Recent [ATLAS] results on collectivity in small-systems

Soumya Mohapatra

(Columbia University)

This work is supported by the United States Department of Energy Grant DOE-FG02-86ER-40281

21st August 2024

INT Workshop

QGP in small systems?

ion-ion QGP QGP proton-ion

QGP in small systems?

ion-ion QGP QGP proton-ion

proton-proton QGP

Many new measurements performed in last few years some of which will be discussed today.

The ridge in *pp* collisions

 $\Delta \phi$

- First indication of "collective behavior" in pp collisions was the observation of the ridge in twoparticle correlation measurements.
- Try to further our understanding of the origin of the *pp* ridge.
 - Does it arise from collective (hydro) behavior?
 - Or is it driven by semi-hard processes? Perhaps related to gluon saturation.
 - If latter, then actively selecting/rejecting events with semi-hard processes (low- p_{T} jets) should enhance/weaken the ridge.

Analysis technique: Template Fitting Procedure

$$Y^{\text{templ}}(\Delta \phi) = F Y^{\text{periph}}(\Delta \phi) + Y$$
$$Y^{\text{ridge}}(\Delta \phi) = G (1 + 2v_{2,2} \cos \phi)$$

- A template fitting procedure used to extract long-range correlation
- Fit the yield in high multiplicity events with Template of two components:
 - Y^{periph}: Yield in peripheral events (N_{ch}<20)
 - Y^{ridge} : Pedestal*(1 +2* $v_{2,2}cos(2\Delta \phi)$) signal
- Yields much larger than what ZYAM gives
 - Compare modulation of blue line with height of ZYAM peak

 $Y^{\text{ridge}}(\Delta\phi),$ $(2\Delta\phi)$),

Template Fitting : Multiplicity dependence

Considerable long-range correlation even in low & intermediate multiplicity events. (ZYAM procedure would give zero yields)

Broadening of away-side and emergence of peak on near-side well described.

Define multiple correlation classes

- *h* : inclusive hadrons (tracks) in the event
- h^{UE} : tracks from the underlying event (UE):
 - require that the track is separated by at least one unit in $|\eta|$ from all jets with $p_T^G > 15 \text{ GeV}$

Define multiple correlation classes

- *h* : inclusive hadrons (tracks) in the event
- h^{UE} : tracks from the underlying event (UE):
 - require that the track is separated by at least one unit in $|\eta|$ from all jets with $p_T^G > 15 \text{ GeV}$

Define multiple correlation classes

- *h* : inclusive hadrons (tracks) in the event
- h^{UE} : tracks from the underlying event (UE):
 - require that the track is separated by at least one unit in $|\eta|$ from all jets with $p_T^G > 15 \text{ GeV}$
- h^{J} : track associated with a jet
 - require that the track is within a 0.4 cone of a $p_T^G > 40$ GeV Jet

Grooming the Jets

Jet yields are found to be correlated with event-plane angles.

Effect known from heavy-ion measurements, here observed in *pp* collisions.

Naturally leads to bias in jet-selected correlations.

Grooming the Jets

Jet yields are found to be correlated with event-plane angles.

Effect known from heavy-ion measurements, here observed in *pp* collisions.

Naturally leads to bias in jet-selected correlations.

We define a groomed jet- p_T to account for this effect.

 $p_{\rm T}^{\rm G} = \left| \sum_{\rm constituents} \boldsymbol{p}_{\rm T}^{> 4 \, {\rm GeV}} \right|$

v₂: comparison between cases

- The v_2 values are observed to vary weakly with multiplicity,
 - v₂ values for the h^{UE}-h^{UE} correlations: NoJets, WithJets and All Events are identical
 - Removing particles associated with jet has negligible impact on v_2
 - Presence/absence of Jets in events does not impact the v₂
- $h^{UE} h^J v_2$ consistent with zero within uncertainties
 - Ridge is not related to jets!

v₂ : comparison between cases

- The v_2 values are observed to vary weakly with multiplicity,
 - v₂ values for the h^{UE}-h^{UE} correlations: NoJets, WithJets and All Events are identical
 - Removing particles associated with jet has negligible impact on v_2
 - Presence/absence of Jets in events does not impact the v₂
- $h^{UE} h^J v_2$ consistent with zero within uncertainties
 - Ridge is not related to jets!
 - Behavior is true as function of p_T as well.

v₂: Dependence on jet selection

 2 0.5<*p*_T^{*a,b*}<4 GeV ATLAS ATLAS *ATLAS pp* √*s*=13 TeV, 15.8 pb⁻¹ 0.3 $pp \sqrt{s}=13 \text{ TeV}, 15.8 \text{ pb}^{-1}$ 0.2 h-h h-h h^{UE}-h^{UE}: ○ AllEvents □ NoJets △ WithJets h^{UE}-h^J: ⊕ p_{T}^{G} >35 GeV ⊕ p_{T}^{G} >40 GeV ⊕ p_{T}^{G} >50 GeV $h^{UE}-h^{UE}: \circ AllEvents \Box NoJets$ △ WithJets 0.2 $h^{UE}-h^J$: $p_T^G > 35 \text{ GeV} \oplus p_T^G > 40 \text{ GeV} \oplus p_T^G > 50 \text{ GeV}$ 0.1 0.1 0 80 100 60 120 20 40 140 2 3 0 0 N^{rec,corr}_{ch}

Results not sensitive to p_{T} threshold of Jets used in measurement

Similar measurements from ALICE

- Measure the v_2, v_3 in *pp* collisions • p_{T} of leading particle (LP) in event
 - p_{T} of jet in event in event
 - LP/Jet picked at mid-rapidity
- Top panels: v_2 , bottom panels: v_3
- Left panel: vs leading particle p_{T}
- Right panel: vs leading-jet p_T

Same conclusions as ATLAS (within uncertainties)

ALICE: arXiv:2308.16591

v₂ in Z-boson tagged pp events: constrain impact-parameter

Can constrain smaller impact parameter indirectly: by requiring the presence of a hard scattering, for example presence of a Z-boson. **ATLAS** Collaboration

- Use high-luminosity pp data at 8 and 13 TeV
- The $pp-v_2$ in Z-boson tagged events consistent with inclusive measurements.

19

EPJC 80 (2020) 64

v₂ in Jetty events: *pp* vs *p*+Pb

Compare the v₂ in Jetty events in pp and p+Pb

- About 2% high-p_T v₂ observed in p+Pb
- Consistent with 0 in pp
- Note that measurement techniques are different!

ATLAS: PRL 131 (2023) 162301

20

- CMS measurements to explore if there is "collective" behavior within constituents of high-multiplicity-jet.
 - Align coordinate system with jet-axis (η*)
 - Measure two-particle correlations in $(\Delta \eta^*, \Delta \phi^*)$ between constituents

21

- CMS measurements to explore if there is "collective" behavior within constituents of high-multiplicity-jet.
 - Align coordinate system with jet-axis (η*)
 - Measure two-particle correlations in $(\Delta \eta^*, \Delta \phi^*)$ between constituents
- Shown here are 2PCs for low-multiplicity and high-multiplicity jets

- ID correlation functions with Fourier components (Data and MC)
- See small near-side peak for high multiplicity jets the data
- Such a peak is absent in the MC (Pythia/Sherpa)

- The v_2 values vs jet multiplicity in Data and MC
- MC & Data v_2 decreases with multiplicity
 - Consistent for jet multiplicity<80</p>
- For multiplicity>80: v_2 in data increase,
 - Inconsistent with MC
- Indicating of some collective behavior?
 - Need more guidance from theory

Photon-ion and photon-proton collisions

Ultra Peripheral Pb+Pb

EM fields of Lorentz contracted nuclei can be treated as flux of quasi-real photons.

In UPC Pb+Pb collisions, Photons coherently emitted from one Pb nuclei can interact with another: γ +Pb collisions

Ultra Peripheral Pb+p

Similar process in UPC Pb+p : γ +p collisions

Collectivity in γ +Pb collisions

- The v_2 in γ +Pb are extracted using the Template-fit method.
- Correlation in low multiplicity (LM) events subtracted from correlation measured in higher multiplicity (HM) events.
- Subsequently Fourier harmonics v_n , extracted from the "Non-flow" corrected correlation.

ATLAS: Phys. Rev. C. 104 104903

Collectivity in γ +Pb collisions

- $p_{\rm T}$ -differential v_2 comparable with pp over the $0.4-2 \text{ GeV } p_{T} \text{ range.}$
- Can be reproduced by tuning CGC calculations (initial-state effects only).
 - Shu et al., PRD 103, 054017
 - Considerable leeway available in tuning.

ATLAS: Phys. Rev. C. 104 104903

Collectivity in γ +Pb collisions

- Comparison of v_2 , v_3 of multiplicity dependence to 3+1D hydro calculations
 - Zhao, Shen, Schenke, PRL 129, 252302
 - Treating the γ as meson
- Good agreement for:
 - v_2 and v_3 in *p*+Pb
 - v_2 in γ +Pb

ATLAS: Phys. Rev. C. 104 104903

First look at $\gamma + p$ collisions by CMS

- Select enriched sample of $\gamma + p$ events in UPC *p*+Pb collisions.
- Require no neutron on Pb-going size ZDC, as well as a large region with no detector activity on Pb going side.

Plots show 2D and 1D 2PCs in $\gamma + p$ events and min-bias *p*+Pb events.

Stronger away-side correlation observed in $\gamma + p$ events compared to min-bias p + Pb.

CMS: Phys. Lett. B 844 (2023) 137905

First look at $\gamma + p$ collisions

- Larger v_2 observed in $\gamma + p$ events compared to min-bias events
 - Need to be careful as no "non-flow" subtraction is performed
 - i.e. jet-like correlations dominate the measurement.
- Measurements can extend search for collectivity to $\gamma + p$ events

CMS: Phys. Lett. B 844 (2023) 137905

Summary

- Multiple recent measurements from ATLAS (CMS,ALICE) investigate collectivity in small collision systems.
- ATLAS : ridge in *pp* collisions with/without jets, "jet-constituent"-UE correlations
 - low- $p_{T} v_{2}$ not affected by presence/absence of jets.
 - Jet-fragments do not exhibit correlations with UE particles.
 - Hard-scattering & UE-collectivity are uncorrelated!
 - No observed dependence of v_2 on collision Q² (Z-tagged measurements).
- CMS : Measured correlations within jet-fragments
 - Correlation in low multiplicity jets consistent with MC generators.
 - Constituents in highest multiplicity jets show hints of collectivity.
- Not covered in this talk: ATLAS (and CMS) : also measured HF v_2 in pp events.
 - *charm* v_2 consistent with inclusive hadrons, *bottom* v_2 consistent with zero.
- CMS & ATLAS : 2PC measurements in $\gamma + p$ and $\gamma + Pb$ events.
 - Smallest collision systems at the LHC.

Event multiplicity distributions

ATLAS: PRL 131 (2023) 162301

32

Extra-1: HF collectivity in *pp* collisions

ATLAS : PRL-124, 082301

- Measured v_2 of muons produced in the semi-leptonic decays of b and c hadrons.
- Significant anisotropy observed for muons from charm decay: consistent with inclusive hadrons.
- v_2 for muons from b decays consistent with zero.
- These HF anisotropy measurements can lead to further understanding of origin of the pp ridge.

Extra-2: HF collectivity in *pp* collisions

34