CW Sensitivity depth What amplitudes *h*₀ are/will-be detectable?

Reinhard Prix

Continuous-waves group Albert-Einstein-Institute Hannover

Discovering CWs with Nuclear, Astro and Particle Physics INT @ Seattle Nov 2024

Search sensitivity & estimation pitfalls

Sensitivity \equiv smallest CW amplitude $h_0|_{p_{ch}}^{p_{det}}$

... detectable with probability p_{det} (typically 90% or 95%) at a false-alarm level of p_{fa} (say 1%, "5-sigma",...).

First sensitivity estimate: (targeted J1939+2131 in LIGO S1) [LSC, PRD69(2004)]

$$h_0(f)|_{p_{\rm fa}=1\%}^{p_{
m det}=90\%} pprox 11.4 \sqrt{rac{S_{
m n}(f)}{T_{
m data}}}$$

 $S_n(f)$: single-sided noise PSD at frequency f, T_{data} : total amount of data used

Caveats:

- fully coherent search
- single template (no template-bank mismatch!)
- slightly biased & neglects sky-position (error $\lesssim +20\%$)
- only use for coherent single-template searches X

Search sensitivity: more pitfalls

Semi-coherent analytic estimate:

$$h_0|_{1\%}^{90\%} \approx (7-9) N_{\text{seg}}^{1/4} \sqrt{\frac{S_n(f)}{T_{\text{data}}}}$$

More caveats:

- $N_{\text{seg}}^{1/4}$ scaling only holds for $N_{\text{seg}} \gtrsim \mathcal{O} (100 1000)$
- biased estimate ($\sim +30\%$)
- must adjust for search mismatch & false-alarm p_{fa}!

bias: S5 E@H all-sky search ☞ would over-estimate by ×2!

Accurate estimation framework: [Wette PRD85(2012)], [Dreissigacker, Prix, Wette, PRD98(2018)]

with Octave [OctApps] and Python [Cows3] implementations

BUT requires template-bank mismatch (average or dist), realistic estimate of p_{fa} used, full understanding of hierarchical+semi-coherent search setup details ...

recommended only for "expert" use cases X

Sensitivity Depth \mathcal{D}

 \mathbb{P} Characterizes the search setup independently of $S_n(f)$

Why is this useful? Extrapolate future sensitivity:

Same search setup applied to future data ${}^{\mathbf{v}\!\mathbf{v}}\,\approx\,$ same $\mathcal D$

How to obtain:

- often provided explicitly with search results,
- Or look up here: Wette, APP153(2023) 🕸 297 searches up to July 2023,
- or estimate from ULs: $\mathcal{D} \equiv \sqrt{S_n(f)}/h_0(f)$

Typical current sensitivity depths

- Targeted searches (fully coherent): $\mathcal{D} \sim \frac{\sqrt{T_{data}}}{11.4}$
 - 2 years \times 2 detectors: $\mathcal{D} \sim 1000 \, Hz^{-1/2}$
 - O1: 78+66 days: $D \sim 300 \, \text{Hz}^{-1/2}$
- Directed searches (Galactic center, Cas-A, Sco-X1) $\fbox{$\mathcal{D}$}\sim 70-110\,\text{Hz}^{-1/2}$
- All-sky searches for *isolated* NSs
 - $\odot D \sim 30 60 \, \text{Hz}^{-1/2}$
- All-sky *binary* search

 [∞] D ~ 17 38 Hz^{-1/2}

What future sensitivity improvements can we expect?

Sensitivity gains can come from 3 factors:

- 1 more sensitive detectors $\sqrt{S_n}$
- 2 more computing power *C* (e.g., Moore's law) $\sim C^{1/10}$

aLIGO design

ET/CE

[Prix,Shaltev PRD85(2012)]

3 better/more efficient search methods $\approx +(30-50)\%$?

