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Gravitational Wave signatures of DM

«* DM candidates cover ~90 orders of magnitude in mass

1072y 107 %V keV  MeV GeV 1(\\ M, ~ 10> GeV

) ““eV J e l

Ultralight particles “Classical” DM Black holes
candidates

GW detectors offer an
“opportunity window” for free

In many cases, GW data analysis methods can be
directly applied, or adapted in a straightforward

way, to the search of exotic source fingerprints in
GW data




@ In recent years, a growing body of literature on the potentiality of
Gravitational Wave (GW) detectors as tools to probe DM has been produced

(see e.g. Bertone+, arxiv:1907.10610)
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Ultra-light boson clouds

1 Massive bosonic fields around a Kerr BH can undergo a superradiance instability,
in which the field is amplified, at the expense of the BH rotational energy

Cht A >>ﬁ Q Possible candidates:
QCD axion
Axion-like particles from string theor
| Dark photon

Credit: Brito

field angular frequency azimuthal quantum number

BH angular frequency at the

. e, . -~ /
Superradiance condition: ) < m£) outer horizon

1 A macroscopic boson condensate forms around the BH

. Scalar, vector and also tensor bosons have been considered



+* Once formed, the cloud dissipates through the emission of CWs (emission time
scale >> instability time scale)

[Arvanitaki et al., PRD81, 123530 (2010); Yoshino & Kodama, Prog. Rep. Theor. Phys. 043E02 (2014); Arvanitaki et al., PRD91,
084011 (2015); Brito et al., PRD96, 064050 (2017); East, PRL121, 131104 (2018); Baryakhtar et al., PRD103, 095019 (2021);
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«» Various DA methods have been developed and applied to search for CW-like
signals from boson clouds (both for all-sky and directed searches) :



Various search methods have been developed, 850 (detector 1 55D (deector 2
all based on a semi-coherent combination of
data segments. Here we refer to the one use

e.g. in LVK, PRD105, 102001 (2022)
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Vetoes and follow-up

1 -
Simulated signal in O3 data
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Real data are full of weird stuff. This is a problem especially when searching
for nearly monochromatic exotic signals (which models may have

uncertainties)

Spectrogram of O3L data
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Using longer and longer data segments is not necessarily the solution
= Both more sensitive searches and more robust (less sensitive)

searches should be done
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Result example: scalar clouds, allsky

Exclusion regions from all-sky O3 analysis (D=1kpc, X.=0.5)
LVK, PRD105, 102001 (2022)

ot =10%yr
12 age 6 |
%‘10 * 15e=10° ¥1 ]
7 tage=10 yr
@
=
- See also:
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» |nterpretation of results requires assumptions
= Galactic BHs are needed

= We can have a detection even if not all BHs develop a boson cloud ]



Result example: scalar clouds, directed

Sco-X1, O2 data

Signal amplitude
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Sun et al., PRD101, 063020 (2020)

See also LVK, PRD106, 042003
(2022) for a search toward the
galactic center (isolated BHs)

HMM algorithm robust w.r.t. non exactly monochromatic signals

Impact of mass accretion on the cloud is uncertain

= Some spin measurements (X>0.95) disfavor cloud formation



Search for post-merger remnants
Final BH age know, mass and spin measured to a decent accuracy
Interpretation of null results is more direct and do not require assumptions
Scalar clouds better suited for 3G detectors (ET, CE)

Vector clouds are more promising already for current detectors: higher strain,
shorter instability time scale
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= Nevertheless, the search for vector boson clouds is challenging:

= Sky position maybe poorly known, if there is not an EM counterpart
= Spin-up can be much larger than for ‘standard’ CW signals

Estimated sensitivity (design Advanced LIGO) for the
F-stat/HMM pipeline [D. Jones et al, PRD108, 064001 (2023)]
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= Still no search has been done on real data



= Alternative method based on resampling [A. Buchicchio, Master Thesis @
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Need to build a 2D grid in parameter space
Potentially high sensitivity search

But computing cost is an issue



Potential issues and opportunities

Let us remind the three cornerstones of data analysis:

= Sensitivity

= Robustness w.r.t. sighal uncertainties and detector artefacts
= Computing cost

New theoretical signal models are welcome, if they are robust!
= Peculiar signal features may make discrimination from noise easier

Multi-messenger and multi-band approaches can be very helpful!
= Reduction of the parameter space

Population studies may give some interesting hint (but must be handled with
care!)



Signal superposition

107-10% BHs are expected to exist in the Milky Way

If cloud formation is ubiquitous, a large number of clouds should emit CWs

fQy (Hz)

at the same time 20 s0 750 Clooo  1s0 10 1750

ax =20Mo, Ximax = 1.0
ax =20Mo, Ximax = 0.5
ax =20Mg, Ximax=0.3
ax =30Mo, Ximax = 1.0
ax =30Mo, Ximax = 0.5
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EFF/EFF,

In principle, this superposition of sighals may
negatively impact current CW-based search

pipelines

N\

Indeed, it has been shown that this is not the
case, at least for peakmap-based methods
[L. Pierini et al., PRD106, 042009 (2022)]
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Actually, we could exploit
signal superposition to
our advantage!



Multi-messenger signature

= |f dark photons kinetically mix with standard model photons, the cloud is
expected to emit EM radiation [N. Siemonsen et al., PRD107, 075025 (2023)]
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[L. Mirasola, C. Mondino + several others, in preparation]
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UHF and multi-band approach

* PBHs of 10°-10 M_ can develop clouds of bosons with masses of 10°-10° eV

= The corresponding CW signal frequency is ~50m,__ . MHz

* |In the sensitivity band of some planned future UHF-GW detectors [N.
Aggarwal et al., Living Rev. Rel. 24, 4 (2021)]

loQYO(han)24

26 [CP, Lu, Velcani, to be submitted]
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= Joint detection of a binary PBH inspiral signal (e.g. by ET) and the CW signal
from the cloud would provide a lot of useful information

log, O(Mbh[solar masses))



Maybe one day, in ~15-20 years....
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Primordial black holes

= Low spins of LIGO/Virgo black

holes, and merging rate inferences

have revived interest in PBHs

»= BHs that formed in the early

universe can take on a wide range

of masses

» Possible links to dark matter
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= Green and Kavanagh. Journal of Physics G: Nuclear and

Particle Physics 48.4 (2021): 043001.



Primordial black holes

Many GW efforts to detect PBHs focus
on “sub-solar mass” regime, i8;;

However, GWs from planetary-mass
PBH binaries have only recently been
been thought about

Matched filtering in this mass range is
extremely computationally challenging

Signals are long-lasting at LIGO
frequencies—> many more templates
needed for the same 82 system if the
system inspirals for longer
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Nitz & Wang: Phys.Rev.Lett. 127 (2021) 15, 151101.
LVK: Phys.Rev.Lett. 129 (2022) 6, 061104
LVK: arXiv: 2212.01477



Primordial black holes

103

= The phase evolution of two objects far
enough away from merger can be
described by quasi-Newtonian circular
orbits

=
o
N

frequency [Hz]

10!

= We analyze GW data looking for the
phase evolution of the signal, 100
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= Miller, Andrew L. arXiv:2404.11601 (2024).
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The pure CW approach to PBHs

For small chirp masses, the inspiral GW
frequency is almost monochromatic

The small frequency drift, however, is
positive

Without thinking too much, standard
CW all-sky search results can be
mapped to constraints on PBH inspirals

Practical considerations: maximum f of
search, frequency range, eccentricity,
how “monochromatic” are we talking

Steltner, B., et al. ApJ
952.1 (2023): 55.

e Abbotetal. (2022)
Dergachev and Papa (2022)
e This search
Hardware injections in range

210724

ho amplitude upper lim

10—25

Signal frequency [Hz]

= Upper limits on CWs need not be
interpreted as coming from deformed NSs!



How to set upper limits on PBH abundance

CW upper limits h(f) = d(f) for an
inspiraling system

Volume we probe is just a sphere
= Butit need not be isotropic!

We typically don’t find anything, so the
number of detectable binaries < 1,
which allows us to estimate a rate
density

Assume PBHs compose these sub-solar
mass objects, we can constrain fpgy

Steltner, B., et al. ApJ
952.1 (2023): 55.

e Abbotetal. (2022)
Dergachev and Papa (2022)
e This search
Hardware injections in range

210724

ho amplitude upper lim

10—25

Signal frequency [Hz]

= Upper limits on CWs need not be
interpreted as coming from deformed NSs!



O3 limits on PBH abundance

the binary system

chirp mass

don’t)

= Miller (2024): arXiv:2410.01348

Miller et al. Phys.Rev.D 105 (2022) 6, 062008
LVK: Phys.Rev.D 106 (2022) 10, 102008

The chirp mass drives the spin-up of

We are thus free to pick m; and m, so
long as the combination gives the same

CW searches can thus be sensitive to
highly asymmetric mass ratio systems,
if we ignore eccentricity (and even if we
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BUT: we can’t physically constrain anything yet, we don’t
know the mass functions of PBHs, nor if binary formation is

suppressed

merging rate (kpc3 yr1)



Can we do better??

What about developing methods to
search for long-lived inspiraling PBHs with
higher sub-solar masses?



Transient CWs

= Signal frequency evolution over time f = 3 K.fn
follows a power-law and lasts
hours-days

fo® =Jo [1 = (= Dif 0 = 1)) ™

= Can describe gravitational waves from
the inspiral portion of a light-enough
binary system, or from a system far K &« A : chirp mass
from coalesces J: frequency
f:spmn-up

= For us, n=11/3



How to search for long-lived PBHs

190 A

» Find “tracks” in the time-frequency
spectrogram, where each track
corresponds to a particular chirp mass
and reference time (merger time) or
reference frequency

z)

Input:

frequency (

Sum the power, or the number of
points above a certain threshold, along
each track

Repeat for each chirp mass, and
histogram the result

M[Mo]

Output:
Miller et al. Phys.Dark Univ. 32 (2021) 100836

See also: Carcasona et al., arxiv:2411.04498; Lu, CP et al. in preparation
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Make spectrograms

h(t)

Credit: L. Pierini

M[Mo]

What do we actually do?
Demodulate, increase

Make histograms .
& coherence time, and repeat

190 A
160
185 A 13
140
12
180 A
. 120 11
E 175 A g .
g 100 3 — N
> a :El o]
2 170 4 3 = 9 §
g 80 = ) =
3 ] S 8 @
9 165 = [} 8
0 ¢ g E!
= 60 ] 7 g
160 - - .
40
155 A 5
20
150 4
0 200 400 600 800 1000 149 % R 3
time (s) 6000
time (s)
%108 -
{180
-2
1.08x10 250
- 160
1.06 x 1072
140
1.04 x 1072 200
=120
1.02 x 1072 o |
c a
150 3 § 100
o =
102 = ot
2 303 80
S
3
9.8x1073 100 €
60
9.6 x1073
40
50
9.4x1073
20
92x1073 0
150 155 160 165 170 175 180 185 190 150.4 150.5 150.6 150.7 150.8 150.9 151 5151

frequency [Hz] 0 (Hz)

number count



O3a search for planetary-mass PBHSs

%econdary PBH mass my Mg)
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= Assume 2.5 solar mass primary object

= Distance reach is of O(kpcs) for most systems

Miller et al., PRL 133.11 (2024): 111401



How about (mini-) EMRIs?

= Extreme mass ratio inspirals
(EMRIs) typically describe a
solar-mass object plunging into a
supermassive black hole, which
should be visible in space-based
GW detectors

= mini-EMRIs, on the other hand,
refer to an exotic sub-solar mass
object inspiraling around a
heavier one

» Could they exist? Sure. But do
they?
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Guo and Miller arXiv: 2205.10359




Waveforms for mini-EMRIs

. ) / / 5/3
» For particular chirp masses, we hy — % (GMc>5 3 (ﬂ)Q 3Ch(a,f> = %Wsm (GC#) fn/s@(a, )
can ignore "EMRI” effects ,

M= 100M, | | M = 100M,

1'003 m=10"M, | 104 m=10"M,
= For others, we cannot. Must Noa=-09 =
. . 0.95: “ N\~
account for spin of the primary | [
object s N & | significant changes here
~H j 100
= Not even considering 03s| T
eccentrlchy, and already things T — |
get Comphcated ' 10 20 30 0 T 20 30 40
f(Hz) f(Hz)

Waveforms from: Finn & Thorne (2000) PRD, 62, 124021



Could we see mini-EMRIs in LIGO?

= We certainly hope so, but we may

need to move beyond purely analytic o

. . _ M =10M,
time-frequency relations of the signal ol a=0
= Simplicity is great, but only o
considering PNO won’t let us see close S
to the plunge 2 ah
<

—h
=
N

= Time-frequency sums along the track
of any waveform of your choosing?

—h
=
w

= “Matched filter” in |
time/frequency plane v ’;(/’M 10
* Implications for long-lived BNSs?

—
o
- |
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&

Guo and Miller arXiv: 2205.10359



Could we see any sub-solar mass systems with LIGO?

= As Pippa Cole said, PBHs will be accompanied by some kind of dark matter cloud

= This will distort the vanilla inspiral/merger/ringdown signal, and maybe even for

comparable mass systems Cole, Philippa S. et al., PRD 107.8 (2023): 083006;
Aurrekoetxea, Josu C., et al. PRL 132.21 (2024):211401.

= The signal model changes to, optimistically: f= k1f11/3 i k2f3/2

= Other effects? Eccentricity?

= Are model-independent methods that find arbitrary time-frequency tracks
better? Alestas, George, et al. PRD 109.12 (2024): 123516.

= Or: can we sum different time-frequency tracks according to numerical
time-frequency relations? Major computational cost? How to place templates?



What is the meaning of all these constraints?

There are so many assumptions that go into
constraining PBH abundance — how can we
compare constraints?
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What’s the mass function of PBHs, and how does
this impact constraints?

Qpeu/QpMm

Can binary formation be suppressed?

fPBH
—
()

b

What is a constraint in the first place? A null search

10*18

result (microlensing, GWSs) or a theoretical limit
(evaporation)?

And finally: can we do more work to find, rather
than just constrain, PBHs?
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