2-loop RGEs of the LEFT OB sector

Workshop on Baryon number violation: From Nuclear Matrix Elements to BSM Physics Jan 25, INT, UW, Seattle

> Luca B.L. Naterop with Peter Stoffer

University of Zurich Paul Scherrer Institute

Supported by SNF

Motivation

Running
$$
1 \text{GeV} \rightarrow 10^{15} \text{GeV}
$$

\n \rightarrow big scale separation
\n \rightarrow RGE effects are big
\n \rightarrow Poop RGE returns a^{nm}Logⁿ
\n \rightarrow poor loop expansion

Some 2-200p AB RGEs exist [Nihei, Arafune, 1994], but

. only evolves $\Lambda_{\text{QCD}} \to \Lambda_{\text{EW}}$, not $\Lambda_{\text{EW}} \to \Lambda_{\text{GUT}}$

just QLD corrections

lacking scheme definition

$$
\frac{2}{\sqrt{18}}
$$

Talk Overview

- Chiral symmetry in HV
- . EFTs, the LEFT and its AB sector
- 2-loop RGES & scheme dependence quirks \bullet
- Evanescent operators
- Our scheme \bullet
- Calculational details: diagrams, integrals, tools \bullet
- Some preliminary results

Question

Take the LEFT BNU interaction and the lepton $\begin{bmatrix} L_{\text{add}} \\ \text{part} \end{bmatrix}_{\text{prst}}$ $\epsilon_{\alpha\beta\gamma}$ $(d_{\iota\beta}^{\prime} \in d_{\iota\tau}^{\prime})$ $(\bar{\epsilon}_{\kappa_{\beta}} d_{\iota\tau}^{\gamma})$ P_1 s P_2 Wilson coefficient down-type quarks - ournibilates 3 quarks, so 0B=1. Inspection of 1-loop RGE [Jenkins, Manchar, Stoffer, 2018] reveals $L_{dAd} = M \frac{a}{\mu} L_{dAd} = ... L_{dAd} - \infty$ no terms L_{add} or L_{add} \mathbf{p} probability \mathbf{p} some function of gange couplings different direalities Q1: Why ? Q_1 : Do we expect same behavior at two loops 2

Spurion Chiral Symmetry

E.g. mass terms violate chiral symmetry
$$
W_{c1}a \rightarrow U_{L1}R V_{L1}R
$$

\n $L_{mass} = -\bar{v}_{R}Nv_{L} - \bar{v}_{L}N^{+}v_{R}$
\nIt can be restored by promoting parameters to spurious
\n $M \rightarrow U_{R}NU_{L}$, $L_{eg} \rightarrow U_{L}L_{eg}U_{R}^{+}$
\n $M = \underbrace{0.4.73\ldots.9}_{\pi}$
\n**Restors** symmetry, if it wasn't for
\n $\overline{\psi}: \overline{p}V_{\overline{q}} = \overline{v}_{L}:\overline{p}W_{R} + \overline{v}_{L}:\overline{p}W_{R} + \overline{v}_{L}:\overline{p}W_{R} + \overline{v}_{R}:\overline{p}W_{L}$
\n**As** spurious symmetry - violating terms in intermediate steps
\n $\overline{\psi}$ of B effects are local \rightarrow absorb in δL
\n \rightarrow obtain JCS scheme

Effective Field Theories

1-Coop RGES

[Jenkins, Manchar, Trott, 2013] [Jenkins, Manchar, Staffer, 2017] (Fuentes et al., 2010) [Acbischer et al., 2018] An o tree + 1-leap matchings [Jenkins, Manohar, Stoffer, 2017] Dekeus, Hoffer, 2019] Λ_{EW} $\begin{bmatrix} 0 & \text{m} \\ \text{m} \end{bmatrix}$ $\begin{bmatrix} 0 & \text{m} \\ \text{m} \end{bmatrix}$ **LEFT** M_{QCD} match next: dim - b and 2-leap LGCD RPT as Λ increases dim-8 effects decrease Le 7-loop becomes more important dim-6 2-loop dominating over din -8 1-leap $\frac{2}{\sqrt{2}}$ Naively (LEFT): $\frac{12}{4\pi} \approx \frac{1}{100}$ us. $\frac{1}{\Lambda^2} \approx \left(\frac{1}{100}\right)$

Effective Field Theories

o old results for 2-loop EFT RGES

Bijhens Colangelo Eiker ¹⁹⁹⁹ functional Nihei Avafune ¹⁹⁹⁴ diagrammati

more recent \bullet

Jenkins Manohar LN Pege's geometric Born Fuentes Martin Kuedaraiti Thaman functional LN Staffer ²⁰²⁵ LEFT dim ⁵ ² leap RGE diagrammati

 \bullet soon

LN Steffer exp soon LEFT DB ² leap RGE diagrammati LN Steffer exp ²⁰²⁵ LEFT dim ⁶ ² leap RGE diagrammati

The LEFT DB sector

 $\Delta B = \Delta L = 1 + \text{h.c.}$

 $\Delta B = -\Delta L = 1 + \text{h.c.}$

2 - loop RGE: Ingredieuts

evancreats K.E. Using Ad Lie = 0 and graph theory. $L_{i} = \mu \frac{d}{dx} L_{i} = \left\{2 L_{i}^{(a_{1}a_{1})}\right\} + \left\{4 L_{i}^{(a_{1}a_{1})} - 2 L_{j}^{(a_{1}a_{1})} \frac{\partial L_{i}^{(a_{1}a_{1})}}{\partial L_{i}} - 2 L_{j}^{(a_{1}a_{1})} \frac{\partial L_{i}^{(a_{1}a_{1})}}{\partial L_{i}} - 2 K_{j}^{(a_{1}a_{1})} \frac{\partial L_{i}^{(a_{1}a_{1})}}{\partial K_{i}}\right\}$ 1-Lecp RGE 2-loop RGE Where $L_i^{base} = m_i^{\epsilon}(L_i + \sum_{\ell, k} \frac{1}{(16\pi^2)^{\epsilon}} \frac{L_{i,k}^{(l,m)}}{\epsilon^{k}})$, $l = 0,...,n$ $\{x\}_{x} := \frac{1}{(16\pi^2)^6} x$

Thus we need:

- e loop Ms: Clini - known from 1- loop RGE $L_i^{(e)} = 2e L_i^{(e, n)}$. $L_{1}^{(4,0)}, K_{2}^{(4,4)} \longrightarrow [LN, Stoffer, 2023]$ a do in the works \cdot $\lfloor n \rfloor$
- . Define a scheme

SAR

Jche**me** Depondence

(2) The precise definition of the EFT baris

- . physical sector: 4 our 4 FMW vs. 4 our 4 FMW
- · evancreent sector: (4 $\hat{\gamma}$ r qu 4) (4 $\hat{\gamma}$ r $\hat{\gamma}$ n $\hat{\gamma}$ 4) vs. (4 $\hat{\epsilon}$ n 4) (4 $\overline{\epsilon}$ n 5
- . class II (EOH) operators: shouldn't watter
- (3) Relormatization scheme:

As vs. finite renormalizations
\n
$$
\int_{\text{WQ. dQ}}^{\text{twite renormalizations}} f(x, y) = L_{\text{av.}}^{\text{(1,0)}} + L_{\text{ev.}}^{\text{(1,0)}} \left[D_{\text{WGMI}}, G_{\text{trinoficih}}, 1991 \right]
$$
\n
$$
\int_{\text{rphere, chiral symmetry}}^{\text{(1,0)}} f(x, y) dx
$$

 (wH)

HV Scheme: dimensional oplit $M = 0, 1, 2, 3, ..., D$ \vec{a} \vec{a} $\{\overline{\gamma}\cdot\overline{\gamma}\cdot\}$ = 0 $\left[\gamma_{5}, \hat{\gamma}_{r}\right]$ = 0

Evanescent operators

 $\frac{1}{18}$

$$
E^{First} = C_{m} \left\{ \left(\frac{1}{\sigma_{\theta} \sigma_{\theta}} \sum_{i=1}^{m} \left(\frac{1}{\sigma_{\theta} \sigma_{\theta}} \sum_{j=1}^{m} \left(\frac{1}{\sigma_{\theta}} \right) \right) \right) \right) \right) \right\}^{T} \right\}
$$

· Chishdun - evancreents

$$
E^{(4)S} = \epsilon_{\cdots} \left\{ (m_{\rho} \gamma^{\rho} \gamma^{\sigma} \gamma^{\sigma} \cdots) (m_{\rho} \gamma^{\sigma} \gamma^{\sigma} \cdots) + 4(4 - \epsilon) (m_{\rho} \gamma^{\sigma} \cdots) (m_{\rho} \gamma^{\sigma} \cdots) \right\}
$$

Our Scheme

Choosing scheme means:

\n(A) choosing Operator basis

\n
$$
\Rightarrow \int_{LEFT} = \int_{AED+ACD} + \sum_{i} L_{i}O_{i} + \sum_{i} L_{i}^{red}O_{i}^{red} + \sum_{i} K_{i}E_{i}
$$
\n
$$
\Rightarrow \int_{UEFT} = \int_{AED+ACD} + \sum_{i} L_{i}O_{i} + \sum_{i} L_{i}^{red}O_{i}^{red} + \sum_{i} K_{i}E_{i}
$$
\n
$$
\Rightarrow \int_{d-dim} d-dim \qquad 4-dim \qquad Fedundant \qquad evaries
$$

(B) renermalization scheme

$$
\Rightarrow L^{bare} = \mu^{ME} (L^{rev} + \delta L^{div} + \delta L^{finite}_{ev} + \delta L_{xx}^{finite})
$$
\n
$$
mendology
$$
\n
$$
= L^{kinite}
$$

$$
(c) algebraic precision in D = 4-2e
$$
\n
$$
\rightarrow H \vee \quad \text{relevance} \quad \text{for} \quad \gamma_5, \quad \in \text{prove}
$$

Our Scheme

The updot is

- · Green's functions are free of K: and COB terms
- · Jame for RGES, matching relations ?

Example results in MS:

$$
\dot{e} = \left\{ 4\epsilon^{5}n_{f} + 4\delta e^{5}\left\{ tr(L_{eg}u_{t}^{+}) + tr(L_{eq}^{+}h_{e}) \right\} - 224e^{4}\left\{ tr(L_{g}M_{e}) + tr(L_{eg}^{+}w_{e}^{+}) \right\} \right\}
$$
\n
$$
\dot{C}_{d_{max}}^{SLU} = \left\{ \frac{274}{9}g^{4}L_{d_{max}}^{SLU} - \frac{1746}{3}g^{4}L_{d_{max}}^{SLU} + \frac{352}{3}g^{4}L_{d_{max}}^{SLU} + term_{e} with e \right\}_{2}
$$

Example results in our scheme:

$$
\dot{e}^{(t)} = \left\{ 4e^5 n_4 - 80e^4 \left\{ tr \left(L_{eg} M_e \right) + tr \left(L_{eg} M_e \right) \right\} \right\}
$$
\n
$$
\dot{L}_{dyn}^{S,LL} = \left\{ 34 g^4 L_{dyn}^{S,LL} \right\}
$$
\n
$$
L_{grav}^{S,LL} = \left\{ 34 g^4 L_{dyn}^{S,LL} \right\}
$$

2 loop diagrams

At dimension 6 have just GED+ QCD to 18 insertion

No 75 problems in JB. Have just QED + QCD UP traces. Solenlation can be done in NDR without ambiguities -> we provide results both in NDR & HV allows cross-chack in relations between observables

Extraction of W	Lioupyon			
1. $2\pi\sqrt{3}$	2. $2\pi\sqrt{3}$	3. $2\pi\sqrt{3}$		
2. $\frac{1}{10}$	3. $\frac{1}{10}$	4. $\frac{1}{10}$	5. $\frac{1}{10}$	6. $\frac{1}{10}$
3. $\frac{1}{10}$	4. $\frac{1}{10}$	5. $\frac{1}{10}$	6. $\frac{1}{10}$	
4. $\frac{1}{10}$	5. $\frac{1}{10}$	6. $\frac{1}{10}$		
5. $\frac{1}{10}$	6. $\frac{1}{10}$	7. $\frac{1}{10}$	8. $\frac{1}{10}$	
6. $\frac{1}{10}$	9. $\frac{1}{10}$	10. $\frac{1}{10}$		
7. $\frac{1}{10}$	11. $\frac{1}{10}$	12. $\frac{1}{10}$		
8. $\frac{1}{10}$	13. $\frac{1}{10}$	14. $\frac{1}{10}$		
9. $\frac{1}{10}$	15. $\frac{1}{10}$	16. $\frac{1}{10}$		
10. $\frac{1}{10}$	16. $\frac{1}{10}$			
11. $\frac{1}{10}$				

[clutyrkin, Misiak, Muenz, 1997]

16/18

known

Steps in the celculation

 Generate diagrams QCiraf roughly 1.5k DB diagrams ^R Operation is subgraphs and CT diagrams Mathematica Apply Feynman Rules Color algebra Dira Algebra Form and Tensor Reduction Symbolica Divel Algebra Evaluation of integrals Absorb ^L Mathematica Field Redefinition Chalks RGE Callulation

Conclusions

- . We define the LEFT in HV, including E:
- . We propose a scheme, restoring C5 and comparating E:
- . We derive the 2-loop RGE of the LEFT in HV
- . OB sector also in NDR
- Results are part of an effort towards NLL accuracy

Alknowledgements

Ancesh Manohar, Anders Eller Thomsen, Adrian Signer, Andreas Crivellin, Martin Hoferichter, Ben Ruije, Dominik Stockinger

Next steps

- . Do the same for SMEFT?
- . NLL EFT analysis in DB? What else is needed?

Scheme Dependente

Theory with one parameter g $g = b_0 g^3 + b_1 g^5 + b_2 g^4 + ...$

Now change scheme $g = \tilde{g} + a_1 \tilde{g}^2 + a_2 \tilde{g}^5 + ...$ invert $\tilde{g} = g - a_1 g^3 + (3a_1 - a_2)g^5 + ...$

and compute RGE of q $\tilde{3}$ = -3ang²g + 5(3an-an)g⁴g = ... miracle ... = b_og³ + b₁g⁵ + 0(g²) -10 2-loop RGE is scheme independent ! (but not 3-laop)

\n A:
$$
3^3 + 8
$$
; $3^3 \cdot 3^2$, $3 \cdot 3^4$; $3 \cdot 4 \cdot 3^5$, $3 \cdot 3 \cdot 4$; $3 \cdot 4 \cdot 3 \cdot 5$; $3 \cdot 3 \cdot 6 \cdot 6$.\n

\n\n 6: $3 \cdot 5 \cdot 7 \cdot 1 = 4 \cdot 3^3 + 8 \cdot 3^3 \cdot 3 \cdot 5 + 2 \cdot 5 \cdot 1 = 4 \cdot 3^3 \cdot 5 \cdot 1 = 4 \cdot$

Global us local Renormalization

Global Renormalitation - Operation level: Green's function $(2-\ell o \circ \varphi)$ + $(1-\ell o \circ \varphi) \times CT_s = \frac{\ell o \circ \alpha!}{\epsilon} + \frac{\ell o \circ \alpha!}{\epsilon}$ + few countertern diagrams gauge-vorient EOM checks on Let - Requires Lat at 1 loop, including class In (unless...?) Local Renormalitation - Operation level: diagram \sim 1 \sim 1 \sim 1 Local R Operation $R\left(\frac{1}{3}\right) = \left(\frac{1}{3}\right) + \frac{1}{2}$ $\boldsymbol{\hat{\mathfrak{r}}}$ t
I + Let automatically generated and inserted Individual CT-subtr. diagrams are local - feuer checks on Los

Backup: Extraction of W divergences

- . In deforms theory by DL^{et} ~ m. Result electe't change. Al automatic
- \hat{m} , T must act consistenty across terms \bullet
- . For T croter compute mass dimension of (rub-) graph

For
$$
\hat{m}
$$

—o α ct at a precisely defined step of calculation

otherwise dangerous ambiguity in cancellation of ^k

$$
\frac{k^{2}}{k^{2}} = 1 \quad \text{vs.} \quad \frac{k^{2}}{k^{2}-m^{2}} = 1 + \frac{m^{2}}{k^{2}-m^{2}}
$$

—
\n
$$
\frac{1}{k} \xrightarrow{\hat{m}} \frac{((k+m)}{k^{2-m^{2}}})
$$
\n
$$
\frac{1}{k} \xrightarrow{\hat{m}} \frac{(k+m)}{k^{2-m^{2}}}
$$
\n
$$
\frac{1}{k} \xrightarrow{\hat{m}} \frac{1}{k^{2-m^{2}}}
$$
\n
$$
\frac{1}{k} \xrightarrow{\hat{m}} \frac{1}{k^{2-m^{2}}}
$$

The LEFT

Ans EFT for
$$
E \ll \Lambda_{\text{EW}}
$$
. Integrated out t, h, W, Z :

\n\n $\int_{\text{LEFT}} = \int_{\text{ASD} + \text{QCD}} + \sum_{i} L_{i} \omega_{i}$ \n

\n\n $\int_{\text{DEFT}} = \int_{\text{ASD} + \text{QCD}} + \sum_{i} L_{i} \omega_{i}$ \n

\n\n $\int_{\text{DEFT}} = \int_{\text{ASD} + \text{QCD}} + \sum_{i} L_{i} \omega_{i}$ \n

SM and BSM effects captured by L:O:

Backup: Roperation in our schome

$$
R_{\ell} \bigodot = \bigodot + Q \cdot \delta \ell^{(n)} + \cdots + X \cdot \delta \ell^{(n)}
$$
\n
$$
= \bigodot + Q \cdot (\delta \ell^{(n)}_{\alpha} + \delta \ell^{(n)}_{\epsilon}) + X \cdot (\delta \ell^{(n)} + (\delta \ell^{(n)}_{\alpha} + \delta \ell^{(n)}_{\epsilon}))^{2}
$$
\n
$$
= R \bigodot + Q \cdot \delta \ell^{(n)}_{\alpha} + 2 \cdot \ell^{(n)}_{\alpha} \ell^{(n)}_{\epsilon} + \text{finite}
$$
\n
$$
\text{div} \text{sgn} + \text{part}
$$
\n
$$
\text{div} \text{sgn} + \text{part}
$$
\n
$$
\text{div} \text{sgn} + \text{part}
$$

Backup: The LEFT in HU

dipole operators:

\n
$$
L_{e\overline{\jmath}} \overline{e}_{L} \overline{\delta}^{AN} e_{R} F_{\mu\nu} + h.c.
$$
\n
$$
L_{ug} \overline{u}_{L} \overline{\delta}^{AN} u_{R} F_{\mu\nu} + h.c.
$$
\n
$$
L_{ud} \overline{u}_{L} \overline{\delta}^{AN} T^{A} u_{R} G_{\mu\nu}^{A} + h.c.
$$
\n
$$
\vdots
$$
\n
$$
4^{4} \text{ operators } \Omega L = \Omega 6 : 0:
$$
\n
$$
U_{ee}^{UL} (\overline{e}_{L} \overline{\gamma}^{ML})(\overline{e}_{L} \overline{\gamma}^{ML})
$$
\n
$$
U_{ee}^{UL} (\overline{e}_{L} \overline{\gamma}^{ML})(\overline{e}_{R} \overline{\gamma}^{ML})
$$

 $\frac{1}{2}$

$$
6 - 10
$$

$$
4^{4}
$$
 operators OL , $AB \neq O$:
\n $\bigcup_{Ne}^{S,U} (\overline{v}_{L}^{T}C v_{L})(\overline{e}_{R}e_{L})$
\n $\overline{L}_{Ne}^{U,U}(\overline{v}_{L}^{T}C\overline{\sigma}^{mv}v_{L})(\overline{e}_{R}\overline{\sigma}_{mv}e_{L})$
\n \vdots

Badeup: Facts about evanescents

¹ Coefficients of evanescents can start at tree level But have in besis KEII 4 me ^m needs loop or EFT suppression to have well defined perturbative expansion 2 Evanescents are not C They have rants ^E Double insertion effects on 0 produces not ^e

$$
\gamma_5 = \frac{1}{4!} \epsilon_{\mu\nu} \epsilon_{\nu} \gamma_5 \gamma^{\mu} \gamma^{\nu} \gamma^{\nu} \gamma^{\nu} \longrightarrow \left\{ \gamma^5, \gamma^{\mu} \right\} = 0 \quad \text{in} \quad D = 4
$$

 \overline{u} 0 \overline{f} 4

$$
\{\gamma^{5}, \gamma^{m}\} = 0 + c\gamma \text{clicity} \longrightarrow tr(\gamma^{m}\gamma^{m}\gamma^{g}\gamma^{g}\gamma^{c}) = 0
$$

But in D - 4 must find

$$
tr(\gamma^{\mu}\gamma^{\nu}\gamma^{\beta}\gamma^{\sigma}\gamma_{5}) = 4.6 \text{ mJ}
$$

De spoils analytic continuation