

Gravitational Wave signatures of DM

DM candidates cover ~90 orders of magnitude in mass

In many cases, GW data analysis methods can be directly applied, or adapted in a straightforward way, to the search of exotic source fingerprints in GW data

GW detectors offer an

``opportunity window" for free

In recent years, a growing body of literature on the potentiality of Gravitational Wave (GW) detectors as tools to probe DM has been produced (see e.g. Bertone+, arxiv:1907.10610)

CW emission from boson clouds around Kerr BHs $(10^{-14} - 10^{-11} \text{ eV})$

Picture credit: Ana Sousa Carvalho Sub-solar mass BH inspirals (M<0.01M_{sun})

Ultra-light boson clouds

☐ Massive bosonic fields around a Kerr BH can undergo a *superradiance instability*, in which the field is amplified, at the expense of the BH rotational energy

GM

- A macroscopic boson condensate forms around the BH
- Scalar, vector and also tensor bosons have been considered

Once formed, the cloud dissipates through the emission of CWs (emission time scale >> instability time scale)

[Arvanitaki et al., PRD81, 123530 (2010); Yoshino & Kodama, Prog. Rep. Theor. Phys. 043E02 (2014); Arvanitaki et al., PRD91, 084011 (2015); Brito et al., PRD96, 064050 (2017); East, PRL121, 131104 (2018); Baryakhtar et al., PRD103, 095019 (2021);

signal frequency:
$$f_{gw} \simeq 483 \text{ Hz}\left(\frac{m_b}{10^{-12} \text{ eV}}\right)$$

 $f_{gw} \in [10, 10^4] \text{ Hz for } m_b \in [10^{-14}, 10^{-11}] \text{ eV}$

$$\times \left[1 - 7 \times 10^{-4} \left(\frac{M_{BH}}{10 M_{\odot}} \frac{m_b}{10^{-12} \text{ eV}}\right)^2\right]$$
 $h_0 \approx 6 \times 10^{-24} \left(\frac{M_{BH}}{10 M_{\odot}}\right) \left(\frac{\alpha}{0.1}\right)^7 \left(\frac{1 \text{ kpc}}{D}\right) (\chi_i - \chi_c) \text{ for scalar bosons, and } \alpha << 1$
 $\alpha = \frac{GM_{BH}}{c^3} \frac{m_b}{\hbar}$
For vector bosons, stronger signals and shorter duration

Various DA methods have been developed and applied to search for CW-like signals from boson clouds (both for all-sky and directed searches)

All-sky search scheme

frequency [Hz]

BSD (detector 2)

Peakmap construction

loop over the sky

Peakmap

Doppler correction

Corrected Peakmap histogram

Candidate selection

60

 Real data are full of weird stuff. This is a problem especially when searching for nearly monochromatic exotic signals (which models may have uncertainties)

- Using longer and longer data segments is not necessarily the solution
 - Both more sensitive searches and more robust (less sensitive) searches should be done

Result example: scalar clouds, allsky

Exclusion regions from all-sky O3 analysis (D=1kpc, χ_i =0.5)

- Interpretation of results requires assumptions
- Galactic BHs are needed
- We can have a detection even if not all BHs develop a boson cloud

Result example: scalar clouds, directed

- HMM algorithm robust w.r.t. non exactly monochromatic signals
- Impact of mass accretion on the cloud is uncertain
- Some spin measurements (χ>0.95) disfavor cloud formation

Search for post-merger remnants

- Final BH age know, mass and spin measured to a decent accuracy
- Interpretation of null results is more direct and do not require assumptions
- Scalar clouds better suited for 3G detectors (ET, CE)
- Vector clouds are more promising already for current detectors: higher strain, shorter instability time scale

- Nevertheless, the search for vector boson clouds is challenging:
 - Sky position maybe poorly known, if there is not an EM counterpart
 - Spin-up can be much larger than for 'standard' CW signals

Estimated sensitivity (design Advanced LIGO) for the

Still no search has been done on real data

 Alternative method based on <u>resampling</u> [A. Buchicchio, Master Thesis @ Sapienza Univ. of Rome]

- Need to build a 2D grid in parameter space
 - Potentially high sensitivity search
- But computing cost is an issue

Potential issues and opportunities

- Let us remind the three cornerstones of data analysis:
 - Sensitivity
 - Robustness w.r.t. signal uncertainties and detector artefacts
 - Computing cost
- New theoretical signal models are welcome, if they are robust!
 - Peculiar signal features may make discrimination from noise easier
- Multi-messenger and multi-band approaches can be very helpful!
 - Reduction of the parameter space
- Population studies may give some interesting hint (but must be handled with care!)

Signal superposition

- 10⁷-10⁸ BHs are expected to exist in the Milky Way
- If cloud formation is ubiquitous, a large number of clouds should emit CWs at the same time
 250 500 750 ^{f⁰_{GW} (Hz)} 1250 1500 1750
- Emission frequency would lie in a fraction of Hertz band
- Detailed study in [Zhu et al., PRD102, 063020 (2020)]

- In principle, this superposition of signals may negatively impact current CW-based search pipelines
- Indeed, it has been shown that this is not the case, at least for peakmap-based methods
 [L. Pierini et al., PRD106, 042009 (2022)]

Actually, we could exploit signal superposition to our advantage!

Multi-messenger signature

 If dark photons kinetically mix with standard model photons, the cloud is expected to emit EM radiation [N. Siemonsen et al., PRD107, 075025 (2023)]

UHF and multi-band approach

- PBHs of 10^{-5} - 10^{-2} M_o can develop clouds of bosons with masses of 10^{-9} - 10^{-6} eV
- The corresponding CW signal frequency is ~50m_{1E-7 eV} MHz
- In the sensitivity band of some planned future UHF-GW detectors [N. Aggarwal et al., Living Rev. Rel. 24, 4 (2021)]

[CP, Lu, Velcani, to be submitted]

 Joint detection of a binary PBH inspiral signal (e.g. by ET) and the CW signal from the cloud would provide a lot of useful information

Maybe one day, in ~15-20 years....

Primordial black holes

- Low spins of LIGO/Virgo black holes, and merging rate inferences have revived interest in PBHs
- BHs that formed in the early universe can take on a wide range of masses
- Possible links to dark matter

 Green and Kavanagh. Journal of Physics G: Nuclear and Particle Physics 48.4 (2021): 043001.

Primordial black holes

- Many GW efforts to detect PBHs focus on "sub-solar mass" regime,
- However, GWs from planetary-mass PBH binaries have only recently been been thought about
- Matched filtering in this mass range is extremely computationally challenging
- Signals are long-lasting at LIGO frequencies—> many more templates needed for the same I system if the system inspirals for longer

- Nitz & Wang: Phys.Rev.Lett. 127 (2021) 15, 151101.
- LVK: Phys.Rev.Lett. 129 (2022) 6, 061104
- LVK: arXiv: 2212.01477

Primordial black holes

- The phase evolution of two objects far enough away from merger can be described by quasi-Newtonian circular orbits
- We analyze GW data looking for the phase evolution of the signal, characterized entirely by the chirp mass and signal frequency

- Miller et al. Phys.Dark Univ. 32 (2021) 100836
- Miller, Andrew L. arXiv:2404.11601 (2024).

The pure CW approach to PBHs

Steltner, B., et al. ApJ 952.1 (2023): 55.

- For small chirp masses, the inspiral GW frequency is almost monochromatic
- The small frequency drift, however, is positive
- Without thinking too much, standard CW all-sky search results can be mapped to constraints on PBH inspirals
- Practical considerations: maximum f of search, frequency range, <u>eccentricity</u>, how "monochromatic" are we talking

 Upper limits on CWs need not be interpreted as coming from deformed NSs!

How to set upper limits on PBH abundance

Steltner, B., et al. ApJ 952.1 (2023): 55.

- CW upper limits h(f) → d(f) for an inspiraling system
- Volume we probe is just a sphere
 - But it need not be isotropic!
- We typically don't find anything, so the number of detectable binaries < 1, which allows us to estimate a rate density
- Assume PBHs compose these sub-solar mass objects, we can constrain f_{PBH}

 Upper limits on CWs need not be interpreted as coming from deformed NSs!

O3 limits on PBH abundance

- The chirp mass drives the spin-up of the binary system
- We are thus free to pick m₁ and m₂ so long as the combination gives the same chirp mass
- CW searches can thus be sensitive to highly asymmetric mass ratio systems, if we ignore eccentricity (and even if we don't)
 - Miller (2024): arXiv:2410.01348

Miller et al. Phys.Rev.D 105 (2022) 6, 062008 LVK: Phys.Rev.D 106 (2022) 10, 102008

 BUT: we can't physically constrain anything yet, we don't know the mass functions of PBHs, nor if binary formation is suppressed Can we do better??

What about developing methods to search for long-lived inspiraling PBHs with higher sub-solar masses?

Transient CWs

- Signal frequency evolution over time follows a power-law and lasts hours-days
- Can describe gravitational waves from the inspiral portion of a light-enough binary system, or from a system far from coalesces

$$\dot{f} = \kappa f^n$$

$$f_{gw}(t) = f_0 \left[1 - (n-1)\kappa f_0^{n-1}(t-t_0) \right]^{-\frac{1}{n-1}}$$

$$\kappa \propto \mathcal{M} : \text{chirp mass}$$

$$f: \text{frequency}$$

$$f: \text{spin-up}$$

• For us, n=11/3

How to search for long-lived PBHs

- Find "tracks" in the time-frequency spectrogram, where each track corresponds to a particular chirp mass and reference time (merger time) or reference frequency
- Sum the power, or the number of points above a certain threshold, along each track
- Repeat for each chirp mass, and histogram the result

See also: Carcasona et al., arxiv:2411.04498; Lu, CP et al. in preparation

What do we actually do?

Make spectrograms

Make histograms

Demodulate, increase coherence time, and repeat

Credit: L. Pierini

O3a search for planetary-mass PBHs

- Assume 2.5 solar mass primary object
- Distance reach is of O(kpcs) for most systems

How about (mini-) EMRIs?

- Extreme mass ratio inspirals (EMRIs) typically describe a solar-mass object plunging into a supermassive black hole, which should be visible in space-based GW detectors
- *mini*-EMRIs, on the other hand, refer to an exotic sub-solar mass object inspiraling around a heavier one

Could they exist? Sure. But do they?

Guo and Miller arXiv: 2205.10359

Waveforms for mini-EMRIs

- For particular chirp masses, we can ignore "EMRI" effects
- For others, we cannot. Must account for spin of the primary object
- Not even considering eccentricity, and already things get complicated

Waveforms from: Finn & Thorne (2000) PRD, 62, 124021

Could we see mini-EMRIs in LIGO?

- We certainly hope so, but we may need to move beyond purely analytic time-frequency relations of the signal
- Simplicity is great, but only considering PNO won't let us see close to the plunge
- Time-frequency sums along the track of any waveform of your choosing?
 - "Matched filter" in time/frequency plane
 - Implications for long-lived BNSs?

Guo and Miller arXiv: 2205.10359

Could we see *any* sub-solar mass systems with LIGO?

- As Pippa Cole said, PBHs will be accompanied by some kind of dark matter cloud
- This will distort the vanilla inspiral/merger/ringdown signal, and maybe even for comparable mass systems
 Cole, Philippa S. et al., PRD 107.8 (2023): 083006; Aurrekoetxea, Josu C., et al. PRL 132.21 (2024):211401.
- The signal model changes to, optimistically:

$$\dot{f} = k_1 f^{11/3} + k_2 f^{3/2}$$

- Other effects? Eccentricity?
- Are model-independent methods that find arbitrary time-frequency tracks better? Alestas, George, et al. PRD 109.12 (2024): 123516.
- Or: can we sum different time-frequency tracks according to numerical time-frequency relations? Major computational cost? How to place templates?

What is the meaning of all these constraints?

- There are so many assumptions that go into constraining PBH abundance – how can we compare constraints?
- What's the mass function of PBHs, and how does this impact constraints?
- Can binary formation be suppressed?
- What is a constraint in the first place? A null search result (microlensing, GWs) or a theoretical limit (evaporation)?
- And finally: can we do more work to *find*, rather than just constrain, PBHs?

