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MotivationsMotivations

 Exploring systems from “Exploring systems from “fewfew-body” to “-body” to “manymany-body” -body” 
within a unified picturewithin a unified picture
consider a very powerful approach: Energy Density Functional consider a very powerful approach: Energy Density Functional 

 However, mantain translation/Galileian invariancesHowever, mantain translation/Galileian invariances
 here is a problem… here is a problem… but we will see how to overcome itbut we will see how to overcome it

 Study systems that are close to the unitary limit and Study systems that are close to the unitary limit and 
are suited for effective expansion of the interactionare suited for effective expansion of the interaction
we will see an example at the end  we will see an example at the end  
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Summary Summary 

 Fast recall of Density Functional Theory (DFT) and Fast recall of Density Functional Theory (DFT) and 
Kohn-Sham (KS) equationKohn-Sham (KS) equation
(systems of interacting particles placed (systems of interacting particles placed in an external one-body potentialin an external one-body potential))

 Self bound systems and Hyperspherical Coordinates  Self bound systems and Hyperspherical Coordinates  
 (interacting particles,   (interacting particles,  no no  external one-body potential) external one-body potential)

 Different formulation of DFT and KS equation           Different formulation of DFT and KS equation           
(the many-body (the many-body hyperradial densityhyperradial density))

 Application to bosons close to the unitary limit        Application to bosons close to the unitary limit        
((44He atom clusters)He atom clusters)
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1: Fast recall of Density Functional 1: Fast recall of Density Functional 
Theory (DFT) and Kohn-Sham (KS) Theory (DFT) and Kohn-Sham (KS) 

equationequation
(systems of interacting particles placed (systems of interacting particles placed in an external one-body in an external one-body 

potentialpotential))
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    The EDF approach in a couple of slides:The EDF approach in a couple of slides:

 P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)

E(n)> E
gs

E(n
gs

)= E
gs

1) 2)
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We have an Hamiltonian of interacting particles subject to  an external potential

E
gs

= <Ψ
gs

| T+V+v[1]

ext 
|Ψ

gs
>
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We have an Hamiltonian of interacting particles subject to  an external potential

E
gs

= <Ψ
gs

| T+V+v[1]

ext 
|Ψ

gs
>

n   ≡  n ( r ) is the  one-body density, namely the mean value of the one-

body density operator                                       on some N-body wave function 

  
S

i=1
 d ( r – r

i 
)

N
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We have an Hamiltonian of interacting particles subject to  an external potential

E
gs

= <Ψ
gs

| T+V+v[1]

ext 
|Ψ

gs
>

n   ≡  n ( r ) is the  one-body density, namely the mean value of the one-

body density operator                                       on some N-body wave function 

  namely the  following integral 

n ( r ) =

S
i=1

 d ( r – r
i 
)

N
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And what is E( n ) ? It is a particular functional of the 
one-body density defined as   
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And what is E( n ) ? It is a particular functional of the 
one-body density defined as   
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    The proof of the Theorem (The proof of the Theorem (following Levy 1979)following Levy 1979)::  
Obvious!  because of the Rayleigh–Ritz variational principle 1) E(n)    E

gs≥
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    The proof of the Theorem (The proof of the Theorem (following Levy 1979)following Levy 1979)::  
Obvious!  because of the Rayleigh–Ritz variational principle 

 because of 1) Proof of 2): E
gs≥

E(n
gs

)= E
gs

1)

2)

E(n)    E
gs≥
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    The proof of the Theorem (The proof of the Theorem (following Levy 1979)following Levy 1979)::  
Obvious!  because of the Rayleigh–Ritz variational principle 

 because of 1) 

 because it is a 
minimum

Proof of 2): E
gs

≤
≤

≥

E(n
gs

)= E
gs

1)

2)

E(n)    E
gs≥
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    The proof of the Theorem (The proof of the Theorem (following Levy 1979)following Levy 1979)::  
Obvious!  because of the Rayleigh–Ritz variational principle 

 because of 1) 

 because it is a 
minimum

 by definition

Proof of 2): E
gs

E
gs

≤
≤

≥

E(n
gs

)= E
gs

1)

2)

E(n)    E
gs≥
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    The proof of the Theorem (The proof of the Theorem (following Levy 1979)following Levy 1979)::  
Obvious!  because of the Rayleigh–Ritz variational principle 

 because of 1) 

 because it is a 
minimum

 by definition

therefore

Proof of 2): E
gs

E
gs

E
gs≥

≤
≤

≥

E(n
gs

)= E
gs

1)

2)

E(n)    E
gs≥
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    The proof of the Theorem (The proof of the Theorem (following Levy 1979)following Levy 1979)::  
Obvious!  because of the Rayleigh–Ritz variational principle 

Equal!

 because of 1) 

 because it is a 
minimum

 by definition

therefore

Proof of 2): E
gs

E
gs

E
gs≥

≤
≤

≥

E(n
gs

)= E
gs

1)

2)

E(n)    E
gs≥
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    The practical use of the theorem goes via the The practical use of the theorem goes via the 
Kohn-Sham equation Kohn-Sham equation Phys. Rev. 140, A1133 (1965)Phys. Rev. 140, A1133 (1965)

The Kohn- Sham equation is the Schroedinger equation   of a fictitious system (the "Kohn-

Sham system") of independent particles   that generates the same n
gs

 (r) as any given 

system of interacting particles.
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    The practical use of the theorem goes via the The practical use of the theorem goes via the 
Kohn-Sham equation Kohn-Sham equation Phys. Rev. 140, A1133 (1965)Phys. Rev. 140, A1133 (1965)

The Kohn- Sham equation is the Schroedinger equation   of a fictitious system (the "Kohn-

Sham system") of independent particles   that generates the same n
gs

 (r) as any given 

system of interacting particles.

 

 nKS = n
gs
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    The practical use of the theorem goes via the The practical use of the theorem goes via the 
Kohn-Sham equation Kohn-Sham equation Phys. Rev. 140, A1133 (1965)Phys. Rev. 140, A1133 (1965)

The Kohn- Sham equation is the Schroedinger equation   of a fictitious system (the "Kohn-

Sham system") of independent particles   that generates the same n
gs

 (r) as any given 

system of interacting particles.

 

 

 Assuming the W-representability of E (n ), namely

                                  EW (n) = E (n ) 
 

nKS = n
gs
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    The real use of the theorem goes via the The real use of the theorem goes via the 
Kohn-Sham equation Kohn-Sham equation Phys. Rev. 140, A1133 (1965)Phys. Rev. 140, A1133 (1965)

The Kohn- Sham equation is the Schroedinger equation   of a fictitious system (the "Kohn-

Sham system") of independent particles   that generates the same n
gs

 (r) as any given 

system of interacting particles.

 

solving the one-body  Kohn-Sham equation

 nKS = n
gs

EW (n
gs

) = E (n
gs

 ) = E
gs

 Assuming the W-representability of E (n ), namely

                                  EW (n) = E (n ) 
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By reductio ad absurdum one can show that 

W
KS 

is unique! 
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But what is this one-body potential W
KS

 ???
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At    n=n
gs

   E
gs

 is the minimum of E(n) namely  

=

dEW(n)/dn = 0    
        

dEV(n)/dn = 0   
         

dTn,W/dn + W(r) = 0  

dTnV/dn + dVn/dn + v
ext

(r)  = 0
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At    n=n
gs

   E
gs

 is the minimum of E(n) namely  

=

dEW(n)/dn = 0    
        

dEV(n)/dn = 0    
        

dTn,W/dn +  W(r)  = 0  

dTn,W/dn +  dTn,V/dn - dTn,W/dn+ dVn/dn + v
ext

(r)  = 0
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At    n=n
gs

   E
gs

 is the minimum of E(n) namely  

dEW(n)/dn = 0    
        

dEV(n)/dn = 0   
         

dTn,W/dn +                            W(r)                         = 0 

 

dTn,W/dn +  dTn,V/dn - dTn,W/dn+ dVn/dn + v
ext

(r)  = 0
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As to  Vn(n) :

???

???

dTn,V/dn - dTn,W/dn

Moreover

W(r) = dTn,V/dn - dTn,W/dn+ dVn/dn + v
ext

(r)  Formally:
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The KS  Hamiltonian is not translation/Galileian invariant
       (as is not the original Hamiltonian that contains an external field)

So, what to do for self bound systems ?? 
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2:  Self bound systems and Hyperspherical 2:  Self bound systems and Hyperspherical 
Coordinates Coordinates     

(interacting particles,  (interacting particles,  no no  external one-body potential) external one-body potential)
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For self-bound systems one requires 
Translation / Galieian invariance

[H, P
CM

 ] = 0 [H, R
CM

 ] = 0 
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For self-bound systems one requires 
Translation / Galieian invariance

[H, P
CM

 ] = 0 [H, R
CM

 ] = 0 
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For self-bound systems one requires 
Translation / Galieian invariance

[H, P
CM

 ] = 0 [H, R
CM

 ] = 0 

Invariant H
inv

Having eliminated the CM coordinate we need a set 
of N-1 vectors i.e. 3N-3  independent coordinates:
 
                  Jacobi coordinates 
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Jacobi coordinates      

x
i

= distances between each particle “i” and
   the cm of the previous (N – i ) particles

etc. 3

x
3

1 2

4

x
1

x
2
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Jacobi coordinates      

x
i

= distances between each particle “i” and
   the cm of the previous (N – i ) particles

p
1

p
2

.

.

.
p

N

r
1

r
2

.

.

.
r

N

x
0
 = R

CM

x
1

.

.

.
x
N-1

p
0  
 = P

CM

p
1

.

.

.
p
N-1

transformation

etc. 3

x
3

1 2

4

x
1

x
2
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Remarks:Remarks:

 When expressed in terms of Jacobi When expressed in terms of Jacobi 
coordinates, any  1-body or  2-body coordinates, any  1-body or  2-body 
potential becomes of “potential becomes of “NN-body nature”-body nature”

 The translation invariant wave function is The translation invariant wave function is 
highly highly correlated correlated (i.e. particles are not (i.e. particles are not 
independent) beyond the correlation due to independent) beyond the correlation due to 
the dynamicsthe dynamics
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One can further transform the Jacobi One can further transform the Jacobi 
 coordinates into a new set of coordinates  coordinates into a new set of coordinates 

called  called  Hyperspherical Coordinates Hyperspherical Coordinates 
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HYPERSPHERICAL COORDINATES

x
1

q
1

f
1

x
2

q
2

f
2

.

.

.

x
N-1

q
N-1

f
N-1

r
q
1

f
1

a
1

.
q
2

f
2

.

.

.

a
N-2

  

transformation

hyperradius

hyperangles

q
N-1

f
N-1

Total: 3N-3 
coordinates

Total: 3N-3 
coordinates

etc. 3

1 2

4
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HYPERSPHERICAL COORDINATES

x
1

q
1

f
1

x
2

q
2

f
2

.

.

.

x
N-1

q
N-1

f
N-1

r
q
1

f
1

a
1

.
q
2

f
2

.

.

.

a
N-2

  

transformation

hyperradius

hyperangles

q
N-1

f
N-1

3N-4 angles  are 
indicated with 

Ω

Total: 3N-3 
coordinates

Total: 3N-3 
coordinates

Total: 3N-3 
coordinates: 
  ( r  Ω )
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HOW ARE HYPERRADIUS r AND HYPERANGLES a
i 

DEFINED ???

e.g.  for 3 particles

x
1

q
1

f
1

x
2

q
2

f
2

transform 

r =   x
1

 2  + x
2

2 

q
1

f
1

a
1
=arcos(xx

2
/r)r) 

.

q
2

f
2

 

r

a
1 

x
1

x
2

3

1 2

x
1

x
2
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HOW ARE HYPERRADIUS r AND HYPERANGLES  aa
i i 
DEFINED ???

e.g.  for 4 particles

transformation etc.

etc. 3

x
3

1 2

4

x
1

x
2

r

x
1

x
2

x
3

a
1

aa
22

r =  x
1

 2  + x
2

 2+ x
3

 2

q
1

f
1

.
a

1 
 

q
2

f
2

a
2

q
3

f
3

 
 
 

x
1

q
1

f
1

xx
22

q
2

f
2

x
3

q
3

f
3
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LET’S FOCUS ON THE  HYPERRADIUS  r :

3

4

r can be onsidered as a highly  
“collective” variable

r2 ~ S
ij 
(  r

i  
–  r

j  
)2

1 2

r2 ~ S
i 
(  r

i  
–  R

CM  
)2

3

1 2

4

CM
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Very interesting feature of 
Hyperspherical Coordinates (HC):

With HC the expression of the 2 body invariant 
kinetic energy expressed in spherical coordinates 

is generalized to the N-body case
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 T  =  D 
r
 -  L2/ r2  = - 1/(2m) (∂2/∂r 2 + 2 / r ∂/∂r) +  L2/ r2 

The spherical harmonics Y
lm

 ( q, f) are the   

  eigenfunctions of the angular momentum L2  

2 body: 

 

Kinetic Energy  in SPHERICAL coordinates
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The hyperspherical harmonics  Y
K ....

(  W  ) 

          are the eigenfunctions of  hyperangular momentum K2  

   T  =  D 
r 

-  K2 / r 2  = - 1/(2m) (∂2/∂r 2 + (3N -4) / r  ∂/∂r) +  K2/ r2   

 

 T  =  D 
r
 -  L2/ r2  = - 1/(2m) (∂2/∂r 2 + 2 / r ∂/∂r) +  L2/ r2 

The spherical harmonics Y
lm

 ( q, f) are the   

  eigenfunctions of the angular momentum L2  

2 body: 

N body: 

 

Kinetic Energy  in SPHERICAL coordinates

Kinetic Energy  in HYPERSPHERICAL coordinates
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The hyperspherical harmonics  Y
K ....

(  W  ) indicated  Y
[K] 
(x W )  

          are the eigenfunctions of  hyperangular momentum K2  

   T  =  D 
r 

-  K2 / r 2  = - 1/(2m) (∂2/∂r 2 + (3N -4) / r  ∂/∂r) +  K2/ r2   

 

 T  =  D 
r
 -  L2/ r2  = - 1/(2m) (∂2/∂r 2 + 2 / r ∂/∂r) +  L2/ r2 

The spherical harmonics Y
lm

 ( q, f) are the   

  eigenfunctions of the angular momentum L2  

2 body: 

N body: 

 

Kinetic Energy  in SPHERICAL coordinates

Kinetic Energy  in HYPERSPHERICAL coordinates
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HYPERSPHERICAL HARMONICS

 K2 Y
K ....

(  W  ) = K ( K+3N-5 ) Y
K ....

 (  W  ) 
           

   T  =  D 
r 

-  K2 / r 2  = - 1/(2m) (∂2/∂r 2 + (3N -4) / r  ∂/∂r) +  K2/ r2   

SPHERICAL HARMONICS

 

 T  =  D 
r
 -  L2/ r2  = - 1/(2m) (∂2/∂r 2 + 2 / r ∂/∂r) +  L2/ r2 

L2 Y
lm

 ( q, f) =  L ( L+1) Y
lm

 ( q, f)  

2 body: 

N body: 
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   H
inv

 =   ( D 
r 

-  K2 / r 2) +  V ( r, q
1
f
1 
 q

2
f
2 
… a

1 
a

2 
...)

W

=   ( D 
r 

-  K2 / r 2) +  V ( r, W)

In terms of Hyperspherical coordinates the invariant Hamiltonian 
becomes 
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Remark:Remark:

 When expressed in terms of Jacobi When expressed in terms of Jacobi 
coordinates, even a coordinates, even a 11-body -body 
operator becomes of “operator becomes of “NN-body -body 
nature”nature”
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Remarks in view of EDF:Remarks in view of EDF:

 In HIn H
inv inv 

there is no “real” one-body there is no “real” one-body (IPM)  density  (IPM)  density  

 But   one may define an analogous   “many-body” But   one may define an analogous   “many-body” 
densitydensity

n( r )       n ( r )
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The idea is to try  an EDF The idea is to try  an EDF 

approach forapproach for  n ( r )  
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3: Different formulation of DFT and KS equation         3: Different formulation of DFT and KS equation         
    (the many-body (the many-body hyperradial densityhyperradial density))
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    The EDF approach for The EDF approach for n(xr)n(xr)

 

E(n)> E
gs

E(n
gs

)= E
gs

The ANALOGOUS of the Hohenberg Kohn statement:

1) 2)
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    The EDF approach for The EDF approach for n(xr)n(xr)

What is E( n ) ? 

 

E(n)> E
gs

E(n
gs

)= E
gs

The proof goes along the same line as before….

The ANALOGOUS of the Hohenberg Kohn statement:

Given  the invariant H  H
inv

 =   ( D 
r 

-  K2 / r 2) +  V ( r, W)

1) 2)
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    The proof of the Theorem (The proof of the Theorem (following Levy 1979)following Levy 1979)::  
Obvious!  because of the Rayleigh–Ritz variational principle 

Equal!

 because of 1) 

 because it is a 
minimum

 by definition

therefore

Proof of 2): E
gs

E
gs

E
gs≥

≤
≤

≥

E(n
gs

)= E
gs

1)

2)

E(n)    E
gs≥

Before:
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    The proof of the Theorem (The proof of the Theorem (following Levy 1979)following Levy 1979)::  
Obvious!  because of the Rayleigh–Ritz variational principle 

Equal!

 because of 1) 

 because it is a 
minimum

 by definition

therefore

Proof of 2): E
gs

E
gs

E
gs≥

≤
≤

≥

E(n
gs

)= E
gs

1)

2)

E(n)    E
gs≥

Now:

    nn           n
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    The practical use of the theorem goes via the The practical use of the theorem goes via the 
“Analogous”“Analogous” of the  of the Kohn-ShamKohn-Sham equation  equation   

The “Analogous” of the Kohn- Sham equation is the  Schroedinger equation   of a fictitious 
system   governed by an hypercentral potential that generates the same hyperradial 

density  n(r) as that of the real Hamiltonian 
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    The real use of the theorem goes via the The real use of the theorem goes via the 
“Analogous”“Analogous” of the  of the Kohn-ShamKohn-Sham equation  equation   

H
AKS

= T + W
AKS

 (r)   n
gs
 = nAKS where W

AKS
 is such that

The “Analogous” of the Kohn- Sham equation is the  Schroedinger equation   of a fictitious 
system   governed by an hypercentral potential that generates the same hyperradial 

density  n(r) as that of the real Hamiltonian, namely one has
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    The real use of the theorem goes via the The real use of the theorem goes via the 
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system   governed by an hypercentral potential that generates the same hyperradial 

density  n(r) as that of the real Hamiltonian, namely one has

Again, by reductio ad absurdum one can show that W
AKS 

(r) is unique! 
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...provided the W-representability of the functional  E (n )
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By reductio ad absurdum one can show that 

W
KS 

is unique! 



G. Orlandini –Program on “ Few and Many-body Systems in Universal Regimes”,  INT, Oct. 7- Nov.  15 2024 

    The practical use of the theorem goes via the The practical use of the theorem goes via the 
“Analogous”“Analogous” of the Kohn-Sham equation  of the Kohn-Sham equation   

                   [ D
r 

+  K2/ r2+ W
AKS

 (r) ] F
[Kmin] 

(r) =  E
gs

  F
[Kmin]

 (r)

r(3N-4)  n
W
 ( r

gs
) = |F

[Kmin]
 (r)|2

 K
min

 =  0 for bosons    K
min

 =  0 for fermions
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          for KS:

W
AKS 

( r ) ???for AKS:

W
KS 

( r ) ???
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At    n=n
gs

   E
gs

 is the minimum of E(n) namely  

=

dEW(n)/dn = 0  
          

dEV(n)/dn= 0    
        

dTn,W/dn + W(r) = 0  

dTnV/dn + dVn/dn  = 0
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At     n=n
gs

   E
gs

 is the minimum of E(n) namely  

=

dEW(n)/dn = 0   
         

dEV(n)/dn = 0    
        

dTn,W/dn +                  W(r)                    = 0  

dTn,W/dn +  dTn,V/dn - dTn,W/dn+ dVn/dn = 0
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At    n=n
gs
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gs
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=
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Simplest guess: Simplest guess:   

H
inv

 =   ( D 
r 

-  K2 / r 2) +  V ( r, W)

remember

Try integral on the hyperangular part of the ground state wave function 

W
AKS

 ( r ) = N(N-1)/2 ∫  dW V[2] ( r, W) |Y
[Kmin]

 (W)|2  +

           N(N-1)(N-2)/r)6 ∫  dW V[3] ( r, W) |Y
[Kmin]

 (W)|2   +...

Sort of “mean field”  for the r  coordinate!  

V[2] ( r, W) + V[3] ( r, W) + ...
=
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4: Application to bosons close 
to the unitary limit (4He atoms)
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The dimer of 4He has a binding energy of about 1 mK, three orders of magnitude less 
than the typical energy scale of h̄2 /m  r2      = 1.677 K,

vdW

Remarks:

 Helium clusters     
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The dimer of 4He has a binding energy of about 1 mK, three orders of magnitude less 
than the typical energy scale of h̄2 /m  r2      = 1.677 K,

vdW

Moreover, the two-body scattering length has been estimated to be a ≈ 190 a
0
 ,twenty 

times larger than r
vdW

 =5.08 a
0 
.  In the limiting case, a → ∞, the system is located at 

the unitary limit well suited for an effective expansion of the interaction

Remarks:

 Helium clusters     
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The dimer of 4He has a binding energy of about 1 mK, three orders of magnitude less 
than the typical energy scale of h̄2 /m  r2      = 1.677 K,

vdW

Moreover, the two-body scattering length has been estimated to be a ≈ 190 a
0
 ,twenty 

times larger than r
vdW

 =5.08 a
0 
.  In the limiting case, a → ∞, the system is located at 

the unitary limit well suited for an effective expansion of the interaction

Remarks:

 Helium clusters     

The first term of this expansion is a contact interaction between the two helium 
atoms. However, as it is well known, the three-body system (as well as larger 
systems) collapses, even if the contact interaction is set to produce an infinitesimal 
binding energy. This phenomenon is known as the Thomas collapse and it is 
remedied by the introduction of a contact three-body force set to correctly describe 
the trimer energy
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 Accordingly, the leading order (LO) of this effective theory has two terms,
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 Accordingly, the leading order (LO) of this effective theory has two terms,

A and a are fitted to scattering length and effective range, 

Several choices are possible for B and b,  for exemple 
        a) fit to trimer and tetramer binding energies
        b) in view of the fact that W (r) has to account for energies at any N, one      
            can obtain couples (B, b) values, all fitting the tetramer binding energy.  
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RESULTS FOR BINDING ENERGIES

 FOR ANY NUMBER  N OF PARTICLES
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For the lowest N values we observe substantial independence from the three-body range β 
with the overall best description inside the interval 7.5 a 0 < β < 9.0 a

 0
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 (reduced) many-body density ν(ρ) for selected
number of particles 

 Extremely localized density around a value almost linear  with N . 

Very compact object. Closer particles are discouraged (incompressible?) 
Also  larger values  are discouraged.

Phys. Rev. A 104, 030801 (2021) 
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Mean square radius r2 ~ S
i 
(  r

i  
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CM  
)2

3

1 2

4

CMPhys. Rev. A 104, 030801 (2021) 
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 An energy density functional apAn energy density functional approach has been formulated in terms of the densityproach has been formulated in terms of the density ν(ρ) ν(ρ)  
where where ρρ is a translation invariant variable of collective nature is a translation invariant variable of collective nature

 It has been shown that the functional It has been shown that the functional E[ν]E[ν] is governed by a is governed by a unique unique (unknown)  (unknown) 
hyperradial potentialhyperradial potential  W (ρ)W (ρ). . 

 The solution of a The solution of a single hyperradial equationsingle hyperradial equation with such an hyperradial potential allows  with such an hyperradial potential allows 
to determine the to determine the binding energy for any Nbinding energy for any N in a straightforward way. in a straightforward way.

 We have applied this framework to the bosonic case focusing onWe have applied this framework to the bosonic case focusing on  44He clustersHe clusters. . 

 The guess for The guess for W (ρ)W (ρ) has has  been been inspired by the effective theory inspired by the effective theory approach together with approach together with 
a a generalization of the mean fieldgeneralization of the mean field concept.  concept. 

 Extremely satisfying results have been found. The key point has been Extremely satisfying results have been found. The key point has been usingusing  the range the range 
of the three-body interaction βof the three-body interaction β, to fine tune the  , to fine tune the  W (ρ)W (ρ). . 

CONCLUSIONS
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 We have applied this framework to the bosonic case focusing onWe have applied this framework to the bosonic case focusing on  44He clustersHe clusters. . 

 The guess for The guess for W (ρ)W (ρ) has has  been been inspired by the effective theory inspired by the effective theory approach together with approach together with 
a a generalization of the mean fieldgeneralization of the mean field concept.  concept. 

 Extremely satisfying results have been found. The key point has been Extremely satisfying results have been found. The key point has been usingusing  the range the range 
of the three-body interaction βof the three-body interaction β, to fine tune the  , to fine tune the  W (ρ)W (ρ). . 

CONCLUSIONS

OUTLOOK

 Extension to Extension to trapped systemstrapped systems    

 Extension to Extension to Fermions.   Fermions.   In  Nuclear Physics:  In  Nuclear Physics:  W (ρ)W (ρ) ??? EFT ???  ??? EFT ??? 
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And much more to explore with the AKS equation and

 the Many-Body Density Functional E(ν(ρ)ν(ρ)) )  !!!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83

