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Plan of Talk

To be provocative: why we shouldn’t talk
about inverse problems

How much do priors matter in our
iInferences about the properties of dense
matter?
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Dense Matter to an Astronomer

T=0 (10° K << 1012 K)
Equilibrium

Equation of state, not
composition

Thus P=P(p) (or P(n), ...

Example: polytrope
P=Kp!

Piecewise polytrope

Or smooth slope
distribution, e.g., spectral
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Inverse Temptations

There Is a strong temptation to look at the
path from measurements to constraints on
dense matter as a mathematical problem:

just invert the system

For example, if we have N measurements
and an N-parameter model, we just invert.
The more measurements the better

What could be simpler?
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Example inversion proposal

The idea is that we have
a parameterized EOS
model with three
parameters. Three
measurements will
determine those
parameters.

Simple and clean, right?

Just use Jacobians
Ozel and Psaltis 2009
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Problems with inversion

Several issues:

The inversion is usually
singular (crossing points)

Some NS might not
reach highest density

Want more
MEESEInERICARER
parameters!

Otherwise we don't test
the model

Cole Miller

10

Radius (km)
Raaijmakers+ 2018




What should we do instead?

It may be less exciting (assuming you get
excited by mathematical inversion...), but
the right approach is statistical estimation

Standard Bayesian analysis: start with
priors, update with likelihood of data

But this brings out an issue: how
dependent are we on our priors?
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Priors for EOS inference

People have their own preferences...

Our group uses three frameworks:
Piecewise polytrope (many groups)
Spectral decomposition (e.g., Lindblom+)
Gaussian processes (e.g., Landry+Essick)
Many others are possible

A point from Andrew Steiner: flat in one
domain (e.g., M,R) != flat in another (P,p)
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Constraints that we apply

Symmetry energy at n_,=0.16 fm-3
Roughly approximated by e/n-m_c?+16 MeV
Assume Eg, =32+-2 MeV at ng,

Masses of three ~2 M. NS

Sun

Tidal deformability from GW170817
Mass-radius of JOO30 from NICER
Mass-radius of JO740 from NICER
Formalism: Miller, Chirenti, Lamb 2020
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A diversion on divergences

Common to use K-L divergence, P|Q:

Dy (PIQ)=XP;
Asymmetric!

og(P/Q), i is over data set

Useful for progressive

constraints but not as much for distributions
on the same footing, e.qg., different priors

Quote both directions for prior comparison

Shannon entropy: S=-) pilog(p;)
Use entropy over set of 100,000 EOS
Normalize: S=1 if uniform, =0 for only 1 EOS
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Priors at 2n._, and 4n__;

Priors, n=2n, Priors, n=4n,
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+Symmetry Energy
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+High Masses
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+Tidal Deformability

SMA, n=2n, SMA, n=4n,
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+Radius of JO0O30
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+Radius of JO740
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What does all this tell us?

Priors can have complicated effects

If the likelihood pushes us to a talil of the
prior, those effects can be amplified

Polytrope-Spectral K-L divergence is
greater in posterior than in prior!

But this is mainly because the posterior is
substantially tighter
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Conclusions

Residual differences between posteriors
can be larger than we might think

But it doesn’'t mean that we're not making
progress!

It does mean that we need to be careful
with our priors
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