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Halo EFT

Define Rhalo=<r2>1/2. Seek EFT expansion in Rcore/Rhalo. Valid for λ≲Rhalo

Typically R≡Rcore∼2 fm.  Since <r2> is related to the neutron separation 
energy we seek systems with neutron separation energies less than 1 MeV

By this definition the deuteron is the lightest halo nucleus, and the pionless 
EFT for few-nucleon systems is a specific case of halo EFT

22C, 11Li, 12Be, 19B, 62Ca (hypothesized), and 3H:  all s-wave 2n halos
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Halo nuclei: examples

http://nupecc.org
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Outline

What is Halo EFT and what does it do for us?

Halo EFT for Borromean s-wave 2n halos

Measuring nn relative-momentum distributions using fast 
breakup

The unitary limit in momentum distributions of 2n halos

The surprisingly small uncertainty of d + 4He→6Li + γ at low 
energies

What it teaches us about 6Li
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Two-body scattering amplitude in Halo EFT

Effective-range expansion, valid for kR<1

Typical situation |r|∼R. Here we assume |r|≪|a|

LO in an expansion in powers of r/a: reproduce a, or equivalently S1n

NLO in the expansion: reproduce r and a, or equivalently S1n and ANC 

Errors for scattering are then O(r3/a3) and O(k3r3)

t2B
0 (E) = −

2π
mR

1
k cot δ(E) − ik

; k = 2mRE

k cot δ(E) = −
1
a

+
1
2

rk2 + O(k4R3)

Elastic scattering: this is effective-range theory with built-in UQ



Lagrangian: shallow S- and P-states

c, n: “core”, “neutron” fields. c: boson, n: fermion. 

σ, πj: S-wave and P-wave fields

Minimal substitution generates leading EM couplings

Additional EM couplings at sub-leading order
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But it’s more than just s-wave nn & nc scattering

So not just two-body scattering: also EM processes

And other partial waves

Extension to pp, p-core, and cluster-cluster scattering

Expansion around limit of a bound or unbound state near threshold. 
Include higher-order effects in ERE in proportion to their importance. 
Expansion in , where  is scale of unresolved core physics

Extends to three-body states at cost of one additional parameter 
(S2n)

Then predictive for four-body states (bosons or distinguishable 
particles) at LO accuracy

kRcore Rcore

Bertulani, Hammer, van Kolck (2003); Bedaque, Hammer, van Kolck 
(2003); Brown & Hale (2005); Braun et al. (2018); Ando (2016-present)

Kong & Ravndal (1999); Higa, Hammer, van Kolck (2008); 
Ryberg, Forssén, Hammer, Platter (2014, 2016)

Chen, Rupak, Savage (1999); 
Hammer, DP (2011)

Bedaque, Hammer, van Kolck (1999); Hammer & Mehen (2001); Bedaque et al. (2002); Ji, Platter, DP (2009)

Platter, Hammer, Meißner (2005); Bazak, Kirscher, König, Pavon Valderrama, Barnea, van Kolck (2018)



Equations for s-wave 2n halo
Canham, Hammer (2008)



Core-n and n-n contact interactions at leading order: solve 3B problem

(cn)-n contact interaction to stabilize three-body system

Equations for s-wave 2n halo
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Core-n and n-n contact interactions at leading order: solve 3B problem

(cn)-n contact interaction to stabilize three-body system

Efimov-Thomas effects

Inputs: Enn=1/(m ann2), Enc, S2n (=B)

Output: everything; up to O(Rcore/Rhalo)

Equations for s-wave 2n halo

= 2×Ac An

An
+ An

= Ac + An

Canham, Hammer (2008)
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11Li as a 2n halo

ann=-18.7 fm, Enc=0.026 MeV

S2n=369 keV

Calculations done with a cutoff of 470 
MeV, but results checked for a cutoff of 
700 MeV

Here results with a spin-0 core, but we 
also examined case of spin-3/2 core

Results identical if spin-1 and spin-2 nc 
interactions have equal strength

11Li wave function 



RIKEN experiment with 6He beam

Detect proton and alpha in TPC

Detect neutrons in HIME + NEBULA: excellent energy resolution 

Tom Aumann spokesperson



6He(p,p'α) and the nn scattering length

Quasi-free alpha-particle knockout can leave nn pair almost at rest

Final-state interaction then generates significant dependence of neutron 
relative-energy spectrum f(p2/mn) on ann

6He acts as a “holder” for low-momentum neutrons  

Neutrons actually move fast in lab. frame: inverse kinematics

Tnn

-q
-q+p/2

-q-p/2

(𝜔,q+k)
q

Ac

Göbel, Aumann, Bertulani, Frederico, Hammer, Phillips, PRC (2021)



Neutron energy distribution in 6He 

No FSI 
included 
at first



Neutron energy distribution in 6He 

No FSI 
included 
at first



Neutron energy distribution in 6He 

No FSI 
included 
at first

6He structure at low 
momentum not 

significantly affected by 
cutoff or ann (or rnn)



Sensitivity to ann and (not) rnn



Sensitivity to ann and (not) rnn

Note that since this is 
not an absolute 

measurement we need 
to decide how to 

normalize the spectra



Sensitivity to ann and (not) rnn

Note that since this is 
not an absolute 

measurement we need 
to decide how to 

normalize the spectra



What we learn from 6He 

Very little sensitivity to ann in “structure part”

NLO corrections to structure part should be small (not this talk) 

Even less sensitivity to rnn

Strong ann modification from FSI

This modification can be well described by an enhancement factor

ρfull(Enn) ≈ G(Enn, ann, rnn)ρgs(Enn)

So 6He relative-momentum distribution work shows:



nn momentum distributions for s-wave 2n halos
Göbel, Hammer, DP, PRC (2024)
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Going to the unitary limit

The “unitary limit” is another limit on top of LO Halo EFT: |a|→∞

The 2B state is then right at threshold. No scales left: r→0, |a|→∞.

2B amplitude: , 2B problem has conformal invariance

Efimov effect in 3B system: infinite tower of bound states 

Ratio of 4B and 3B binding energies  + excited tetramer

Scaling dimension of multi-neutron momentum distributions calculable

This talk: momentum distribution of nn relative-momentum distributions  
in Borromean s-wave 2n halos

t2B(E = k2/mR) ∼
1
ik

E(n)/E(n−1) = 515

E4B,n/E3B,n = 4.6

Son & Hammer (2022); Chowdry, Mishra, Son (2023) 

Platter & Hammer (2007); Deltuva (2012)



The unitary limit can be seen in 2n halos

Works because halos 
are sufficiently bound 
that precise values of 
ann and anc do not 
matter.

A dependence also 
goes away

But can it be measured?

i.e., ρ is the same 
function for all halos to 

better than 20%

ρg.s.(Enn/S2n; Vnn, Vnc, S2n, A) ≈ ρg.s.(Enn/S2n)

Cf. for 19B: Hiayma, Lazauskas, Marqués, Carbonell (2019); Hiyama, Lazauskas, Carbonell, Frederico (2023) 



Results for other 2n halos after FSI modification
Use Møller operator to include nn FSI:

Relative energy distribution:  ρ(Enn) =
mn

4Enn ∫
Λ

0
dq q2 |Ψc(pnn, q) |2 p2

nn

ψ(wFSI)
c (p, q) = < p, q; ζc, ξc | (1 + tnn(Ep)G0(Ep)) |Ψ⟩
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Results for other 2n halos after FSI modification
Use Møller operator to include nn FSI:

Relative energy distribution:  ρ(Enn) =
mn

4Enn ∫
Λ

0
dq q2 |Ψc(pnn, q) |2 p2

nn

nn interaction
produces

variation on scale
1/(mna2

nn)

Ground-state
distribution varies

on scale S2n

ψ(wFSI)
c (p, q) = < p, q; ζc, ξc | (1 + tnn(Ep)G0(Ep)) |Ψ⟩



Divide out by FSI factor
Hypothesis: ρ(wFSI)(Enn/S2n; ann, rnn) ≈ G(Enn; ann, rnn)ρg.s.(Enn/S2n)



Divide out by FSI factor
Hypothesis: ρ(wFSI)(Enn/S2n; ann, rnn) ≈ G(Enn; ann, rnn)ρg.s.(Enn/S2n)

So we plot: ρ(Enn/S2n) =
ρfull LO Halo EFT(Enn/S2n; ann)

G(Enn; ann, rnn)



Divide out by FSI factor
Hypothesis: ρ(wFSI)(Enn/S2n; ann, rnn) ≈ G(Enn; ann, rnn)ρg.s.(Enn/S2n)

So we plot: ρ(Enn/S2n) =
ρfull LO Halo EFT(Enn/S2n; ann)

G(Enn; ann, rnn)

Distributed ±20%
around UL 
result for ρ



Summary and outlook: part 1

NLO corrections & comparison to ab initio calculations

3H and other non-Borromean halos?

To do:

Summary: 
Halo EFT describes the low-momentum physics of halo nuclei

There is a unique nn momentum distribution in (s-wave) 2n halos 

Approximately the unitary limit momentum distribution: nothing 
about the nn and nc interactions matters except that they’re strong 

This claim can be checked by measuring the nn relative energy 
distribution on several halos and dividing out the effects of FSI



Analyzing ab initio calculations of 6Li in Halo EFT
Hebborn, Brune, Phillips, in preparation

Want to describe α(d,γ)6Li (motivated by Big Bang production of 6Li). 6Li 
has a deuteron separation energy of 1.5 MeV: comparable to the deuteron 
binding energy of 2.2 MeV, cf. proton separation energy in α≋20 MeV.
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Analyzing ab initio calculations of 6Li in Halo EFT

NCSMC calculation: diagonalization of nuclear 
Hamiltonian using an over-complete basis

Convergence with 10 positive parity and 5 
negative parity 6Li states, and deuteron ground 
state + 8 pseudo states for continuum at Nmax=11

Pheneomenological correction to NCSMC 
Hamiltonian to shift energies of ground and first 
excited state so they agree with experiment

Hebborn, Brune, Phillips, in preparation

Hebborn et al., PRL (2022) 

Want to describe α(d,γ)6Li (motivated by Big Bang production of 6Li). 6Li 
has a deuteron separation energy of 1.5 MeV: comparable to the deuteron 
binding energy of 2.2 MeV, cf. proton separation energy in α≋20 MeV.



NCSMC results

Excellent agreement with data

Small uncertainties due to chiral force and Nmax thanks to pheno adjustment



NCSMC results

Excellent agreement with data

Small uncertainties due to chiral force and Nmax thanks to pheno adjustment

Hebborn et al., PRL (2022) 



ANC?

Results indicate a one-
parameter correlation 
between  and the binding 
momentum 

 so  should 

scale approximately linearly 
with 

C2
0

Sd

C2
0 =

2γ0

1 − γ0r0
C2

0

Sd

Is ANC of bound state (or width for resonance) stable against variations of 
force, etc., once deuteron separation energy, Sd, has been adjusted?

Is this correlation indicative of universality?



Fitting ab initio phase shifts to CMERE

CMERE=Coulomb Modified Effective 
Range Expansion

K(k2) is real and analytic in k2 within a 
radius of convergence defined by the 
first (non-Coulomb) analytic structure

Extrapolate Coulomb Modified 
Effective Range Theory amplitude to k2 

< 0 to find zero of inverse amplitude

2πη
e2πη − 1

k cot(δ) + 2kCRe[H(η)] ≡ K(k2)

Bethe (1949) 
Sparenberg, Capel, Baye (2010)

kC = mRZ1Z2αem

η = kC /k

K(k2) = −
1
a0

+
1
2

r0k2 +
1
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P0k4 +
1
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Constrained CM-ERE

Expand around bound-state pole

Then 

C02=9.38 fm-1 at sixth order; 8.46 fm-1 
at eight order; 8.53 fm-1 at tenth 
order. 

Not bad, but high order required

Cf. 6kC=0.56 fm-1 and =0.69 fm-1. 
Fine tuned?

Ab initio ANC=8.70 fm-1

C2
0 = 6kC

Γ(1 + |η(Sd) | )2

H̃(−η(Sd)) − 3ρ0kC

2γ0

Fit to Emax=3 MeV of NN-only 
phase shifts

Ryberg et al. (2016) 
Papenbrock & Luna (2019)
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So why does C02 scale with √Sd?
This is a shallow bound state, so in a two-body model small 
changes in interior of potential can cause noticeable changes in Sd

How does such a change manifest itself in C02?

Let’s write down probability conservation for the jth potential:

Ij(Rcut) + ∫
∞

Rcut
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0,jW

2
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In either case  
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0,j

2γ0,j
= fj(γ0,jRcut) ≡

Nj − Ij(Rcut)

∫ ∞
2γ0, jRcut

dx W2
−η,1/2(x)

So if f(x) becomes independent of x then  will grow linearly 
with  in that region 

C2
0,j

γ0,j

Rcut



Getting on the scaling curve

How far do we have to go in Rcut for  to become Rcut 

independent?

Calculate exterior probability via:

1. N-I(Rcut)

2.

f(γ0Rcut)

∫
∞

Rcut

dr C2
0W−η,1/2(2γr)

Rcut in asymptotic region once they’re equal

By this measure asymptotic wave function reached already at 5 fm

Scaling region!  independent of Rcutf(γ0Rcut)



Summary and outlook: part 2
NCSMC calculations yield consistent scattering and bound-state results

Offer the possibility to compute ANCs and separation energies ab initio

But getting the proton (or deuteron or neutron or …) separation energy of 
halos accurately is hard: NNLO ChiEFT only predicts it to∼a few hundred keV

NCSMC-pheno adjusts last few hundred keV of separation energy 

So can be expected to also get ANC right if correlation is one parameter

6Li is a halo (fine tuned) nucleus: one-parameter ANC-Sd correlation expected 
from independence of short-distance part of wave function to fine tuning

Offers possibility to perform halo calculations in smaller model spaces or 
without three-body forces and then pheno adjust to reproduce separation 
energy and ANC


