Exploring universality with a many-body density functional Giuseppina Orlandini

In collaboration with

Alejandro Kievsky and Mario Gattobigio

Motivations

- Exploring systems from "few-body" to "many-body" within a unified picture consider a very powerful approach: Energy Density Functional
- However, mantain translation/Galileian invariances
- here is a problem... but we will see how to overcome it
- Study systems that are close to the unitary limit and are suited for effective expansion of the interaction we will see an example at the end

Summary

Fast recall of Density Functional Theory (DFT) and Kohn-Sham (KS) equation

(systems of interacting particles placed in an external one-body potential)

- Self bound systems and Hyperspherical Coordinates (interacting particles, no external one-body potential)
- Different formulation of DFT and KS equation (the many-body hyperradial density)
- Application to bosons close to the unitary limit (⁴He atom clusters)

1: Fast recall of Density Functional Theory (DFT) and Kohn-Sham (KS) equation (systems of interacting particles placed in an external one-body

(systems of interacting particles placed in an external one-body potential)

The EDF approach in a couple of slides:

P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)

1) $E(n) \ge E_{gs}$ 2) $E(n_{gs}) = E_{gs}$

We have an Hamiltonian of interacting particles subject to an external potential

$$H = \sum_{i}^{N} \frac{p_{i}^{2}}{2m} + \sum_{i < j}^{N} V(\vec{r}_{i} - \vec{r}_{j}) + \sum_{i}^{N} v_{ext}(\vec{r}_{i}) \equiv \mathbf{T} + \mathbf{V} + \mathbf{v}_{ext}^{[1]}$$

$$E_{gs} = \langle \Psi_{gs} | T + V + v_{gs}^{[1]} | \Psi_{gs} \rangle$$

We have an Hamiltonian of interacting particles subject to an external potential

$$H = \sum_{i}^{N} \frac{p_{i}^{2}}{2m} + \sum_{i < j}^{N} V(\vec{r}_{i} - \vec{r}_{j}) + \sum_{i}^{N} v_{ext}(\vec{r}_{i}) \equiv \mathbf{T} + \mathbf{V} + \mathbf{v}_{ext}^{[1]}$$

$$E_{gs} = \langle \Psi_{gs} | T + V + \mathbf{v}_{gs}^{[1]} | \Psi_{gs} \rangle$$

 $n = n(\vec{r})$ is the one-body density, namely the mean value of the onebody density operator $\sum_{i=1}^{N} \delta(\vec{r-r_i})$ on some N-body wave function

We have an Hamiltonian of interacting particles subject to an external potential

$$H = \sum_{i}^{N} \frac{p_{i}^{2}}{2m} + \sum_{i < j}^{N} V(\vec{r}_{i} - \vec{r}_{j}) + \sum_{i}^{N} v_{ext}(\vec{r}_{i}) \equiv \mathbf{T} + \mathbf{V} + \mathbf{v}_{ext}^{[1]}$$

$$\mathsf{E}_{gs} = \langle \Psi_{gs} | \mathsf{T} + \mathsf{V} + \mathsf{v}_{gs}^{[1]} | \Psi_{gs} \rangle$$

 $n \equiv n(\vec{r})$ is the one-body density, namely the mean value of the onebody density operator $\sum_{i=1}^{N} \delta(\vec{r} - \vec{r}_{i})$ on some N-body wave function namely the following integral

n (**r**) =
$$\frac{1}{N} \int d\vec{r_1} d\vec{r_2} \dots d\vec{r_N} \Psi^*(\vec{r_1}, \vec{r_2}, \dots, \vec{r_N}) \sum_{i=1}^N \delta(\vec{r} - \vec{r_i}) \Psi(\vec{r_1}, \vec{r_2}, \dots, \vec{r_N})$$

And what is E(n) ? It is a particular functional of the one-body density defined as

$$E[\mathbf{n}] = \langle \Psi^{\mathbf{n}} | T + V | \Psi^{\mathbf{n}} \rangle + \int d\vec{r} \, v_{ext}(\vec{r}) \, n^{[1]}(\vec{r})$$

And what is E(n) ? It is a particular functional of the one-body density defined as

$$E[\mathbf{n}] = \langle \Psi^{\mathbf{n}} | T + V | \Psi^{\mathbf{n}} \rangle + \int d\vec{r} \, v_{ext}(\vec{r}) \, n^{[1]}(\vec{r})$$

$$\langle \Psi^{\mathbf{n}} | T + V | \Psi^{\mathbf{n}} \rangle \equiv \min_{\Psi \to \mathbf{n}} \langle \Psi | T + V | \Psi \rangle \equiv F(\mathbf{n})$$

The proof of the Theorem (following Levy 1979):

1) $E(n) \ge E_{gs}$ Obvious! because of the Rayleigh-Ritz variational principle

The proof of the Theorem (following Levy 1979): 1) $E(n) \ge E_{gs}$ Obvious! because of the Rayleigh-Ritz variational principle 2) $E(n_{gs}) = E_{gs}$ Proof of 2): $E[n_{gs}] = F(n_{gs}) + \int d\vec{r} v_{ext}(\vec{r}) n_{gs}^{[1]}(\vec{r}) \ge E_{gs}$ because of 1)

The proof of the Theorem (following Levy 1979): 1) $E(n) \ge E_{gs}$ Obvious! because of the Rayleigh-Ritz variational principle 2) $E(n_{gs}) = E_{gs}$ Proof of 2): $E[n_{gs}] = F(n_{gs}) + \int d\vec{r} v_{ext}(\vec{r}) n_{gs}^{[1]}(\vec{r}) \ge E_{gs}$ because of 1) $F(n_{gs}) = \min_{\Psi \to n_{gs}} \langle \Psi | T + V | \Psi \rangle \le \langle \Psi_{gs} | T + V | \Psi_{gs} \rangle$ because it is a minimum

The proof of the Theorem (following Levy 1979): 1) $E(n) \ge E_{gs}$ Obvious! because of the Rayleigh-Ritz variational principle 2) $E(n_{gs}) = E_{gs}$ $E[\mathbf{n}_{gs}] = F(\mathbf{n}_{gs}) + \int d\vec{r} \, v_{ext}(\vec{r}) \, n_{gs}^{[1]}(\vec{r}) \ge \mathsf{E}_{gs} \text{ because of } \mathbf{1})$ Proof of 2): because it is a $F(\mathbf{n}_{gs}) \equiv \min_{\Psi \to \mathbf{n}_{os}} \langle \Psi | T + V | \Psi \rangle \leq \langle \Psi_{gs} | T + V | \Psi_{gs} \rangle$ minimum $\boldsymbol{\mathsf{E}}_{\mathsf{gs}} = \langle \Psi_{gs} | T + V | \Psi_{gs} \rangle + \int d\vec{r} \, v_{ext}(\vec{r}) \, n_{gs}^{[1]}(\vec{r})$ by definition

The proof of the Theorem (following Levy 1979): 1) $E(n) \ge E_{gs}$ Obvious! because of the Rayleigh-Ritz variational principle 2) $E(n_{gs}) = E_{gs}$ $E[\mathbf{n}_{gs}] = F(\mathbf{n}_{gs}) + \int d\vec{r} \, v_{ext}(\vec{r}) \, n_{gs}^{[1]}(\vec{r}) \ge \mathsf{E}_{gs} \text{ because of } \mathbf{1})$ Proof of 2): because it is a $F(\mathbf{n}_{gs}) \equiv \min_{\Psi \to \mathbf{n}_{os}} \langle \Psi | T + V | \Psi \rangle \leq \langle \Psi_{gs} | T + V | \Psi_{gs} \rangle$ minimum $\boldsymbol{\mathsf{E}}_{\mathsf{gs}} = \langle \Psi_{gs} | T + V | \Psi_{gs} \rangle + \int d\vec{r} \, v_{ext}(\vec{r}) \, n_{gs}^{[1]}(\vec{r})$ by definition therefore $\mathsf{E}_{gs} \ge F(\mathbf{n}_{gs}) + \int d\vec{r} \, v_{ext}(\vec{r}) \, n_{gs}^{[1]}(\vec{r})$

The practical use of the theorem goes via the Kohn-Sham equation Phys. Rev. 140, A1133 (1965)

The Kohn-Sham equation is the Schroedinger equation of a fictitious system (the "Kohn-Sham system") of independent particles that generates the same n_{gs} (r) as any given system of interacting particles.

The practical use of the theorem goes via the Kohn-Sham equation Phys. Rev. 140, A1133 (1965)

The Kohn-Sham equation is the Schroedinger equation of a fictitious system (the "Kohn-Sham system") of independent particles that generates the same n_{gs} (r) as any given system of interacting particles.

The practical use of the theorem goes via the Kohn-Sham equation Phys. Rev. 140, A1133 (1965)

The Kohn-Sham equation is the Schroedinger equation of a fictitious system (the "Kohn-Sham system") of independent particles that generates the same n_{gs} (r) as any given system of interacting particles.

Assuming the W-representability of E (n), namely $E^{W}(n) = E(n)$

The real use of the theorem goes via the Kohn-Sham equation Phys. Rev. 140, A1133 (1965)

The Kohn-Sham equation is the Schroedinger equation of a fictitious system (the "Kohn-Sham system") of independent particles that generates the same n_{gs} (r) as any given system of interacting particles.

Assuming the W-representability of E (n), namely $E^{W}(n) = E(n)$

solving the one-body Kohn-Sham equation

$$\left(-\frac{\nabla^2}{2m} + W_{KS}(\vec{r})\right)\psi_i(\vec{r}) = \epsilon_i\psi_i(\vec{r})$$

 $E^{W}(n_{gs}) = E(n_{gs}) = E_{gs}$

By *reductio ad absurdum* one can show that W_{KS} is unique!

But what is this one-body potential W_{KS} ???

At $n=n_{gs}$ E_{gs} is the minimum of E(n) namely

$dE^{V}(n)/dn = 0 \longrightarrow dT^{nV}/dn + dV^{n}/dn + v_{ext}(r) = 0$

$dE^{W}(n)/dn = 0 \longrightarrow dT^{n,W}/dn + W(r) = 0$

At $n=n_{gs} E_{gs}$ is the minimum of E(n) namely

$dE^{v}(n)/dn = 0 \implies dT^{n,w}/dn + dT^{n,v}/dn - dT^{n,w}/dn + dV^{n}/dn + v_{ext}(r) = 0$

 $dE^{W}(n)/dn = 0 \implies dT^{n,W}/dn + W(r) = 0$

At $n=n_{gs} E_{gs}$ is the minimum of E(n) namely

$dE^{v}(n)/dn = 0 \longrightarrow dT^{n,w}/dn + dT^{n,v}/dn - dT^{n,w}/dn + dV^{n}/dn + v_{ext}(r) = 0$ $dE^{w}(n)/dn = 0 \longrightarrow dT^{n,w}/dn + V(r) = 0$

The KS Hamiltonian is not translation/Galileian invariant (as is not the original Hamiltonian that contains an external field)

So, what to do for self bound systems ??

2: Self bound systems and Hyperspherical Coordinates (interacting particles, no external one-body potential)

For self-bound systems one requires Translation / Galieian invariance

$$\left[\mathsf{H},\,\mathsf{P}_{_{\mathrm{CM}}}\right]=0\,\left(\begin{array}{c}\mathsf{H},\,\mathsf{R}_{_{\mathrm{CM}}}\end{array}\right]=0$$

$$H = \sum_{i}^{N} \frac{p_i^2}{2m} + \sum_{i < j}^{N} V(\vec{r}_i - \vec{r}_j) + \sum_{i}^{N} t_{\text{ext}}(\vec{r}_i) \equiv \mathbf{T} + \mathbf{V} + \sum_{rt}^{|\mathbf{v}|}$$

For self-bound systems one requires Translation / Galieian invariance

$$\left[\mathsf{H},\,\mathsf{P}_{_{\mathrm{CM}}}\right]=0\,\left(\begin{array}{c}\mathsf{H},\,\mathsf{R}_{_{\mathrm{CM}}}\end{array}\right]=0$$

$$H = \sum_{i=1}^{N} \frac{p_i^2}{2m} + \sum_{i$$

For self-bound systems one requires Translation / Galieian invariance

$$\begin{bmatrix} \mathsf{H}, \, \mathsf{P}_{\mathsf{CM}} \end{bmatrix} = 0 / \begin{bmatrix} \mathsf{H}, \, \mathsf{R}_{\mathsf{CM}} \end{bmatrix} = 0$$

$$H = \underbrace{\sum_{i=1}^{N} \frac{p_i^2}{2m}}_{Nm} + \underbrace{\sum_{i$$

Having eliminated the CM coordinate we need a set of N-1 vectors i.e. 3N-3 independent coordinates:

Jacobi coordinates

Jacobi coordinates

ξ<mark>.</mark>

= distances between each particle "i" and the cm of the previous (N - i) particles

Jacobi coordinates

ξ

= distances between each particle "i" and the cm of the previous (N - i) particles

Remarks:

- When expressed in terms of Jacobi coordinates, any 1-body or 2-body potential becomes of "N-body nature"
- The translation invariant wave function is highly correlated (i.e. particles are not independent) beyond the correlation due to the dynamics

One can further transform the Jacobi coordinates into a new set of coordinates called Hyperspherical Coordinates

HYPERSPHERICAL COORDINATES

HYPERSPHERICAL COORDINATES

HOW ARE HYPERRADIUS **P** AND HYPERANGLES **C** DEFINED ???

ξı

ξ,

3

e.g. for **3** particles

HOW ARE HYPERRADIUS **P** AND HYPERANGLES **C** DEFINED ???

LET'S FOCUS ON THE HYPERRADIUS () :

$$\rho^2 \sim \Sigma_{ij} (\vec{r}_i - \vec{r}_j)^2 \qquad \rho^2 \sim \Sigma_i (\vec{r}_i - \vec{R}_{CM})^2$$

can be onsidered as a highly "collective" variable

Very interesting feature of Hyperspherical Coordinates (HC):

With HC the expression of the 2 body invariant kinetic energy expressed in spherical coordinates is generalized to the N-body case

2 body: Kinetic Energy in SPHERICAL coordinates $T = \Delta_{r} - L^{2}/r^{2} = -1/(2m) (\partial^{2}/\partial r^{2} + 2/r \partial/\partial r) + L^{2}/r^{2}$ The spherical harmonics Y_{lm} (θ , ϕ) are the eigenfunctions of the angular momentum L²

2 body: Kinetic Energy in SPHERICAL coordinates

$$T = \Delta_{r} - L^{2}/r^{2} = -1/(2m) (\partial^{2}/\partial r^{2} + 2/r \partial/\partial r) + L^{2}/r^{2}$$
The spherical harmonics Y_{lm} (θ , ϕ) are the eigenfunctions of the angular momentum L^{2}

N body: Kinetic Energy in HYPERSPHERICAL coordinates

$$T = \Delta_{\rho} - K^{2} / \rho^{2} = -1/(2m) (\partial^{2} / \partial \rho^{2} + (3N - 4) / \rho \partial / \partial \rho) + K^{2} / \rho^{2}$$

The **hyperspherical** harmonics $Y_{\kappa...}(\Omega)$ are the eigenfunctions of **hyperangular momentum** K²

2 body: Kinetic Energy in SPHERICAL coordinates

$$T = \Delta_{r} - L^{2}/r^{2} = -1/(2m) (\partial^{2}/\partial r^{2} + 2/r \partial/\partial r) + L^{2}/r^{2}$$
The spherical harmonics Y_{lm} (θ , ϕ) are the eigenfunctions of the angular momentum L²

N body: Kinetic Energy in HYPERSPHERICAL coordinates

$$T = \Delta_{\rho} - \frac{\kappa^2}{\rho^2} = -\frac{1}{(2m)} \left(\frac{\partial^2}{\partial \rho^2} + \frac{(3N - 4)}{\rho}\right) - \frac{\partial}{\partial \rho} + \frac{\kappa^2}{\rho^2}$$

The hyperspherical harmonics $\mathbf{Y}_{\kappa...}$ (\mathbf{S}^2) indicated \mathbf{Y}_{κ} (Ω) are the eigenfunctions of hyperangular momentum \mathbf{K}^2

2 body: SPHERICAL HARMONICS

$$T = \Delta_{r} - L^{2}/r^{2} = -1/(2m) (\partial^{2}/\partial r^{2} + 2/r \partial/\partial r) + L^{2}/r^{2}$$
$$L^{2} Y_{lm} (\theta, \phi) = L (L+1) Y_{lm} (\theta, \phi)$$

N body: HYPERSPHERICAL HARMONICS

 $T = \Delta_{\rho} - \frac{K^2}{\rho^2} = -\frac{1}{(2m)} (\frac{\partial^2}{\partial \rho}^2 + (3N - 4)/\rho \frac{\partial}{\partial \rho} + \frac{K^2}{\rho^2} \rho^2$

$K^{2} Y_{\kappa...} (\Omega) = K (K+3N-5) Y_{\kappa...} (\Omega)$

In terms of Hyperspherical coordinates the invariant Hamiltonian becomes

$$H_{inv} = (\Delta_{\rho} - K^2 / \rho^2) + V(\rho, \theta_1 \phi_1 - \theta_2 \phi_2 \dots \alpha_1 \alpha_2 \dots)$$

= $(\Delta_{\rho} - K^2 / \rho^2) + V (\rho, \Omega)$

Remark:

When expressed in terms of Jacobi coordinates, even a 1-body operator becomes of "N-body nature"

Remarks in view of EDF:

- \blacksquare In $H_{_{inv}}$ there is no "real" one-body (IPM) density
- But one may define an analogous "many-body" density

The idea is to try an EDF approach for ν (ρ)

3: Different formulation of DFT and KS equation (the many-body hyperradial density)

The EDF approach for γ(ρ)

The **ANALOGOUS** of the Hohenberg Kohn statement:

1)
$$E(\mathbf{v}) \ge E_{gs}$$
 2) $E(\mathbf{v}_{gs}) = E_{gs}$

The EDF approach for ν(ρ)

The ANALOGOUS of the Hohenberg Kohn statement: 1) $E(v) \ge E_{gs}$ 2) $E(v_{gs}) = E_{gs}$

Given the invariant H

$$H_{inv}$$
 = (Δ - K²/ρ²) + V (ρ, Ω)

What is $E(\mathbf{v})$?

$$E[\nu] = \langle \Psi^{\nu} | T + V | \Psi^{\nu} \rangle \equiv \min_{\Psi \to \nu} \langle \Psi | T + V | \Psi \rangle$$

The proof goes along the same line as before....

Before:

The proof of the Theorem (following Levy 1979):

1) $E(n) \ge E_{as}$ Obvious! because of the Rayleigh-Ritz variational principle 2) $E(n_{gs}) = E_{gs}$ $E[\mathbf{n}_{gs}] = F(\mathbf{n}_{gs}) + \int d\vec{r} \, v_{ext}(\vec{r}) \, n_{gs}^{[1]}(\vec{r}) \ge \mathsf{E}_{gs} \text{ because of } \mathbf{1})$ Proof of 2): because it is a $F(\mathbf{n}_{gs}) \equiv \min_{\Psi \to \mathbf{n}_{cs}} \langle \Psi | T + V | \Psi \rangle \leq \langle \Psi_{gs} | T + V | \Psi_{gs} \rangle$ minimum $\boldsymbol{\mathsf{E}}_{\mathsf{gs}} = \langle \Psi_{gs} | T + V | \Psi_{gs} \rangle + \int d\vec{r} \, v_{ext}(\vec{r}) \, n_{gs}^{[1]}(\vec{r})$ by definition therefore $\mathsf{E}_{gs} \ge F(\mathbf{n}_{gs}) + \int d\vec{r} \, v_{ext}(\vec{r}) \, n_{gs}^{[1]}(\vec{r})$ Equal!

Now:

The proof of the Theorem (following Levy 1979):

1) $E(\mathbf{v}) \geq E_{gs}$ Obvious! because of the Rayleigh-Ritz variational principle $(\mathbf{v}_{gs}) = \mathbf{E}_{gs}$ $E[\mathbf{n}_{gs}] = F(\mathbf{n}_{gs}) + \int d\vec{r} r_{es}(r) n_{gs}^{[1]}(\vec{r}) \ge \mathsf{E}_{gs}$ because of 1) Proof of 2): because it is a $F(\mathbf{n}_{gs}) \equiv \min_{\Psi \to \mathbf{n}_{gs}} \langle \Psi | T + V | \Psi \rangle \leq \langle \Psi_{gs} | T + V | \Psi_{gs} \rangle$ n minimum $\mathsf{E}_{\mathsf{gs}} = \langle \Psi_{gs} | T + V | \Psi_{gs} \rangle + \int dr v_s$ by definition therefore $E_{gs} \ge F(n_{gs}) + \int dr e$ Equal!

The "Analogous" of the Kohn- Sham equation is the Schroedinger equation of a fictitious system governed by an hypercentral potential that generates the same hyperradial density v(0) as that of the real Hamiltonian

The "Analogous" of the Kohn- Sham equation is the Schroedinger equation of a fictitious system governed by an hypercentral potential that generates the same hyperradial density $v(\rho)$ as that of the real Hamiltonian, namely one has

 $H_{AKS} = T + W_{AKS} (\rho)$ where W_{AKS} is such that $v_{gs} = v^{AKS}$

The "Analogous" of the Kohn- Sham equation is the Schroedinger equation of a fictitious system governed by an hypercentral potential that generates the same hyperradial density $v(\rho)$ as that of the real Hamiltonian, namely one has

 $H_{AKS} = T + W_{AKS} (\rho)$ where W_{AKS} is such that $v_{gs} = v^{AKS}$

Again, by reductio ad absurdum one can show that $W_{AKS}(\rho)$ is unique!

The "Analogous" of the Kohn- Sham equation is the Schroedinger equation of a fictitious system governed by an hypercentral potential that generates the same hyperradial density $v(\rho)$ as that of the real Hamiltonian, namely one has $H_{AKS} = T + W_{AKS} (\rho) \text{ where } W_{AKS} \text{ is such that } v_{gs} = v^{AKS}$ Again, by reductio ad absurdum one can show that $W_{AKS} (\rho)$ is unique!
Solving the one-variable A K S equation

$$\left[\Delta_{\rho} + K^{2} / \rho^{2} + W_{AKS}(\rho)\right] \Phi(\rho) = E \Phi(\rho)$$

gives

$$E^{AKS}(v^{AKS}) = E(v_{gs}) = E_{gs}$$

The "Analogous" of the Kohn- Sham equation is the Schroedinger equation of a fictitious system governed by an hypercentral potential that generates the same hyperradial density $v(\rho)$ as that of the real Hamiltonian, namely one has $H_{AKS} = T + W_{AKS} (\rho) \text{ where } W_{AKS} \text{ is such that } v_{gs} = v^{AKS}$ Again, by reductio ad absurdum one can show that $W_{AKS} (\rho)$ is unique!
Solving the one-variable A K S equation

$$\left[\Delta_{\rho} + K^{2} / \rho^{2} + W_{AKS}(\rho)\right] \Phi(\rho) = E \Phi(\rho)$$

gives

$$E^{AKS}(v^{AKS}) = E(v_{as}) = E_{as}$$

...provided the W-representability of the functional E(v)

By *reductio ad absurdum* one can show that W_{KS} is unique!

One assumes that two hypercentral potentials, $W_1(\rho)$ and $W_2(\rho)$, differing by more than a constant, exist in such a way that the two Hamiltonians $H_1^W = T + W_1(\rho)$ and $H_2^W =$ $T + W_2(\rho)$ have the same $v(\rho)$. Let us call $|\Phi_1\rangle$ and $|\Phi_2\rangle$ the respective wave functions and \mathcal{E}_1 and \mathcal{E}_2 the corresponding energies. From the Rayleigh-Ritz variational principle the following condition holds:

$$\mathcal{E}_1 < \langle \Phi_2 | H_1^W | \Phi_2 \rangle = \langle \Phi_2 | H_2^W | \Phi_2 \rangle + \langle \Phi_2 | H_1^W - H_2^W | \Phi_2 \rangle,$$
(28)

$$\mathcal{E}_1 < \mathcal{E}_2 + \int d\rho \,\rho^{3(N-4)} \left[W_1(\rho) - W_2(\rho) \right] \nu(\rho). \tag{29}$$

The same can be repeated starting from \mathcal{E}_2 arriving at

$$\mathcal{E}_2 < \mathcal{E}_1 + \int d\rho \,\rho^{3(N-4)} [W_2(\rho) - W_1(\rho)] \,\nu(\rho). \tag{30}$$

Summing both inequalities we arrive at the following contradiction, $\mathcal{E}_1 + \mathcal{E}_2 < \mathcal{E}_1 + \mathcal{E}_2$, proving that the first assumption was wrong. Accordingly, it is proven that the density $v(\rho)$ uniquely determines the hyper-radial potential $W(\rho)$ that generates it.

G. Orlandini – Program on "Few and Many-body Systems in Universal Regimes", INT, Oct. 7- Nov. 15 2024

$$[\Delta_{\rho} + K^2 / \rho^2 + W_{AKS}(\rho)] \Phi_{[Kmin]}(\rho) = E_{gs} \Phi_{[Kmin]}(\rho)$$

$$\rho^{(3N-4)} v_{W} (\rho_{gs}) = |\Phi_{[Kmin]}(\rho)|^{2}$$

$$K_{min} = 0$$
 for bosons $K_{min} \neq 0$ for fermions

At $v = v_{gs} = E_{gs}$ is the minimum of E(v) namely

$dE^{v}(v)/dv=0 \implies dT^{nv}/dn + dV^{n}/dn = 0$

$dE^{W}(v)/dv = 0 \longrightarrow dT^{n,W}/dv + W(\rho) = 0$

At $V = V_{gs} E_{gs}$ is the minimum of E(V) namely

$$d\mathsf{E}^{\mathsf{v}}(\mathsf{v})/d\mathsf{v} = 0 \qquad \qquad d\mathsf{T}^{\mathsf{v},\mathsf{w}}/d\mathsf{v} + d\mathsf{T}^{\mathsf{v},\mathsf{v}}/d\mathsf{v} - d\mathsf{T}^{\mathsf{v},\mathsf{w}}/d\mathsf{v} + d\mathsf{v}^{\mathsf{v}}/d\mathsf{v} = 0$$
$$d\mathsf{E}^{\mathsf{w}}(\mathsf{v})/d\mathsf{v} = 0 \qquad \qquad d\mathsf{T}^{\mathsf{v},\mathsf{w}}/d\mathsf{v} + \qquad \qquad \mathsf{w}(\rho) \qquad \qquad = 0$$

G. Orlandini – Program on "Few and Many-body Systems in Universal Regimes", INT, Oct. 7- Nov. 15 2024

At $v=v_{gs}$ E_{gs} is the minimum of E(v) namely

$$dE^{v}(v)/dv = 0 \longrightarrow dT^{v,w}/dv + dT^{v,w}/dv + dV^{v}/dv = 0$$
$$dE^{w}(v)/dv = 0 \longrightarrow dT^{v,w}/dv + W(\rho) = 0$$

Simplest guess:

remember

$$H_{inv} = (\Delta_{\rho} - K^2 / \rho^2) + V(\rho, \Omega)$$
$$= V^{[2]}(\rho, \Omega) + V^{[3]}(\rho, \Omega) + ...$$

Try integral on the hyperangular part of the ground state wave function Sort of "mean field" for the p coordinate!

 $W_{AKS} (\rho) = N(N-1)/2 \int d\Omega V^{[2]} (\rho, \Omega) |Y_{[Kmin]} (\Omega)|^2 + N(N-1)(N-2)/6 \int d\Omega V^{[3]} (\rho, \Omega) |Y_{[Kmin]} (\Omega)|^2 + ...$

4: Application to bosons close to the unitary limit (⁴He atoms)

Helium clusters

Remarks:

The dimer of ⁴He has a binding energy of about 1 mK, three orders of magnitude less than the typical energy scale of $\bar{h}^2 / m r_{vdW}^2 = 1.677 \text{ K}$,

Helium clusters

Remarks:

The dimer of ⁴He has a binding energy of about **1 mK**, three orders of magnitude less than the typical energy scale of $\hbar^2 / m r_{vdW}^2 = 1.677 \text{ K}$,

Moreover, the two-body scattering length has been estimated to be $a \approx 190 a_0$, twenty times larger than $r_{vdw} = 5.08 a_0$. In the limiting case, $a \rightarrow \infty$, the system is located at the unitary limit well suited for an effective expansion of the interaction

Helium clusters

Remarks:

The dimer of ⁴He has a binding energy of about **1 mK**, three orders of magnitude less than the typical energy scale of $\bar{h}^2 / m r_{vdW}^2 = 1.677 \text{ K}$,

Moreover, the two-body scattering length has been estimated to be $\mathbf{a} \approx 190 \ \mathbf{a}_0$, twenty times larger than $\mathbf{r}_{vdw} = 5.08 \ \mathbf{a}_0$. In the limiting case, $\mathbf{a} \rightarrow \infty$, the system is located at the unitary limit well suited for an effective expansion of the interaction

The **first term** of this expansion is a **contact interaction** between the two helium atoms. However, as it is well known, the three-body system (as well as larger systems) collapses, even if the contact interaction is set to produce an infinitesimal binding energy. This phenomenon is known as the **Thomas collapse** and it is remedied by the introduction of a contact **three-body force** set to correctly describe the trimer energy

Accordingly, the leading order (LO) of this effective theory has two terms,

$$V_{LO}^{[2]} = \sum_{i < j} A e^{-r_{ij}^2/\alpha^2}, \quad V_{LO}^{[3]} = \sum_{i < j < k} B e^{-r_{ijk}^2/\beta^2},$$

Accordingly, the leading order (LO) of this effective theory has two terms,

$$V_{LO}^{[2]} = \sum_{i < j} A e^{-r_{ij}^2/\alpha^2}, \quad V_{LO}^{[3]} = \sum_{i < j < k} B e^{-r_{ijk}^2/\beta^2},$$

A and α are fitted to scattering length and effective range,

Several choices are possible for B and β, for exemple
a) fit to trimer and tetramer binding energies
b) in view of the fact that W (ρ) has to account for energies at any N, one can obtain couples (B, β) values, all fitting the tetramer binding energy.
Accordingly, the leading order (LO) of this effective theory has two terms,

$$V_{LO}^{[2]} = \sum_{i < j} A e^{-r_{ij}^2/\alpha^2}, \quad V_{LO}^{[3]} = \sum_{i < j < k} B e^{-r_{ijk}^2/\beta^2},$$

A and α are fitted to scattering length and effective range,

Several choices are possible for B and β, for exemple
a) fit to trimer and tetramer binding energies
b) in view of the fact that W (ρ) has to account for energies at any N, one can obtain couples (B, β) values, all fitting the tetramer binding energy.

RESULTS FOR BINDING ENERGIES

FOR ANY NUMBER N OF PARTICLES

For the **lowest N** values we observe *substantial independence* from the three-body range β with the overall best description inside the interval 7.5 a 0 < β < 9.0 a

(reduced) many-body density v(p) for selected number of particles

Phys. Rev. A 104, 030801 (2021)

Extremely localized density around a value almost linear with N.

Very compact object. Closer particles are discouraged (incompressible?) Also larger values are discouraged.

Mean square radius $\rho^2 \sim \Sigma_i (\vec{r}_i - \vec{R}_{CM})^2$

CONCLUSIONS

- An energy density functional approach has been formulated in terms of the density $v(\rho)$ where ρ is a translation invariant variable of collective nature
- It has been shown that the functional E[ν] is governed by a unique (unknown) hyperradial potential W (ρ).
- The solution of a single hyperradial equation with such an hyperradial potential allows to determine the binding energy for any N in a straightforward way.
- We have applied this framework to the bosonic case focusing on ⁴He clusters.
- The guess for W (ρ) has been inspired by the effective theory approach together with a generalization of the mean field concept.
- Extremely satisfying results have been found. The key point has been using the range of the three-body interaction β, to fine tune the W (ρ).

CONCLUSIONS

- An energy density functional approach has been formulated in terms of the density v(p) where p is a translation invariant variable of collective nature
- It has been shown that the functional E[ν] is governed by a unique (unknown) hyperradial potential W (ρ).
- The solution of a single hyperradial equation with such an hyperradial potential allows to determine the binding energy for any N in a straightforward way.
- We have applied this framework to the bosonic case focusing on ⁴He clusters.
- The guess for W (ρ) has been inspired by the effective theory approach together with a generalization of the mean field concept.
- Extremely satisfying results have been found. The key point has been using the range of the three-body interaction β, to fine tune the W (ρ).

OUTLOOK

- Extension to trapped systems
- Extension to Fermions. In Nuclear Physics: W (ρ) ??? EFT ???

And much more to explore with the AKS equation and

the Many-Body Density Functional $E(v(\rho))$!!!