Critical fluctuations in heavy-ion collisions

Marlene Nahrgang, Subatech Nantes August 1, 2024

Institute for Nuclear Theory, Seattle International Visitor Program & "Heavy Ion Physics in the EIC Era"

Extreme QCD in heavy-ion collisions

Understanding the dynamics of the strong interaction under extreme conditions of temperature and density!

Important questions:

- Onset of deconfinement and chiral symmetry restoration?
- Properties of the strongly coupled QGP?
- Existence of a phase transition with **critical end point?**
- What are the dof in the core of compact stars?

Connect first-principle QCD calculations with experimental observables via a realistic dynamical modeling of heavy-ion collisions and astrophysical events!

How to observe the critical point in HIC

- At a critical point, the correlation length ξ diverges and so do the fluctuations.
- Observable in higher-order cumulants of net-baryon number.

$$
\chi_1 = \frac{1}{VT^3} \langle N \rangle, \quad \chi_2 = \frac{1}{VT^3} \langle (\Delta N)^2 \rangle, \quad \chi_3 = \frac{1}{VT^3} \langle (\Delta N)^3 \rangle,
$$

$$
\chi_4 = \frac{1}{VT^3} \langle (\Delta N)^4 \rangle_c \equiv \frac{1}{VT^3} \left(\langle (\Delta N)^4 \rangle - 3 \langle (\Delta N)^2 \rangle^2 \right).
$$

To 0th order in V fluctuations:

$$
\frac{\chi_2}{\chi_1} = \frac{\sigma^2}{M} \qquad \qquad \frac{\chi_3}{\chi_2} = S\sigma \qquad \qquad \frac{\chi_4}{\chi_2} = \kappa \sigma^2
$$

variance
Skewness
Kurtosis

At a CP the $τ_{relax}$ diverges with ξ which leads to critical slowing down \blacksquare $\$

Interesting deviations from the baseline in the experimental data… are they due to the critical point of QCD?

Need a dynamical model!

Importance of dynamical modeling

In a grand-canonical ensemble the system is...

- in thermal equilibrium (= long-lived)
- in equilibrium with a particle heat bath
- spatially infinite
- and static

Systems created in a heavy-ion collision are

- short-lived
- spatially small
- inhomogeneous
- and highly dynamical!

Solution: Develop dynamical models to describe the phase transition in heavy-ion collisions

Event-by-event dynamical modeling allows us in addition to study different particle species, experimental cuts, hadronic final interactions, etc.

Fluctuations all along the way

- **•** Initial state fluctuations due to quantum mechanical fluctuations and multiplicity fluctuations
- Thermal fluctuations, including the formation of critical fluctuations
- Fluctuations due to the hadronization process
- Fate of fluctuations in the hadronic phase
- Imperfect detection efficiency and finite acceptance

Approaches to fluid dynamical fluctuations

There are two main approaches of describing fluid dynamics with noise:

Hydro-kinetics

- Set of deterministic kinetic equations for n-point functions of fluid dynamical fields
- Renormalization (perturbatively) performed during the derivation
- Statistical average performed in the derivation of deterministic equations

A.Andreev, Sov. Phys. JETP 32 no. 5 (1971) and 48 no. 3 (1978); Y. Akamatsu et al., PRC 95 no. 1 (2017) and 97 no. 2 (2018); M. Stephanov et al., PRD 98 (2018); M. Martinez et al., PRC 99 no. 5 (2019); X. An et al., PRC 100 no. 2 (2019), PRL 127 (2021); L. Du et al., PRC 102 (2020); K. Rajagopal, NPA 1005 (2021)

Stochastic/fluctuating fluid dynamics

Numerical implementation of the fluid dynamical equations with stochastic conservation law:

 $\partial_{\mu}T^{\mu\nu} = 0$, $T^{\mu\nu} = T^{\mu\nu}_{\text{ideal}} + T^{\mu\nu}_{\text{viscous}} + S^{\mu\nu}_{\text{noise}}$ $\partial_{\mu}J^{\mu}=0$, $J^{\mu}=J^{\mu}_{\text{ideal}}+J^{\mu}_{\text{viscous}}+I^{\mu}_{\text{noise}}$.

- Sample discretized noise event-by-event
- Observables are calculated from statistical averaging over events.
- Can easily be integrated in standard event generators of HIC!
- Many challenges....

Fluctuating Dissipative Fluid Dynamics

The correlators of the thermal noise terms in the energy momentum tensor and the conserved currents : Γ (August 8, August)

$$
\langle S^{\mu\nu}(x_1)S^{\alpha\beta}(x_2)\rangle = 2T \begin{bmatrix} \eta \left(\Delta^{\mu\alpha}\Delta^{\nu\rho} + \Delta^{\mu\rho}\Delta^{\nu\alpha}\right) \\ + \left(\zeta - \frac{2}{3}\eta\right)\Delta^{\mu\nu}\Delta^{\alpha\beta} \end{bmatrix} \delta^{(4)}(x_1 - x_2).
$$

$$
\langle I^{\mu}(x_1)I^{\nu}(x_2)\rangle = 2T\sigma\Delta^{\mu\nu}\delta^{(4)}(x_1 - x_2).
$$

Several issues arise from the discretization of the Dirac delta function in the noise

- Stochastic noise introduces a lattice spacing dependence.
- Correction terms due to renormalization become large for small lattice spacings.
- Large noise contributions can locally lead to negative energy densities.
- Large gradients introduced by the uncorrelated noise is a problem for PDE solvers.

Fluctuating Dissipative Fluid Dynamics

First implementations of FDFD have shown: need to limit the resolution scale; simulate noise down to a particular filter length scale, for which:
 $l_{\text{grid}} < l_{\text{filter}} \lesssim l_{\text{noise}} \ll l_{\text{hydro}}$

Murase et al.: noise is smeared by Gaussians with widths of 1-1.5 fm (choice not discussed), large enhancement of flow observed. K. Murase et al, NPA 956 (2016);

Nahrgang et al.: noise is coarse-grained over distances of approx. 1fm, lattice spacing dependence of the energy density and its fluctuations observed.

Singh et al.: high-mode Fourier filter with a coarse graining scale of > 1 fm, multiplicities and flow are little affected by the inclusion of fluctuations

Renormalizing critical dynamics in model A of Hohenberg-Halperin Cassol-Seewald et al. 0711.1866 in 3 dimensions

Stochastic relaxation equation of chiral order parameter

$$
\frac{\partial^2\varphi}{\partial t^2}-\nabla^2\varphi+\eta\frac{\partial\varphi}{\partial t}+\frac{\partial V_{\text{eff}}}{\partial\varphi}=\xi
$$

Ginzburg-Landau effective potential, ϵ encodes phase transition

$$
V_{\text{eff}}(\varphi) = \frac{1}{2}\epsilon\varphi^2 + \frac{1}{4}\lambda\varphi^4
$$

White thermal noise

$$
\langle \xi(\vec{x},t) \rangle = 0 \text{ and } \langle \xi(\vec{x},t)\xi(\vec{x}',t') \rangle = 2\eta T \delta(\vec{x}-\vec{x}')\delta(t-t')
$$

Counterterm for mass renormalization

$$
V_{\text{CT}} = \left\{ -\frac{3\lambda \Sigma T}{4\pi \text{ d}x} + \frac{3}{8} \left(\frac{\lambda T}{\pi}\right)^2 \left[\ln \left(\frac{6}{M \text{ d}x}\right) + \zeta \right] \right\} \frac{\varphi^2}{2}
$$

Farakos et al. 9412091, 9404201

Gleiser, Ramos 9311278

Renormalizing critical dynamics in model A

Time evolution near a critical point of

Restoration of lattice spacing independence after including the counterterm

N. Attieh, M. Bluhm, N. Touroux, M. Kitazawa, T. Sami, MN, in preparation

Renormalizing critical dynamics in model A

Time evolution near a critical point of

A nonzero kurtosis is observed after inclusion of the counterterm. Lattice spacing dependence or independence cannot be resolved within the available statistics.

Net-baryon diffusion: model B in 1+1 dimensions

- In the long-time, equilibrium limit the net-baryon density is the slowest mode near the CP.
- For baryonic matter that decouples from the energy flow of the system (model B of Hohenberg, Halperin), the diffusive dynamics follows the minimization of the free energy F

$$
\partial_t n_B(t, x) = \kappa \nabla^2 \left(\frac{\delta \mathcal{F}[n_B]}{\delta n_B} \right) + \nabla \mathbf{J}(\mathbf{t}, \mathbf{x})
$$

nt
$$
\mathbf{J}(t, x) = \sqrt{2 \mathcal{T} \kappa} \zeta(t, x), \quad \kappa = \frac{D n_c}{T}
$$

with the stochastic curre (Gaussian, white noise)

- Apply the evolution in a 1+1 dimensional, boost-invariant Bjorken expansion Fluctuations in an expanding background, e.g. J. Kapusta et al, PRC 85 (2012); Y. Akamatsu et al. PRC 95 (2017), M. Martinez et al, PRC 99 (2019)
- The nonlinear stochastic diffusion equation transforms as:

$$
\partial_{\tau} n_B = \frac{D n_c}{\tau \chi_2(\tau)} \partial_y^2 n_B - \frac{D n_c K(\tau)}{\tau} \partial_y^4 n_B + \frac{D n_c}{6 \tau \chi_4(\tau)} \partial_y^2 n_B^3 - \partial_y \xi.
$$

In Gauss limit: M. Sakaida et al PRC 95 (2017); nonlinear (only critical): M. Kitazawa, G.Pihan, N. Touroux, M. Bluhm, MN NPA 1005 (2021)

MN and M. Bluhm, PRD 99 (2019) and PRD 102 (2020)

Singular and regular susceptibilities

• Parametrize the susceptibilities $\chi_2(\tau)$ and $\chi_4(\tau)$ with a regular part using the argument in

M. Asakawa, U. Heinz, B. Müller, PRL 85 (2000)

$$
\chi_n(\tau) = \frac{\langle \Delta N_B^n \rangle}{S} \Big|_{\text{QGP}/\text{HRG}} = \frac{\chi_B^n}{s / T^3} \Big|_{\text{QGP}/\text{HRG}}
$$

With $\chi_{_{\rm B}}$ ⁿ and the entropy fixed to lattice results at T=280 MeV for the QGP and T=130 MeV for the HRG, matched via tanh function.

Couple with the singular contribution (3D Ising) via

$$
\chi_n(\mathcal{T}) = \chi_n^{\text{sing}}(\mathcal{T}) + \chi_n^{\text{reg}}(\mathcal{T})
$$

Match to the coefficients in the expansion of the free energy density functional.

$$
\chi_n(\tau) = \tau \left(\left. \frac{\delta^n \mathcal{F}}{\delta n_B^n} \right|_{\Delta n_B = 0} \right)^{-1}
$$

Investigate several trajectories in the QCD phase diagram.

Validating the linear model

Important step for all fluctuating codes:

validation of the appropriate linear model:

- Structure factor and equal-time correlation function are well reproduced
- Approach to continuum as resolution is increased.
- Lower wavenumbers well described with the maximal resolution chosen for this work.
- Enhancement of fluctuations with low wavenumbers at $T_c^{\, =}$ 150 MeV.
- Discretization and baryon conservation effects under control.

only here

λ₄ = 0!

Anticorrelations as a signal for the critical point

Higher-order moments are more sensitive

- to the divergence of the correlation length
- and to any other noncritical aspect of HIC...

Here: dynamical fluctuations of net-baryon density

- Large fluctuations are balanced by large anti-correlations (net-baryon conservation)
- Due to the dynamics these anti-correlations cannot diffuse fast enough
- Approaching Tc they are visible at $y \sim 1-2$
- At lower T the minimum becomes smaller and moves to larger y
- Possible detection depends crucially on T_{FQ}
- Interesting experimental data: (STAR AuAu, 30-40% most central, 0.4<pT<2GeV)

apple comparison possible

Non-monotonic kurtosis as a signal for the critical point

- Monotonic increase in the variance
- Non-monotonic Kurtosis only for the trajectories with critical point.
- This non-monotonic behavior of the kurtosis survives the rapid expansion for a diffusion length $D = 1$ fm
- strong indication for the presence of the critical point.
- For increasing D the minimum moves to larger distances in rapidity.
- Essential for the experiment to cover a wide range in rapidity to see the non-monotonicity.

apple comparison possible

Interesting experimental data: (STAR AuAu, 0-5% most central, 0.4<pT<2GeV, |y|<ymax)

 0.1 0.2 0.3 0.4 0.5 $\pm \Delta V$ HADES Collab, PRC 102 (2020)

rapidity dependence of fluctuation observables

16

Non-monotonic kurtosis as a signal for the critical point

- Monotonic increase in the variance
- Non-monotonic Kurtosis only for the trajectories with critical point.
- This non-monotonic behavior of the kurtosis survives the rapid expansion for a diffusion length $D = 1$ fm
- strong indication for the presence of the critical point.
- For increasing D the minimum moves to larger distances in rapidity.
- Essential for the experiment to cover a wide range in rapidity to see the non-monotonicity.

apple comparison possible

Interesting experimental data: (STAR AuAu, 0-5% most central, 0.4<pT<2GeV, |y|<ymax)

rapidity dependence of fluctuation observables

G. Pihan, M. Bluhm, M. Kitazawa, T. Sami, MN, PRC 107 (2023) T. Sami, MN, PRC 107 (2023 G. Pihan, M. Bluhm, M. Kitazawa,

Fluctuations all along the way

- **•** Initial state fluctuations due to quantum mechanical fluctuations and multiplicity fluctuations
- Thermal fluctuations, including the formation of critical fluctuations
- Fluctuations due to the hadronization process
- Fate of fluctuations in the hadronic phase
- Imperfect detection efficiency and finite acceptance

Fate of critical fluctuations in the hadronic phase

- Calculate up to 4th order cumulants of critical fluctuations from an 3d Ising model mapping to QCD and couple it to HRG cumulants $(g_c=2,4)$.
- Reconstruct the particle distributions from the cumulants + maximum entropy constraint
- Assume simple geometry at particlization: uniform spatial distribution in a sphere (R=9fm) Momentum distribution $f_{i,k} = e^{-u \cdot k_i/T}$

J. Hammelmann,, M. Bluhm, MN, H. Elfner, [2310.06636](https://arxiv.org/abs/2310.06636)

Fate of critical fluctuations in the hadronic phase

- Apply smash ([https://smash-transport.github.io\)](https://smash-transport.github.io) to the final hadronic interactions of the initialized particles.
- Resonance decay and regeneration are the dominant processes during the hadronic expansion.

J. Hammelmann,, M. Bluhm, MN, H. Elfner, [2310.06636](https://arxiv.org/abs/2310.06636)

Impact of resonance dynamics vs decay

● Compare the dynamical effect of the resonance decay and regeneration compared to only resonance decay:

$$
\tilde{\kappa}_n = \frac{\kappa_n^{\rm dynamical}}{\kappa_n^{\rm decays}}
$$

● Net-proton cumulants are strongly impacted by the hadron dynamics compared to the net-nucleons -> importance of isospin randomization processes.

M. Bluhm, MN, S. Bass, T. Schaefer, Eur.Phys.J.C 77 (2017); MN, M. Bluhm, P. Alba, R. Bellwied, C. Ratti Eur.Phys.J.C 75 (2015); M. Kitazawa, M. Asakawa, Phys.Rev.C 85 (2012)

Final proton and nucleon cumulant ratios

- For $g_c = 2$, no critical signal is seen in the net-proton variance and skewness, a very small signal in the kurtosis survives.
- For $g_c = 4$, the net-proton variance shows critical features -> not compatible with experiment.
- The nucleon critical signal is significantly more pronounced than for protons only.
- Signal depends strongly on the rapidity acceptance and can even change sign in the kurtosis.

Final proton and nucleon cumulant ratios

- For $g_c = 2$, no critical signal is seen in the net-proton variance and skewness, a very small signal in the kurtosis survives.
- For $g_c = 4$, the net-proton variance shows critical features -> not compatible with experiment.
- The nucleon critical signal is significantly more pronounced than for protons only.
- Signal depends strongly on the rapidity acceptance and can even change sign in the kurtosis.

J. Hammelmann,, M. Bluhm, MN, H. Elfner, [2310.06636](https://arxiv.org/abs/2310.06636)

Workshop at Subatech, Nantes, October 28-31, 2024 **[Hydrodynamics and related observables in heavy-ion](https://indico.in2p3.fr/event/32630/) [collisions](https://indico.in2p3.fr/event/32630/)**

https://indico.in2p3.fr/event/32630/

Broad topics:

- hydrodynamic fluctuations
- finite baryon density
- spin-hydrodynamics
- anisotropic hydrodynamics
- stable first-order hydrodynamics
- jets and heavy-flavor dynamics
- rapid hydrodynamization
- numerical developments

Conclusions

Treating the dynamics of fluctuations near the Critical Point is important for quantitative statements about its existence based on heavy-ion collision data!

- Net-baryon fluctuations are strongly impacted by the expansion dynamics.
- Anticorrelations of baryons can signal the CP.
- Non-monotonic dependence of the kurtosis on the rapidity window near the CP.
- Resonance decay and regeneration strongly affects the critical fluctuations.

Currently explored:

- Renormalizing (chiral) fluid dynamics with N. Attieh
- Implementing (renormalized) fluctuating fluid Dynamics with J. Sterba, I. Karpenko, B. Tomasik

APPENDIX

Importance of fluctuations for transport coefficients

 $\eta \sim \int d^3x dt < T^{ij}(x,t) T^{ij}(0,0)$ >

Included in fluid dynamics **NOT included in fluid dynamics**

• symmetrized correlator:

$$
G_S^{xyxy}(\omega, \mathbf{0}) = \int d^3x dt e^{i(\omega t - \mathbf{k} \cdot \mathbf{x})} \left\langle \frac{1}{2} \{ T^{xy}(t, \mathbf{x}), T^{xy}(0, \mathbf{0}) \} \right\rangle
$$

• for the shear-shear contribution \Rightarrow

$$
G_{R,\text{shear-shear}}^{xyxy}(\omega,0) = -\frac{7T}{90\pi^2} \Lambda^3 - i\omega \frac{7T}{60\pi^2} \frac{\Lambda}{\gamma_\eta} + (i+1)\omega^{3/2} \frac{7T}{90\pi^2} \frac{1}{\gamma_\eta^{3/2}}
$$
\n
$$
\text{cutoff-dependent}
$$
\n
$$
\text{fluctuation contribution}
$$
\n
$$
\text{tot the pressure}
$$
\n
$$
\text{requency-dependent}
$$
\n
$$
\text{for the pressure}
$$
\n
$$
\text{requency-dependent}
$$
\n
$$
\text{contribution to} \quad \eta
$$

P. Kovtun et al, PRD84 (2011); C.Chafin, T. Schäfer, PRA87 (2013); P. Romatschke et al, PRA87 (2013) ²⁷

Net-proton fluctuations near the critical point

- UrQMD initial conditions rescaled to the EoS of the effective model.
- From densities to particles via Cooper-Frye particlization.
- At particlization: densities of the sigma field coupled to the FD densities.

- No non-monotonic behavior in pure mean-field equilibrium calculations.
- Clear signal for criticality in net-proton fluctuations at transition energy density!
- Overall decreasing trend probably due to net-baryon number conservation

MN et al, EPJC72 (2012), 0903.2911²⁸

Nch FRG \longrightarrow QCD assisted transport

• Include effective potential beyond mean field, momentum dependent equilibrium sigma spectral function \Rightarrow linear response regime of QCD.

First-principle approach to QCD from the Functional Renormalization Group (FRG) Cyrol, Mitter, Pawlowski, Strodthoff PRD97 (2018)

F. Gao, J. Pawlowski, 2010.13705; T. Herbst et al, PLB731 (2014); T. Herbst PRD88 (2013); F. Rennecke, J. Pawlowski, N. Wink

- Excellent description of phase structure at vanishing chemical potential.
- Phase structure qualitatively similar to \bullet the conjectured QCD phase diagram.
- Obtain spectral functions from analytical continuation.

NchiFD + FRG \longrightarrow QCD assisted transport

M. Bluhm et al., NPA982 (2019)

Transport equation: $\frac{\delta \Gamma}{\delta \sigma} = \xi$, where $\{ \Re \Gamma_{\sigma}^{(2)}(\omega,\vec{p}), \Im \Gamma_{\sigma}^{(2)}(\omega,\vec{p}), U \} \in \Gamma$

- Critical end point and the phase structure are clearly identifiable.
- Critical slowing down in the vicinity of the critical point, but no dramatic enhancement of τ_{relax} in a dynamic setup!

Diffusive dynamics of net-baryon density

- In the long-time, equilibrium limit the net-baryon density is the slowest mode near the CP.
- For baryonic matter that decouples from the energy flow of the system (model B of Hohenberg, Halperin), the diffusive dynamics follows the minimization of the free energy F

$$
\partial_t n_B(t, x) = \kappa \nabla^2 \left(\frac{\delta \mathcal{F}[n_B]}{\delta n_B} \right) + \nabla \mathbf{J}(\mathbf{t}, \mathbf{x})
$$

nt
$$
\mathbf{J}(t, x) = \sqrt{2 \mathcal{T} \kappa} \zeta(t, x), \quad \kappa = \frac{D n_c}{\mathcal{T}}
$$

MN and M. Bluhm, PRD 99 (2019) and PRD 102 (2020)

with the stochastic curre (Gaussian, white noise)

First: static box with fixed temperature

Critical energy density from 3d Ising Model

Ginzburg-Landau

$$
\mathcal{F}[n_B] = T \int d^3 \left(\frac{m^2}{2n_c^2} \Delta n_B^2 + \frac{K}{2n_c^2} (\nabla \Delta n_B)^2 \right) \frac{\lambda_3}{3n_c^3} \Delta n_B^3 + \frac{\lambda_4}{4n_c^4} \Delta n_B^4 + \frac{\lambda_6}{6n_c^6} \Delta n_B^6
$$

The couplings depend on temperature *x* is the correlation length $\xi(T)$:

$$
m2 = 1/(\xi_0 \xi^2)
$$
 Gauss + surface
\n
$$
K = \tilde{K}/\xi_0
$$

\n
$$
\lambda_3 = n_c \tilde{\lambda}_3 (\xi/\xi_0)^{-3/2}
$$

\n
$$
\lambda_4 = n_c \tilde{\lambda}_4 (\xi/\xi_0)^{-1}
$$

\n
$$
\lambda_6 = n_c \tilde{\lambda}_6
$$

M. Tsypin PRL 73 (1994); PRB 55 (1997)

parameter choice: $\Delta n_B = n_B - n_c$ $\xi_0 \sim 0.5$ fm, $T_c = 0.15$ GeV, $n_c = 1/3$ fm⁻³ $K = 1/\xi_0$ (surface tension) $\tilde{\lambda}_3$, $\tilde{\lambda}_4$, $\tilde{\lambda}_6$ (universal, but mapping to QCD)

Studied in a static and cooling box of QGP

Validated in the equilibrium limit for the Gauss + surface model:

- Structure factor and equal-time correlation function are well reproduced
- Approaches continuum as resolution is increased
- Baryon conservation effects under control

Important step for all fluctuating codes!

Scaling of equilibrium cumulants

- Expected scaling in an infinite system $(\xi \ll V)$: M. Stephanov PRL 102 (2009) $\sigma_V^2 \propto \xi^2$, $(S\sigma)_V \propto \xi^{2.5}$, $(\kappa \sigma^2)_V \propto \xi^5$
- Here, a finite system with exact baryon conservation ($\xi \lesssim V$)! Can be systematically studied in $\xi/V \Rightarrow$ affects equilibrium scaling!
- E.g. for the skewness terms $\propto \lambda_3 \lambda_4$ and $\propto \lambda_3 \lambda_6$ contribute with opposite sign.

$$
\sigma_V^2 \propto \xi^{1.3 \pm 0.05}
$$

$$
(S\sigma)_V \propto -\#\xi^{1.47 \pm 0.05} + \#\xi^{2.4 \pm 0.05}
$$

$$
(\kappa \sigma^2)_V \propto \xi^{2.5 \pm 0.1}
$$

Dynamical critical scaling

- Dynamical structure factor for Gaussian model in continuum: $S(k, t) = S(k) \exp(-t/\tau_k)$ with $\tau_k^{-1} = \frac{Dm^2}{n_c} \left(1 + \frac{K}{m^2} k^2\right) k^2$
- Analyze ξ -dependence of relaxation time for modes with $k^* = 1/\xi$:

MN and M. Bluhm, PRD 99 (2019) and PRD 102 (2020)

Time evolution of critical fluctuations

- shift of extrema for variance/kurtosis \bullet (retardation effects) to later times corresponding to $T(\tau) < T_c$
- $|$ extremal values $|$ in dyn simulations $<$ \bullet equilibrium values (nonequilibrium effects):

 $(\sigma_V^2)_{\text{dyn}}^{\text{max}} \approx 0.75 \, (\sigma_V^2)_{\text{eq}}^{\text{max}}$ $((\kappa\sigma^2)_V)^{\min}_{\rm dyn} \approx 0.5\,(\kappa\sigma_V^2)^{\min}_{\rm eq}$

expected behavior with varying D and c_s^2 \bullet (expansion rate)

The role of numerics and computational resources

Time for two heavy nuclei to collide and produce particles:

∼ **10**^ー**23 seconds**

Time for a simulation of two colliding heavy nuclei and particle production:

∼ **1 hour**

Example: even with a Gaussian Process Emulator the Bayesian analysis of the temperature dependence of bulk and shear viscosity costs 100 Mio CPU hours.

This assumes O(104) events per point, fluctuation studies easily require O(108) events per point...

