Workshop on Heavy Ion Physics in the EIC Era, August 19-23

Overview of hadron production measurements in relativistic ion collisions

Mariia Mitrankova Stony Brook University

CONTRACTOR DESCRIPTION

QCD phase diagram

How do we transition from point like to non-point like physics. How do arrive at a perfect liquid? How do the confined hadronic states

emerge from these quarks and gluons.

EIC will provide a reference for studies of hadron production in relativistic ion collisions

 $d \bar{s}$ 497.61 MeV/c

493.67 MeV/c

139.57 MeV/c

 π^{\pm}

Light flavored and Strange particles

U

d

 π^0 134.98 MeV/c

INSTITUTE for NUCLEAR THEORY **PHENIX.** The ratios of p/π as a function of p_T PRC 109, 054910 (2024) (a) p+AI, |η|<0.35, √s_{NN} = 200 GeV \downarrow (b) ³He+Au, $|\eta| < 0.35$, $\sqrt{s_{NN}} = 200 \text{ GeV}$ **p**/π⁺ **p**/π⁻ **PHENIX** PHENIX 0.3 collisions 0.2 0-72% 0-20% + 0-88% • 0-20% 0.1 ▲ 20-40% ▼ 40-72%-▲ 20-40% ▼ 40-60% Modest centrality dependence can be seen ♦ 60-88% ● p+p p+p 1.5 0.5 1.5 2.5 3 2 0.5 p_(GeV/c) p_(GeV/c) Large collision systems (a) Cu+Au, $|\eta| < 0.35$, $\sqrt{s_{_{NN}}} = 200 \text{ GeV} \perp$ (b) U+U, $|\eta| < 0.35$, $\sqrt{s_{_{NN}}} = 193 \text{ GeV}$ ati 8.0 In central collisions \mathbf{p}/π^+ PHENIX PHENIX 0-80% • 0-20% p/π ratios reach the values of ≈ 0.6 0_6 20-40% **40-60%** In peripheral collisions 60-80% 0.4 ● p+p p/π ratios < 0.4 in the whole p_T range 0.2⊢ can be qualitatively described using recombination models 2.5 p_{_}(GeV/c) 1.5 1.5 0.5 0.5 2

Small collision systems

- p/π ratios are similar to ones in p + p
- 3He+Au collisions

Identified charged-hadron production institute for NUCLEAR THEORY **PHENIX.** Nuclear-modification factors PRC 109, 054910 (2024)

R A

0.5

0.5

 R_{AB}

• proton $R_{AR} \sim$ all measured mesons R_{AB} within uncertainties

Identified charged-hadron production INSTITUTE for NUCLEAR THEORY **PHENIX.** Nuclear-modification factors

- Nuclear modification factors of both π^0 and ϕ mesons are consistent with each other and unity within large systematic uncertainties
- In Au target collisions there ϕ meson $R_{_{xA}}$ tend to be larger then π^0 meson $R_{_{xA}}$

Hyperon production **STAR and ALICE**

- Hyperon-to-pion ratios follow the same trend as a function of $dN_{ch}/d\eta$ for different collision systems
- Similar hyperon production mechanism for systems with same multiplicity despite differences in collision energy or system

STAR: PRC 75, 064901 (2007) PLB 728, 25–38 (2014)

ALICE: PRL 98, 062301 (2007) PLB 728, 216–227 (2014) PRC 79, 034909 (2009) PLB 758, 389-401 (2016) Nature Phys 13, 535–539 (2017)

Hadron production **ALICE.** Nuclear-modification factors

Ľ

Low p_T (< 2 GeV/c)

- $K^{*\pm}$ and $K^0 R_{AA}$ values are the smallest among the listed hadrons
- Rescattering effect

Intermediate p_T range

- Species dependence with evidence of baryon-meson splitting
- Influenced by a combination of effects like radial flow, parton recombination, enhanced strangeness production, steepness of particle p_T spectra in reference p + p collisions, etc

• All the particle species show similar R_{AA} within the uncertainties, including the $K^{*\pm}$

Suppression of various light flavored hadrons is independent of their quark content and mass

Elliptic flow NCQ scaling **STAR. Search for breakdowns**

STAR BES observation: NCQ scaling of v_2

- is followed in Au+Au at 14.6 GeV
- but breaks down at 3.2 GeV: hadronic vs partonic regime

Collectivity in small systems ALICE

- Mass ordering observed at low p_T
 - Consistent with hydro-like behavior
- Baryon/meson grouping at intermediate p_T

- Bryon to meson grouping and splitting (within 1σ confidence) disappears
- Hint of an onset

Open heavy flavor

Open heavy-flavor v_2 **measurements** RHIC

- Open HF v_2 is consistent with previous PHENIX results at mid rapidity
- HF particles flow with the QGP, but less then charged hadrons

- 54.4 GeV significant v_2 of e^{HF}
- Strong interaction of c quarks with QGP
- Hints of close to thermal equilibrium with the medium
- 27 GeV $v_2 \sim 0$ within uncertainties
- Hint of deviations of *c* quarks from local thermal equilibrium?

Separated Charm and Beauty **PHENIX.** Nuclear modification factors and elliptic flow

PRC 109 044907 (2024)

- Clear mass ordering observed between $(b \rightarrow l)$ and $(c \rightarrow l)$ at RHIC for both R_{AA} and v_2
- Interplay of energy loss and hydro at mid- p_T ?

Charm and Beauty hadrons in medium ALICE, CMS, ATLAS, and STAR. Elliptic flow

- Positive v_2 : participation to the collective motion
- Positive v_2 for $p_T > 2 3$ GeV, lower values for beauty than for charm hadrons

p_{-} (GeV/c)

INSTITUTE for

NUCLEAR THEORY

ALICE, v₂, PLB 813 (2021) 136054 CMS, v₂, PRL 120 (2018) 202301 ATLAS, v₂, PLB 807 (2020) 135595 STAR, v₂, PRL 118 (2017) 21

ATLAS, v₂, b to µ, Phys.Lett.B 807 (2020) 135595 ALICE, non-prompt *D v*₂, EPJ.C 83 (2023) 1123 ALICE, v₂, b to e, Phys.Rev.Lett. 126 (2021) 16, 16200 CMS, v_2 , non-prompt D^0 , arXiv: 2212.01636

Charm and Beauty hadrons in medium ALICE, CMS, ATLAS. Nuclear modification factors

"Flow bump" due to (radial) flow of medium and coupling at small p_T

Dead cone effect: gluon radiation suppressed at angles smaller than $\theta < m/E$

INSTITUTE for

Consistent with mass dependent hierarchy

Institute for Nuclear Theory program "Heavy Ion Physics in the EIC Era" (INT-24-2b)

Baryon-to-meson ratio ALICE. Radial flow

• Charm baryons/meson like for strangeness

in *ee* these ratios are flat in p_T , in p + p at low p_T peak peak of the ratio \rightarrow quark coalescence peak pushed to higher p_T at high multiplicity

Baryons vs. mesons ALICE. Charm hadron results. *p*+Pb

40

- Observed a strong p_T dependence of the baryon-to-meson ratios in the charm sector, similar to that observed in the light-flavour sector
- Ratio modified in p+Pb w.r.t. p + p(intermediate p_T)
- Possible influence of recombination or radial flow?
- No significant p_T dependence observed at large rapidity in p+Pb
- Possible rapidity dependence?

ALICE, pp, pPb, PRC 107 (2023) 064901 CMS, pp, PbPb, JHEP 01 (2024) 128 LHCb, pPb, JHEP 02 (2019) 102 LHCb, PbPb, JHEP06 (2023) 132

Baryons vs. mesons ALICE. Charm hadron results. *p*+Pb

- Observed a strong p_T dependence of the baryon-to-meson ratios in the charm sector, similar to that observed in the light-flavour sector
- Ratio modified in p+Pb w.r.t. p + p(intermediate p_T)
- Possible influence of recombination or radial flow?
- No significant p_T dependence observed at large rapidity in p+Pb
- Possible rapidity dependence?

ALICE, pp, pPb, PRC 107 (2023) 064901 CMS, pp, PbPb, JHEP 01 (2024) 128 LHCb, pPb, JHEP 02 (2019) 102 LHCb, PbPb, JHEP06 (2023) 132

Baryons vs. mesons ALICE. Charm hadron results. Pb+Pb

- Larger modification of the p_T distribution for the most central collisions
- Qualitative agreement with model calculation

ALICE, pp, pPb, PRC 107 (2023) 064901 ALICE, PbPb, PLB 839 (2023) 137796 CMS, pp, PbPb, JHEP 01 (2024) 128 LHCb, pPb, JHEP 02 (2019) 102 LHCb, PbPb, JHEP06 (2023) 132 TAMU: He et al, PRL 124 (2020) 042301

Baryons vs. mesons LHCb. Beauty sector. *p*+*p*

- picture, e.g. coalescence or colour-reconnection mechanisms
- Evolution of the ratios with charged-particle multiplicity

Results described by models considering additional effects to the independent fragmentation

Charmonium

$J/\psi R_{AA}$ VS. p_T STAR. Au+Au collisions

- Low p_T suppression,
- R_{AA} increases with p_T for $\sqrt{s_{_{NN}}} = 14.6, 19.6$ and 27 GeV
- No significant p_T dependence at 200 GeV

$J/\psi R_{AA}$ ALICE. CMS. Interplay between

- $c\bar{c}$ cross section

eneration and suppression

ALICE, JHEP 02, 066 (2024 CMS, EPJC 78 (2018) 509 (2024) 066 CMS, EPJC 78, 509 (2018))

Stronger R_{AA} increase towards lower p_T in midrapidity, exhibiting comparable suppression at high p_T Stronger R_{AA} increase towards lower p_T in central events, exhibiting larger suppression at high p_T Theoretical predictions support (re)generated J/ψ concentrated at low p_T at midrapidity with larger

J/ψ in different system energies **RHIC and LHC**

SHM: Nature 561 321-330 (2018)

- \bullet

• Strong rise of the $J/\psi R_{AA}$ from RHIC to LHC energies: Interplay between regeneration and suppression Both SHM and Transport model simultaneously describe RHIC/LHC data

Excited charmonium states LHC and RHIC

- Stronger suppression of $\psi(2S)$ in backward-y both at RHIC/LHC
- resonance \rightarrow final-state effects?
- Comover model agrees with the measurement within uncertainty

Initial-state effects or coherent energy loss, largely independent on the specific charmonium

$\psi(2S)$ production ALICE. CMS. Pb+Pb

b b $\Upsilon(1S)$ 9460.30±0.26 MeV/c

Y(2S) 10023.26±0.31 MeV/c

Υ(3S) 10355.2±0.5 MeV/c

Botomonium

$\Upsilon R_{AA} \mathbf{vs} \langle N_{part} \rangle$ STAR. Au+Au

STAR, Phys. Rev. Lett. 130 (2023) 112301

- Different sensitivity to the medium:
 - $\Upsilon(1S)$: 1100 MeV;
 - $\Upsilon(2S)$: 500 MeV
 - $\Upsilon(3S)$: 200 MeV
- First measurement of suppression of three Υ states separately at RHIC
- > 3σ difference for $\Upsilon(1S)$ and $\Upsilon(3S)$

Bottomonium **CMS. ALICE. LHCb**

and $\Upsilon(3S)$

 \rightarrow yet much less than in Pb+Pb collisions

- Suppression trend reproduced by PDF + comover breakup Model • Hot-medium effects describe Υ suppression in p+Pb collisions as well

• Sequential suppression observed in p-Pb collisions with improved precision for $\Upsilon(1S)$, $\Upsilon(2S)$,

Institute for Nuclear Theory program "Heavy Ion Physics in the EIC Era" (INT-24-2b)

Bottomonium production LHC. Pb+Pb

ALICE, PLB 822 (2021) 136579 ATALAS, PRC 107 (2023) 054912 CMS, arXiv:2303.17026

 Strong suppression vs centrality with sequential melting pattern:

 $R_{AA}\left(\Upsilon(1S)\right) > R_{AA}\left(\Upsilon(2S)\right) > R_{AA}\left(\Upsilon(3S)\right)$

• Is bottomonium genuine thermometer of QGP?

- Feed-down contribution (i.e. P-wave states \rightarrow excited Y not measured)
- Regeneration contribution
- Cold nuclear matter effects?

Quarkonium **Elliptic flow measurements**

STAR (central) and ALICE (forward) none-zero v_2 , much smaller v_2 in the forward rapidity, ~ 0

- Open charm, none-zero v_2
- **Final State Interactions**
- J/ψ formation
 - lack of "recombination" in the forward rapidity?

- Good agreement in CMS and ALICE in various systems; without strong rapidity dependendence found in current precision
- J/ψ : Pb+Pb $v_2 \ge p$ +Pb $v_2 > p + p v_2 \sim 0$

• $\Upsilon(1S)$: Pb+Pb $v_2 \sim p$ + Pb $v_2 \sim 0$

Institute for Nuclear Theory program "Heavy Ion Physics in the EIC Era" (INT-24-2b)

SUMMARY

- Baryon enhancement effect is seen even in small collision systems at RHIC
- Strangeness enhancement is observed at RHIC in large system collisions and strangeness production increases with particle $dN_{ch}/d\eta$ at LHC (even in charm sector)
- In heavy ion collisions clear mass ordering of suppression and flow of open charm leptons is observed at both RHIC and LHC
- Baryon enhancement is observed at LHC in charm sector?
- For J/ψ production interplay of regeneration and suppression at LHC
- $\psi(2S)$ tends to be suppressed even in small system collisions at RHIC and at LHC
- Sequential dissociation of $\Upsilon(nS)$ states in medium at RHIC and LHC with similar pattern

SUMMARY

"Heavy Ion Physics in the EIC Era"

- LHC Run 3 program started and smoothly ongoing \rightarrow much larger data sample expected with upgrade detectors
- sPHENIX is collecting data in p+p collisions future Au+Au
- STAR recorded large sample of isobar collisions $\sqrt{s_{_{NN}}} = 200$ GeV in 2018

 \rightarrow great opportunity to study the system size dependence

SUMMARY

"Heavy Ion Physics in the EIC Era"

- LHC Run 3 program started and smoothly ongoing \rightarrow much larger data sample expected with upgrade detectors
- sPHENIX is collecting data in p+p collisions future Au+Au
- STAR recorded large sample of isobar collisions $\sqrt{s_{_{NN}}} = 200$ GeV in 2018

 \rightarrow great opportunity to study the system size dependence

THANK YOU FOR YOUR ATTENTION!

