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New insights about 3-dimensional structure of hadrons

Nonperturbative models ﬁ (N)(N)NLO global analyses
and lattice QCD

of QCD data
CONNECTION?

a
phenomenological
predictions

Precision tests at LHC, Jlab, EIC, AMBER, CERN FPF, ...
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PDFs in nonperturbative QCD

Relevant for processes
at Q% ~ 1 GeV?2?
= We can learn about nonperturbative dynamics by

comparing predictions to data for the simplest scattering
processes (DIS and DY)

Phenomenological PDFs

Determined from processes
at Q%> » 1 GeV?
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= pheno PDFs are determined from analyzing many
processes with complex scattering dynamics

How to relate the x dependence of the perturbative and nonperturbative pictures?

Does the evidence from primordial dynamics survive PQCD radiation?
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PDFs in nonperturbative QCD

Relevant for processes Success requires...
at Q?> =~ 1 GeV??
= We can learn about nonperturbative dynamics by

comparing predictions to data for the simplest scattering
processes (DIS and DY)

...all four!

Phenomenological PDFs

Determined from processes
at Q%> » 1 GeV?

. .;" ot

= pheno PDFs are determined from analyzing many
processes with complex scattering dynamics

How to relate the x dependence of the perturbative and nonperturbative pictures?

Does the evidence from primordial dynamics survive PQCD radiation?
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Electron-lon Collider: potentially a wealth of complex studies

PDFs: arxiv:2103.05419
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The tolerance puzzle

Why do groups fitting similar data sets

obtain different PDF uncertainties?
Prec‘;isi‘on‘PDFs‘ (anwmass 21 ‘WI‘:’) [22‘03‘.13‘92|3v|2]
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The answer has direct implications for high-stake experiments such as 3D
femtography, W boson mass measurement, tests of nonperturbative QCD
models and lattice QCD, high-mass BSM searches, etc.
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Comparisons of the latest PDF sets

—— NNPOF4.0
—— CT18
—— MSHT2D
—— ABMP1B
—— ATLASpdf21
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Comparison of the PDFs at @} = 100 GeV. The PDFs shown are the N2LO sets of NNPDF4.0, CT18, MSHT20,
ABMP16 with a.(Mz) = 0.118, and ATLASpdf21. The ratio to the NNPDF4.0 central value and the relative lo uncertainty
are shown for the gluon g, singlet B, total strangeness s7 = s + 5, total charm ¢© = ¢+ &, up valence " and down valence d

FDFs.
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Statistics with many parameters is different!

1. Epistemic uncertainties may dominate when other uncertainties are
suppressed

More often than not, the realistic 16 PDF uncertainty does not correspond to Ay? = 1.

2. Common estimations of systematic uncertainties are incomplete because...

a.
b.

2024-07-02

There is no single global minimum of y? (or another cost function)
The law of large numbers may not work

uncertainty may not decrease as 1/\/Nrep, leading to the big-data paradox
[Xiao-Li Meng, 2018]:

The bigger the data, the surer we fool ourselves.

P. Nadolsky, QCD at the Femtoscale in the Era of Big Data
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epistemic vs. aleatory uncertainties

Statistical uncertainty
propagated from experiments
— reduced by increasing data
size

Uncertainty due to lack
of knowledge

—bias (may be reduced
by analysis
improvements)

P. Nadolsky, QCD at the Femtoscale in the Era of Big Data 10



Sources of the uncertainty on PDFs

1. Experimental uncertainties, e.g., statistical, correlated and
uncorrelated systematic uncertainties of each experimental data set;

2. Theoretical uncertainties due to the absent radiative contributions,
approximations in parton showering simulations

3. Parameterization uncertainties associated with the choice of the
PDF functional form or Al/ML replica training algorithm

— contribute at least a half of the CT18 total PDF uncertainty \ associated with the

epistemic uncertainty
4. Methodological uncertainties associated with the selection of /
experimental data sets, fitting procedures, and goodness-of-fit criteria.

Kovarik et al., arXiv: 1905.06957

2024-07-02 P. Nadolsky, QCD at the Femtoscale in the Era of Big Data 11



https://arxiv.org/abs/1905.06957

Acceptable functions
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Representative sampling

Curse of Big-data
dimensionality paradox

Bias-variance

separation

Epistemic

PDF
uncertainty

Precision PDF applications

P. Nadolsky, QCD at the Femtoscale in the Era of Big Data

Likelihood
ratios

Tests of PDFs

Post-fit PDF

validations
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I ' : 0.14f T T/ ——————— 7]
Epistemic PDF uncertainty... L[ vemtea

—~ = Ly - - CT18(red) , .

...reflects methodological choices such as PDF T NNPDF31(red) [ -
functional forms, NN architecture and hyperparameters, i k. - :
or model for systematic uncertainties J 0.06 !
e 0.04 )

... can dominate the full uncertainty when experimental DL  Mersssninag . oo i
and theoretical uncertainties are small. n.nu“{'l T T

myx (GeV)
...Is associated with the prior probability.
Epistemic uncertainties explain many of
... can be estimated by representative sampling of the differences among the sizes of PDF

the PDF solutions obtained with acceptable uncertainties by CT, MSHT, and NNPDF
methodologies. global fits to the same or similar data

Details in arXiv:2203.05506, arXiv:2205.10444

= sampling over choices of experiments, PDF/NN
functional space, models of correlated uncertainties...

= in addition to sampling over data fluctuations

2024-07-02 P. Nadolsky, QCD at the Femtoscale in the Era of Big Data 13
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Components of PDF uncertainty

In each category, one must
maximize

. PDF fitting accuracy
(accuracy of

experimental, theoretical
and other inputs)

" PDF sampling accuracy
(adequacy of
sampling in space of
possible solutions)

Fitting/sampling classification is borrowed
from the statistics of large-scale surveys
[Xiao-Li Meng, The Annals of Applied
Statistics, Vol. 12 (2018), p. 685]

P. Nadolsky, QCD at the Femtoscale in the Era of Big Data
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A multidimensional mini-landscape,
In which
the global y? minimum is rare

P. Nadolsky, QCD at the Femtoscale in the Era of Big Data
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Not so terrible local minima:
convexity is not needed

Myth busted: o

» Local minima dominate in low-D, but saddle _.
points dominate in high-D A’

* Most local minima are relatively close to the e
bottom (global minimum error) =
(Dauphin et al NIPS’2014, Choromanska et al AISTATS’2015) " :

aZXZ
aaiaaj

Global minimum: all > 0 (improbable)

62)(2

aaiaaj

Saddle point: some > 0 (probable)

An average global minimum: in properly chosen
2.2

0°y . .
> ( for dominant coordinate
0z;0z] Y. Bengio, 2019 Turing lecture (YouTube)

components

coordinates,

P. Nadolsky, QCD at the Femtoscale in the Era of Big Data
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Many dimensions introduce
maijor difficulties with identifying
a global minimum...

The Loss Surfaces of Multilayer Networks
A. Choromanska, M. Henaff, M. Mathieu, G.
Ben Arous, Y. LeCun PMLR 38:192-204, 2015

An important question concerns the distribution of
critical points (maxima, minima, and saddle points)
of such functions. Results from random matrix the-
ory applied to spherical spin glasses have shown that
these functions have a combinatorially large number of
saddle points. Loss surfaces for large neural nets have
many local minima that are essentially equivalent from
the point of view of the test error, and these minima
tend to be highly degenerate, with many eigenvalues
of the Hessian near zero.

We empirically verify several hypotheses regarding
learning with large-size networks:

e For large-size networks, most local minima are
equivalent and yield similar performance on a test
set.

e The probability of finding a “bad” (high value)
local minimum is non-zero for small-size networks
and decreases quickly with network size.

e Struggling to find the global minimum on the
training set (as opposed to one of the many good
local ones) is not useful in practice and may lead
to overfitting.

2024-07-02 P. Nadolsky, QCD at the Femtoscale in the Era of Big Data 17



The Big Data Paradoxin vaccine uptake

Article

: : : Unrepresentative big surveys significantly
Many dimensions introduce overestimated US vaccine uptake

maijor difficulties with identifying
a global minimum... T

Acoepted: 28 Ootober 2021

Published online. B Deoember 2021 Surveys are acruclal tool forunderstanding public opinion and behaviour, and their
accuracy depends on maintaining statistical representativeness of thelr target
[®]Check for updates populations by minimizing biases from all sources. Increasing data size shrinks

.. .aS We“ aS Wlth representatlve confidence Intervals but magnifies the effect of survey bias: an Instance of the Big

Data Paradox'. Here we demonstrate this paradox In estimates of first-dose COVID-19

. . . vaccime uptake In US adults from @ January to 19 May 2021 from two large surveys:
exp loration Of uncertainties elphi-Facebook (about 250,000 responses per week) and Census Household

. Pulse’ (about 75,000 every two weeks). In May 2021, Delphi-Facebook overestimated
4 DElﬁhl—FﬂEEDﬂDH m = EEDDDD] uptake by 17 percentame points (14- 20 percentage polnits with 5% benchmark

3 » Census Househaold Pulse e Imprectsion) and Census Household Pulse by 14 (11-17 percentage points with 5%
ik benchmark impreciskon), compared to @ retroactively updated benchmark the
{n = 75,000)

Centers for Disease Control and Prevention publshed on 26 May 2021, Moreowver,

. Axios—| psos {J".I = 1 . DDD}I _f theirlarge sample slzes led to minkscule mrglns of error on the Incormect estimates.
& Ey contrast, an Axlos-1psos online panel with about 1,000 responses per week

following survey research best practices” provided rellable estimates and

uncertainty quantification. we decompose observed error using a recent analytic

--------------- framework' to explain the Inaccuracy In the three surveys. We then analyse the

Implications for vaccine hesitancy and willingness. We show how a survey of 230 000
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A0 1 respondents can produce an estimate of the population mean that is no more
accurate than an estimate from a simple random sample of size 10. Our central
message Is that data quality matters more than data quantity, and that compensating
the former with the latier s amathematically provable losing proposition.

-
&
204 P

Veccinated (at least one dose) (%)

& & § Nature v. 600 (2021) 695
F
W@ ® 3 oourtoy et al., PRD 107 (2023) 034008
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Volume of a unit ball in n dimensions
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The Curse
of Dimensionality!
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Compare:

* the volume of a cube

with side 2a
/ 3 S | ERD e » the volume of a
( R N et sphere with radius a
2a \-' ° n=2
Vsphere _ E ~0.8
chbe 4
* n=25
Vsphere ~ 0.0009
chbe - 22>

> ~3-10"11
2a

Image: sand painting, SMU-in-Taos
2024-07-02 P. Nadolsky, QCD at the Femtoscale in the Era of Big Data 20



An n-dimensional standard normal
distribution

Any 1-dim. projection contains 68% of
the elements in the interval
—-1< X <1

2024-07-02 P. Nadolsky, QCD at the Femtoscale in the Era of Big Data
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An n-dimensional standard normal

distribution
=2

The mean distance of an element
from the center (“truth”)at x =0 is

(1X]) = Vn
Jn = 5forn =25

In a large-n normal distribution, a
single element is likely to be very
abnormal (be ~ \/n 0 away from the
“truth”) in some direction(s)

Hou et al., arXiv:1607.06066

P. Nadolsky, QCD at the Femtoscale in the Era of Big Data
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Law of large numbers

With an increasing size of sample n — oo, under a set of
hypotheses, it is usually expected that the sample deviation 20
on an observable u decreases as

100

o]
o

H— i X agpq /N

!

Number of replicas

with o,.4 the standard variation, ¢ and 4 the true and sample
expectation values. This is the law of large humbers.

-
o

20

A toy sampling exercise

120

We take 300 x 3 groups of Higgs cross sections evaluated
by 3 different groups (CT18’, MSHT20, NNPDF3.1’). — o

-]
o

We randomly select 300 out of the 900 cross sections.
The law of large numbers is fulfilled in this case: there is no
bias. |

[2]
o

Number of replicas

B
o

no
[=]
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Trio identity

If we bias the selection by taking 200 items from one group 20 o popuiation: Np=000 [l
and 100 from another, the deviation u — fi is no longer 1005 Qi:ﬂil?ﬁiiﬁﬁ -
proportional to o4/ ! - o

| § 80

g 7 1=47.4923 pb -

s 60 [y=47.3456pb [ =

E [i;=47.5908 pb |

=z -
40 L]

Quality of the sample is as important as quantity. ol sl | q |
0" =5 46 47 48 49
O [pb]

The trio identity identifies three main contributions to the sample deviation:

U — i = (confounding correlation) X (measure discrepancy) X (inherent problem difficulty)

This identity originates from the statistics of large-scale surveys
[Xiao-Li Meng, The Annals of Applied Statistics, Vol. 12 (2018), p. 685]

2024-07-02 P. Nadolsky, QCD at the Femtoscale in the Era of Big Data
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Trio identity, continued

A sample of n items from a population of size N can be described by an array R; of
sampling indicators =0 or 1, which shows that

’N
u — (i = Corr[observable, sampling algorithm] X P 1 X o4tq(0bservable)

| |

depends on the sampling algorithm decreases as 0q/+/n for random sampling

[X.-L. Meng, The Annals of Applied Statistics, Vol. 12 (2018), p. 685]
[Hickernell, MCQMC 2016, 1702.01487]

Consequences for large N (or large N,,,,.):
1. The sample deviation can be large if Corr][...] does not decrease as o(1/v/N)

2. Standard error estimates can be misleadingly small.
3. Control for sampling biases is critical to avoid the situation described
as the Big Data Paradox [Meng]:

The bigger the data, the surer we fool ourselves.

P. Nadolsky, QCD at the Femtoscale in the Era of Big Data
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Complexity and PDF tolerance

 Bad news: The tolerance puzzle is intractable in very complex fits
— In a fit with N,,,,- free parameters, the minimal number of PDF replicas to
estimate the expectation values for v y? function grows as N,,,;,, = 2Nvar

— Example: Np,;, > 1039 for N, = 100

[Sloan, Wo zniakowski, 1997]
[Hickernell, MCQMC 2016, 1702.01487]

Good news: expectation values for typical QCD observables can be
estimated with fewer replicas by reducing dimensionality of the problem
or a targeted sampling technique.

Example: a “hopscotch scan’, see 2205.10444

2024-07-02 P. Nadolsky, QCD at the Femtoscale in the Era of Big Data 26



Example: the impact of epistemic uncertainty on NNLO
Higgs and Z cross sections

Details in
: ' A. Courtoy et al.,
800 R LHC 13TeV, NNLO . arXiv:2205.10444
. |
II|lI
780} y
i"‘:?ﬁﬂ -
CcTis ——
CT18Z -----
740¢ NNPDF4.0: i
MNOMINA s—
<o —— Q] obtained with the same NNPDF4.0 fitting code
o _:: { using a “hopscotch scan” of the PDF param. space
?2{]_"4'5'"'4'6""4'?""4'3"_

all ellipses contain acceptable predictions
according to the likelihood-ratio test
Nominal NN4.0 uncertainty is too small!
2024-07-02
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arXiv:2205.10444

Impact of epistemic uncertainties on other cross sections
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The ellipses are
projections of 68% c.l.
ellipsoids in N, ,,--dim.
spaces

Npqr = 28 and 30 for

CT18 and NNPDF4.0
Hessian PDFs
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Weak and strong
goodness-of-fit criteria

Kovarik, P. N., Soper, arXiv:1905.06957

P. Nadolsky, QCD at the Femtoscale in the Era of Big Data
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Weak (common) goodness-of-fit (GOF) criterion
Based on the global y?

A fit of a PDF model to N,,,, experiments with N,,; points (N,
> 1) is good at the probability level p if xZ,q = X057 22
satisfies

P(XZ = Xélobal'Npt) =p;, e.g.

|X§lobal - Nptl S \/ZNpt forp = 0.68
Even when the weak GOF criterion is satisfied, parts of data
can be poorly fitted

X2 A

Then, tensions between experiments may
lead to multiple solutions or local y* minima

for some PDF combinations

P. Nadolsky, QCD at the Femtoscale in the Era of Big Data 30
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An excellent fit requires more than a good global y*

It passes a number of quality tests, called together the strong
set of goodness-of-fit criteria

1. Each possible partition n of the global data set has a good y?

— differences between theory and data for this partition are
indistinguishable from random fluctuations

- P({x1:}) = 0.68 for the distribution of y7 over N, partitions

2. Best-fit nuisance parameters obey the expected probability
distribution

3. Resampling test: the data are neither underfitted nor
overfitted

4. A closure test is passed, such as the one used in NNPDF 3.x

P. Nadolsky, QCD at the Femtoscale in the Era of Big Data 31



Functional forms of PDFs
and resampling test

The uncertainty due to the PDF functional form contributes as much as 50%
of the total PDF uncertainty in CT fits. The CT18 analysis estimates this
uncertainty using 100 trial functional forms.



Explore various non-perturbative
parametrization forms of PDFs

2.0 HEtmall T T T T 1.5 T Ll Ll T T T T : 1.5 L Bk | il T T T T
2(x,Q) at Q =1.3 GeV 90%C.L. Lk u(x,Q) at Q =1.3 GeV 90%C.L. ; Ll d(x,Q) at Q =1.3 GeV 90%C.L.
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107 107 107 10° 100 02 05 09 10° 10* 10° 107 ; 100 02 05 09 10° 10% 107 107 . 107 02 05 09

o CT17par — sample result of using various non-perturbative parametrization forms.

. No data constrain very large x or very small x regions.
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If too few parameters

The solution can be consistent and false
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If too many parameters

6000
5000 - Kovarik, Nadolsky, Soper, 2019 )
4000 - :
9 Xz(gz,:O
= 3000~ X-(Dq,a2)
"(E L
<
2000 - CT14HERA2 |
_ - I X?(Dz,az)
X?(D1,a4)
10 15 20 25 30 35

Number of parameters

« Randomly split the CT14HERA data set into two halves, D; and D,

* Find parameter vectors a, and a, from the best fits for D, and D,,
respectively
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If too many parameters

6000 T
50000 Kovarik, Nadolsky, Soper, 2019 )
4000 - :
9 ] Xz(gz,:O
= 3000~ X-(Dq,a2)
-.(_5' L
<
2000 - CT14HERA2 |
_ - I X?(Dz,az)
X?(D1,a4)
10 15 20 25 30 35

Number of parameters
- Fitted samples: y%(D,a,) and y*(D,,a,) uniformly decrease with
the number of parameters; eventually the fits become unstable
(“fitting noise”)
- Control samples: y?(D,,a,) and xy*(D,a,) fluctuate when the

number of parameters is larger than about 30
2024-07-02 P. Nadolsky, QCD at the Femtoscale in the Era of Big Data



2024-07-02

If too many parameters

6000 T
5000 - Kovarik, Nadolsky, Soper, 2019 )
4000 - :
9 ] Xz(gz,:O
= 3000~ X-(Dq,a2)
-.(_5' L
<
2000 - CT14HERA2 |
_ - I X?(Dz,az)
X?(D1,a4)
10 15 20 25 30 35

Number of parameters

< 30 parameters (26 in CT14HERAZ2) is optimal for describing the
CT14HERAZ2 data set. 15 parameters or less is optimal for nuclear
PDFs
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How well are the data described?

Note: It is convenient to define S, (x?, N,;) that

approximately obeys the standard normal distribution
(mean=0, width=1) independently of N,

P. Nadolsky, QCD at the Femtoscale in the Era of Big Data
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Example: data residuals r;,

CT14HERAZ NNLO

D.4- r_
_ HL\ 0+ 1 :
I : shifted
| | L _Talad) = D" ((a))
03] \ ] m = O_uncorrelated
[ _ n
z |
;S:i ool i 0.04 + 1.04
| i The distribution of residuals
| Is consistent with the
01y standard normal distribution
e Full definition of 7, in the backup slides
residuals

P. Nadolsky, QCD at the Femtoscale in the Era of Big Data

39



Example: individual experiments

CT14 NNLO
Define

:::_4: 0% 1e, | Sn(Xz»Npt) = W_ \/ZNpt —1

Sn (x5, Npe ) are Gaussian

03

_ : \ NMC X0p | _ _ .
= A ~distributed with mean 0 and
E 45 ! ‘1‘ MRt variance 1 for Ny, = 10

[R.A.Fisher, 1925]

Even more accurate (x*, Np;):
T.Lewis, 1988

An empirical S,, distribution can be
compared to N(0,1) visually or using
a statistical (KS or related) test
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Effectlve Gau33|an varlables

MMHT2014 NNLO

- CT14HERAZ NNLO

06| Tensions
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; e™p ande™p
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5 | ! fact. scale
£ 03 /
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- ! \[0.07 £ 2.0
02 ! \
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00!
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2 xe2 —vV2Z N =1 in 24 data sets
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0

_NNPDF3.1 NNLO
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0.4- ox1 8 g small-x resummation
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Epistemic PDF uncertainty: recap

Epistemic uncertainty (due to parametrization, methodology, parametrization/NN
architecture, smoothness, data tensions, model for syst. errors, ...) is increasingly
important in NNLO global fits as experimental and theoretical uncertainties
decrease. We make progress in understanding it.

With 0(10 — 1000) free parameters, including nuisance parameters, the Ay* = 1
criterion for 16 PDF uncertainties is almost certainly incomplete. Stop using it “as
Is”. There are strong mathematical reasons.

Nominal PDF uncertainties in high-stake measurements at the HL-LHC and EIC
thus should be tested for robustness of sampling over acceptable methodologies
and demonstrate absence of biases in this sampling.

Public tools for this are increasingly available: xFitter, NNPDF code, ePump,
Fantdmas, MP4LHC,...
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Backup
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Al/ML techniques are superb for finding an excellent fit to data.
Are these techniques adequate for uncertainty estimation [exploring all good fits]?

A common resampling procedure used by experimentalists and theorists:

1. Train a neural network model T; with N, (hyper)parameters on a randomly fluctuated replica of
discrete data D;. Repeat N, times. In a typical application: N, > 102 y Nrep < 104,

2. Out of N, replicas T; with “good” description of data [i.e., with a high likelihood P(D;|T;)
o« e~ X" (PuT)/2] discard “badly behaving” (overfitted, not smooth, ...) replicas
3. Estimate the uncertainties of T; using the remaining “well-behaved” replicas

Is this procedure rigorous? How many N,..,, replicas does one need?
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A likelihood-ratio test of NN models T; and T,

From Bayes theorem, it follows that

P(T;|D) P(D|T,) P(T3)
= X
P(T.|D) P(DI|T;) P(T,)
= T'posterior = Tikelihood = T'prior
aleatory epistemic + aleatory

2_ .2
Suppose replicas T, and T, have the same y* ["likelihood = €XP (Xlzxz) = 1], but T, is disfavored

compared to T; [rposterior < 1]-

This only happens if Tprior < 1: T, is discarded based on its prior probability.
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