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INTRODUCTION
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This talk highlights a specific way of adapting and leveraging AI 
algorithms for scientific studies.  

• What is a latent/feature/representation space? Why is it important? 
• What scientific advancements are possible with representation 

learning? 
• What are the issues with latent spaces resulting from completely 

un-supervised learning? 
• How can one improve upon existing AI models to unravel unknown 

physics models? 
• Disentanglement and auxiliary information 
• Applications — 2 physics problems



LATENT/FEATURE/REPRESENTATION SPACE
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• Latent space is a compressed/encoded representation of an 
original higher dimensional dataset.  

• Often used these days generative AI algorithms, but a wide 
variety of statistical/physical models work in lower 
dimensional representation space. 

χ(k; θ) =
pn

∑
i=1

ϕi(k)wi(θ) + ϵ

PCA bases   PCA weights  Error

Truncated Principal 
Component Analysis

Variational Auto-encoder with a bottleneck layer



IMPORTANCE OF LATENT SPACES
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Z1

Z2

Unsupervised VAE learning

• Feature extraction: 
Correlations that 
are not apparent in 
original data space 
may be clearer in 
the reduced space. 

• Compression: Low 
dimensional 
representation can aid in 
smoother interpolation, 
easier generation, model 
performance. 



LATENT SPACE WALKS — APPLICATION 1
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Experimental design: 
space filling latin 
hypercube

Run training 
simulations, 
generate summary 
statistics

PCA/VAE reduction, 
GP fitting

P(θ |D) ∝ ℒ(D |θ )P(θ )

ℒ(D |θ ) ∝ exp −
1
2 ∑

i, j
(D − f (θ ))i

C−1
ij (D − f (θ ))j

Latent-walk based 
surrogate model for 
faster Likelihood 
calculation 

Posterior 
estimation 
using emulated 
Likelihood via 
MCMC 

NR, Georgios Valogiannis et al 
(arxiv:2010.00596) 

https://arxiv.org/abs/2010.00596


LATENT SPACE WALKS — APPLICATION 2

Deep-learning based compressions can be 
applied to variety of datasets — images, 
time-series, n-D simulations, graphs, texts
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Galaxy image emulation (Claire Guilloteau, NR et al)

Latent-space time evolution for inviscid 
fluid flow (Romit Maulik, Themistoklis 
Botsas, NR et al: arxiv:2007.12167)

3D cosmic density field reconstruction 
(Xiaofeng Dong, NR et al, 2021 arxiv:2111.12118)

https://arxiv.org/abs/2007.12167
https://arxiv.org/abs/2111.12118


LATENT SPACE WALKS — APPLICATION 3

Foundation models and 
LLMs deal with enormous 
quantity of data, and 
looking into latent spaces 
can offer better insights. 
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Templeton, Adly, et al. 
 transformer-circuits.pub 

https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html#safety-relevant-deception-case-study/
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Entropy:Measure of Uncertainty:

Top: perfect classification - clear 
boundary in tSNE projection 
Bottom: misidentified lenses at 
the junctions. 

Measure of uncertainty and entropy both reveal lower confidence in mis-
classified lenses

LATENT SPACE WALKS — APPLICATION 4

Latent spaces combined with robust UQ 
can help isolate misidentifications.

Sandeep Madireddy, NR et. al.: 
arxiv:1911.03867 

https://arxiv.org/abs/1911.03867
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Variational Information 
Bottleneck  and 
representation learning 
shows arrangement of 
strong lenses based on 
geometrical features

Sandeep Madireddy, NR et. al.: 
arxiv:1911.03867 

https://arxiv.org/abs/1911.03867
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LATENT SPACE WALKS — APPLICATION 5

Finding anomalous objects in the 
dataset is easier in latent space. 
Classification of ‘unknown 
objects’ is possible as well.   
 Kate Storey-Fisher, Marc Huertas-Company, NR et. al.  

https://arxiv.org/abs/2105.02434
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WHAT IS MISSING IN LATENT SPACE MODELING
1. Traditional representation learning is done in unsupervised 

spaces 
• Highly useful in certain datasets (natural images, texts) 
• Whereas, scientific datasets are more nuanced. Physical 

parameters are often associated (measured quantities, simulation 
settings) with datapoints. 

2. Multiple modalities, and multiple fidelities are encountered often. 
• Parameters are measured with different levels of accuracies, 

biases, underlying physics may be understood at different levels of 
confidence. 

• Known knowns 
• Known unknowns 
• Unknown unknowns 

3. Complex datasets result in more entangled representations 
• Untractable and reduced usefulness 

Wikipedia:There are 
unknown unknowns

Disentangling 
Latent Spaces 
in Generative 
Models for 
Scientific 
Datasets 

Arkaprabha Ganguli, 
Nesar Ramachandra, 
Julie Bessac, Emil 
Constantinescu 

Submitted to NeurIPS-
Main 2024, SUDS-2024

https://en.wikipedia.org/wiki/There_are_unknown_unknowns
https://en.wikipedia.org/wiki/There_are_unknown_unknowns


1. In our database, we assume access to a subset of ground truth factors , represented 

by auxiliary variables .  

2. We note that, we do not assume to know the exhaustive set of true generative factors. There might 
be some unknown generative factors that we do not observe as the auxiliary information.  

3. Observed database :  independent and identically distributed pairs of data points  and : 
 

4. Aim:  

• Disentangle the latent space based on identified ground truth factors  observable via .  

• Ensure that each auxiliary variable  strongly associates with one specific latent factor 

, where  are the auxiliary-informed latent factors. 

• Capture the remaining variability (for the unobserved generative factors) collectively in the 
remaining latent factors . 

• Utilize auxiliary variables to guide the learning process, enhancing interpretability and 
performance.

Sobs ∈ ℝd

u ∈ ℝd

𝒟 n x u
𝒟 = {(x(1), u(1)), (x(2), u(2)), …, (x(n), u(n))}

Sobs u
uj

zaux, j Zaux

Zrecon
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AUX-VAE: GENERAL SETTING AND OBJECTIVES



1. The loss function of a VAE can be expressed as: 



2. To utilize the available auxiliary information , we divide the latent 
space as , and enforce the following disentangled 
prior: 

 with 




3. The proposed disentangled prior facilitates improved interpretability 
and control over the latent space, enhancing the model's ability to 
accurately capture and separate known generative factors from the 
data, leading to more robust and explainable representations.

ℒVAE = 𝔼z∼q(z|x) [log p(x |z)] − KL (q(z |x) | |p(z)),

u
Z = (Zaux, Zrecon)

pz|u(z) =
d

∏
j=1

p𝒩(uj,1)(zj) p𝒩(0,IdZ−d)(z(d+1):dZ
) = p𝒩(μ0,IdZ)(z)

μ0 = (u1, u2, …, ud,0,…,0)
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AUX-VAE: CONDITIONING LATENT PRIORS



1. In addition to imposing the prior, applying posterior regularization further aids 
in achieving the desired disentangled structure. 


2. The expected variational posterior can be defined as:      




3. However, quantifying the independence in non-linear setting is non-trivial and 
we use polynomial regression for this purpose 


A.   

(Penalizing this would reduce the dependency)


B.   

(Penalizing this would increase the dependency)


4. Hence, we can induce the desired disentangled structure in  via 
regularization: 

qϕ(z) = ∫ qϕ(z |x)p(x)dx

RK
0 (v, w) =

1
Kmvmw

K

∑
k,k′ =1,k≠k′ 

mv

∑
i=1

mw

∑
j=1

|(Corr(vk, wk′ ))ij
|

RK
1 (v, w) =

1
Kmvmw

K

∑
k,k′ =1,k≠k′ 

mv

∑
i=1

(1 − |(Corr(vk, wk′ ))ii
|)

qϕ(z)

ℒAux−VAE = ℒVAE + λ1

d

∑
j=1

(RK
1 (uj, μϕ,aux, j) + RK

0 (uj, μϕ,aux,−j)) + λ2(RK
0 (u, μϕ,recon))
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AUX-VAE: REGULARIZATION IN LOSS FUNCTIONS

Intra-group dependence within Zaux
Inter-group dependence between


  and Zaux Zrecon

Interpretations:  
• Ensure that each dimension of 

 closely aligns with the 
auxiliary information ,  

• Impose a penalty on the 
dependency between any two 
latent factors in   

• Reduce the dependency between 
 and .  

• No restrictions on the dependency 
within  to ensure good 
reconstruction quality.

Zaux
u

Zaux

Zaux Zrecon

Zrecon
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EXAMPLE PROBLEM: SIMULATED GALAXY DATA
1. Galaxy images generated from geometric fits 

• ~160,000 galaxy images 
• 5 generating ground truth factors: radius, g1, g2, flux, psf 

• A few of these can be considered ‘known knowns’ (ground-truth factors) 
and others as ‘unknown knowns’.  

• These can be determined either from domain-knowledge or from 
correlation analysis. 
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EXAMPLE PROBLEM: SIMULATED GALAXY DATA
1. Realistic setting: we know/compute only some of the physical characteristics 

as ground truth information; but not all. 
2. Only use three as auxiliary information: radius, g1, g2; and  keep the remaining 

two factors as redundant - not use them in the training
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INTERPRETABLE LATENT SPACE AND PROPER 
DISENTANGLEMENT

1. Latent space shows disentanglement for 3 variables, rest are entangled as usual (purely a 
part of reconstruction).  

2. Enables a ‘principled’ generative ability — latent space traversal results in interpretable 
evolution.  

ra
di

us
g1

g2
flu

x
ps

f

Z1 Z2 Z3 Z4 Z5 Z6

Z1

Z2

Z3

Z4

Z5

Z6

-3 3Latent space traversalLatent factors vs the generative factors
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APPLICATION: TOY QCF PROBLEM
Basic setup: Consider, the 1-D QCFs are 
represented as 2 beta-distributions

.  

• The associated 1-D cross-sections are 

 and 

.  

• The theory generated events are passed 
through a detector model: , such 

that , c=0.1, 0.5, 1,.…  

• Our observed database is the events 
coming out of this detector phase. Based 
on this, our goal is to estimate the 
parameters in the QCF model. 

u() ≡ β(au, bu), d() ≡ β(ad, bd)

σ1( ⋅ ) =
4
5

u( ⋅ ) +
1
5

d( ⋅ )

σ2( ⋅ ) =
1
5

u( ⋅ ) +
4
5

d( ⋅ )

x ↦ xd

xd ∼ N(0,cx2)

Data setup: Creating a synthetic dataset to 
learn the underlying functional structure using a 
Variation AutoEncoder (VAE): 

• Generate B different parameter 
configuration covering the whole 
parameter range: 

 
(e.g. in our experiment, we set

 

• For each parameter setting, we generate 
 events by sampling from the 

corresponding cross-section and then 
passing it through the detector model.  

• This creates our dataset which consists 
of the pairs 

θi = (ai
u, bi

u, ai
d, bi

d) ∼ Uniform(Lb, Ub)4

B = 25000,Lb = − 0.5,Ub = 5

nsim = 1000

(θi, xi)B
i=1
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APPLICATION: TOY QCF PROBLEM

Data setup: Events corresponding to 2 cross-sections are shown for pre-detector and post-detector stages. 

σ1( ⋅ )

σ2( ⋅ )
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TOY-QCF EVENT RECONSTRUCTION

σ2( ⋅ )σ1( ⋅ )

• Aux-VAE input/output dimensions are  

• Bottleneck of the Aux-VAE to with six latent dimensions: 

• First four latent factors are associated with the QCF parameters. 

• Other 2 latent factors are associated with reconstruction-only 
(detector noise or any other effects — collectively but unspecified)

din = dout = nsim = 1000



21

AUX-VAE’S LATENT FACTORS VS QCF PARAMETERS 
ON TEST DATA

au

bu

ad

bd

Z1 Z2 Z3 Z4 Z5 Z6

Using only events from with major contribution from σ1( ⋅ ) u( ⋅ )
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AUX-VAE’S LATENT FACTORS VS QCF PARAMETERS 
ON TEST DATA

au

bu

ad

bd

Z1 Z2 Z3 Z4 Z5 Z6

Using only events from with major contribution from σ2( ⋅ ) d( ⋅ )
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VISUALIZING THE LATENT SPACE  
VIA T-SNE

Using all 
six latent 
factors

Using 
only the 
first four 

latent 
factors

Using only 
the last 

two latent 
factors

Interpretation:  

• For ,  and  show 
highest correlation 

• The first 4 latent factors are 
nicely capturing the individual 
QCF parameters.   

• Last 2 latent factors 
(corresponding to 
reconstructions do not capture 
much of the parameter variation) 
— mostly just the stochasticity. 

σ1( ⋅ ) au bu

Using only events from 
 with major 

contribution from 

σ1( ⋅ )
u( ⋅ )
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VISUALIZING THE LATENT SPACE  
VIA T-SNE

Using all 
six latent 
factors

Using 
only the 
first four 

latent 
factors

Using only 
the last 

two latent 
factors

Interpretation:  

• For ,  and  show 
highest correlation 

• The first 4 latent factors are 
nicely capturing the individual 
QCF parameters.   

• Last 2 latent factors 
(corresponding to 
reconstructions do not capture 
much of the parameter variation) 
— mostly just the stochasticity. 

σ2( ⋅ ) ad bd

Using only events from 
 with major 

contribution from 

σ2( ⋅ )
d( ⋅ )
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CONCLUSIONS AND FUTURE OUTLOOK

• Representation learning can be powerful if the architectures/frameworks are 
designed with scientific applications in mind.  

• A set of carefully curated changes have enabled us to disentangle latent space, 
while capturing ground truth parameters well. 

• Parameters such as noise/detector parameters can be treated separately, and 
focus of inference/sensitivity studies can be solely on physics parameters of 
interest.  

• Next trials will include higher dimensional cross-sections, more realistic detector 
models and possible parameterizations — need inputs from the experts! 

• Questions? 


