happening, 
exceeding the current 
computing budget



Diffusion Generative Models for Detector Simulation
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Generated by CaloScorePhysics Simulation

First Diffusion model in 
High Energy Physics 
named CaloScore.
Up to 50k Detector 
Components simulated

● V. Mikuni and B. Nachman 
Phys. Rev. D 106, 092009

● V. Mikuni and B. Nachman 
2024 JINST 19 P02001



Diffusion Generative Models for Detector Simulation
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Additional model 
trained to learn the 
energy sum

Improve energy 
conservation by training 2 
conditional diffusion 
models: One on normalized 
pixel responses and one to 
determine the total energy 
deposition

Energy deposition 
inferred from sum of 
pixels



CaloScore v2
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▰ Progressive distillation 
is used to iteratively 
reduce the number of 
time steps used during 
generation

▰ Train a follow up model 
that learns how to 
predict 2 steps at a time 

▰ Repeat multiple times

https://arxiv.org/abs/2202.00512


Diffusion Generative Models for Detector Simulation
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Physics Simulator CaloScore

105-106 times 
faster than full 
physics 
simulation!



Calorimeter Simulation
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▰ Calorimeter design based 
on the forward hadronic 
calorimeter of the  ePIC 
detector

▰ Original dataset consisting 
of 55 layers with 55x55 
cells

▰ Cells are merged to voxels: 
11x11x11 voxels

F. T. Acosta, V. Mikuni, et al 2024 JINST 19 P05003

Full Simulation Diffusion



Calorimeter Simulation
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Single event
▰ Representing the full detector 

granularity is expensive
▰ However, most showers are 

localized and have low 
occupancy

Idea: Model only the cells with 
energy depositions: point clouds



Calorimeter Simulation
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F. T. Acosta, V. Mikuni, et al 2024 JINST 19 P05003

Full Simulation Diffusion images Diffusion point cloud



Calorimeter Simulation
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▰ Point cloud is 
trained on the 
full granularity

F. T. Acosta, V. Mikuni, et al 2024 JINST 19 P05003



Calorimeter Simulation
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▰ Projection to 
voxel space is 
done only for 
comparison

F. T. Acosta, V. Mikuni, et al 2024 JINST 19 P05003



Calorimeter Simulation
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▰ Point cloud model also requires less disk space and is faster to generate
F. T. Acosta, V. Mikuni, et al 2024 JINST 19 P05003



Point Cloud Simulation

23



Calorimeter Simulation
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▰ Point cloud model also requires less disk space and is faster to generate
F. T. Acosta, V. Mikuni, et al 2024 JINST 19 P05003



Point Cloud Description of the data
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▰ Use point clouds 
instead of images: 
up to 50 particles

▰ Able to reproduce 
the z cutoff without 
additional 
transformations



Point Cloud Description of the data
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▰ Use the scattered electron as a reference and generate other particles 
conditioned on the electron kinematics



Point Cloud Description of the data

27▰ Good agreement for all particles

e



Point Cloud Description of the data

28▰ Good agreement for all particles

e

0.2%/0.09% of 
particles are 
neutrinos/muons



Conclusion
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▰ Diffusion Models are accurate generative models
▰ Initial image models were used for detector simulation
▰ Point cloud description of the data is more efficient:

▻ Helps with data sparsity
▻ Reduces the dimensionality of the inputs

▰ Compared to other generative models:
▻ Flows: Diffusion is more flexible and can also get the data likelihood
▻ VAES: Diffusion is able to learn sharp distributions more easily
▻ GANS: Diffusion is easier to train
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THANKS!
Any questions?



Generative models
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Training 
Stability

Scalability Fast 
inference

Fidelity Expressivity

Diffusio
n

Yes Yes No Yes Yes

GANS No Yes Yes Maybe Yes

VAE Maybe Yes Yes Maybe Kinda

NF Yes Maybe Maybe Yes Kinda

▰ GANS: 
▻ Modern GAN architectures haven’t really been explored 

in HEP, mostly the vanilla ones with ok results
▰ VAE: 

▻ KL Divergence can behave poorly when generator 
output changes too fast during training, often needs 
regularization.

▻ Reconstruction loss is often taken as MSE, which 
learns only averages and makes sharp distributions 
blurry. For images there are other tailored losses that 
improve this behaviour

▰ NF:
▻ Since the transformation needs to be invertible, 

bottleneck layers cannot be used, requiring very large 
networks for even small problems. Can still be 
improved by splitting into multiple smaller networks

▻ Autoregressive flows are one of the best density 
estimators but alone are very slow either to train or to 
sample (O(d^2) in the slowest direction), but can still be 
overcome with distillation models 



Score matching/denoising/diffusion
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Denoise diffusion models are the newest state-of-the-art generative 
models for image generation. 
Pros:
▰ Stable training: convex loss function
▰ Scalability: Network complexity is more sensitive to the 

architecture than the dimensionality
▰ Access to data likelihood after training: similar to NFs, but 

overall normalization is not required during training
Cons:
▰ Slow sampling: Possibly 1000s of model evaluations to 

generate realistic images



Score-matching
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▰ The common choice for 𝜆(t) is 𝛔(t)2 resulting in the loss function 

▰ Another important result is when 𝜆(t) is g(t)2 that represents an 

upper bound of the data likelihood

▰ Allowing the maximum-likelihood training of diffusion models!

https://arxiv.org/abs/2101.09258


Likelihood estimation?
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▰ Data generation can also be achieved by solving the associated ODE
▻ Often leads to worse samples compared to Langevin dynamics generation

▰ On the other hand, we can also use the deterministic ODE recover the data density!

SDE

ODE


