

Quantum Magic and Entanglement in Shell Model Nuclei

Federico Rocco

18 October 2024

Nuclear Theory program 24-3, "Quantum Few- and Many-Body Systems in Universal Regimes"

Quantum Magic and Multi-Partite Entanglement in the Structure of Nuclei arXiv:2409.12064

Outlook

- ▶ Nuclear Shell Model
- ▶ Mapping on a quantum computer
- ▶ Multi-partite entanglement in nuclei
- ▶ Non-stabilizerness measures in nuclei
- ▶ Comparisons
- \triangleright Conclusions

Spherical Shell Model

- ▶ The active valence space is a truncation of the full Hilbert space
- \triangleright The valence nucleons interact via a phenomenologically-adjusted two-body Hamiltonian

$$
\hat{H} = \sum_{i} \varepsilon_i a_i^{\dagger} a_i + \frac{1}{4} \sum_{ijkl} \tilde{v}_{ijkl} a_i^{\dagger} a_j^{\dagger} a_l a_k
$$

 \triangleright The nuclear wavefunction is a linear combination of proton and neutron Slater determinants

BIGSTICK: Johnson, Ormand, Krastev, Comp. Phys. Comm. 184 (2013)

N-tangles* in the *p***-shell**

*Wong, Christensen, PRA 63, 044301 (2001) 6

N-tangles in the *sd***-shell**

Non-stabilizerness (magic)

- ▶ Stabilizer formalism centered around the Pauli group: $\mathcal{G}_{n_Q} = \{ \varphi \, \hat{\sigma}^{(1)} \otimes \hat{\sigma}^{(2)} \otimes ... \otimes \hat{\sigma}^{(n_Q)} \}$
- ▶ Pauli stabilizer group of $|\Psi\rangle$: $\mathcal{S} = \{ \hat{P} \in \mathcal{G}_{n_Q} s.t. \hat{P} \ket{\Psi} = \ket{\Psi} \}$
- \blacktriangleright $|\Psi\rangle$ is a stabilizer state if S contains $d = 2^{n_Q}$ elements and is fully specified by it
- \triangleright Stabilizer states can be prepared with Clifford operations only (Gottesman-Knill theorem) \rightarrow efficient classical simulation

Stabilizer Rényi entropies

*α***-Rényi entropy**

$$
\mathcal{M}_{\alpha}(|\Psi\rangle) = -\log_2 d + \frac{1}{1-\alpha} \log_2 \left(\sum_{\hat{P} \in \widetilde{\mathcal{G}}_{n_Q}} \Xi_P^{\alpha} \right), \qquad \Xi_P = \frac{\langle \Psi | \hat{P} | \Psi \rangle^2}{d}
$$

- ▶ Vanishing SREs for stabilizer states
- **►** Shannon entropy in the $\alpha = 1$ limit
- \triangleright $\alpha > 1 \rightarrow$ distance from the nearest stabilizer state
- \blacktriangleright α < 1 \rightarrow stabilizer rank and complexity of classical simulations

Leone et al Phys. Rev. Lett. 128.5 050402 (2022)

Haug, Aolita, Kim, Probing quantum complexity via universal saturation of stabilizer entropies, (2024), arXiv:2406.04190 9

New PSIZe-MCMC algorithm

- ▶ First use of MCMC techniques to compute SREs in Tarabunga et al
- \blacktriangleright Slow thermalization of the chains in non-spherical nuclei, due to the amplitude distribution in the wavefunction
- \blacktriangleright $d = 2^{n_Q}$ strings have typically a higher probability ($\Xi_P \sim 1$) than the other $d^2 - d$

Tarabunga et al PRX Quantum 4, 040317 (2023)

- ▶ Maximal magic is found to coincide with the maximal deformation *β*
- \blacktriangleright The quantum complexity persists beyond where *β* becomes small and extends through the region of shape co-existence
- \blacktriangleright The magic dependence upon J_z is a modest-sized effect

Comparisons for the Ne and Mg isotope chains

- ▶ Magic and n-tangles remain significant after *β* drops to zero
- \blacktriangleright The classical computing resources scale exponentially with the "shape-complexity" of the nucleus

Conclusions

- \triangleright We need both entanglement and magic to represent quantum complexity
- ▶ We introduced the PSIZe-MCMC algorithm to accelerate the convergence of MCMC evaluations in deformed nuclei
- ▶ The complexity of *p*-shell and *sd*-shell nuclei is reflected in multi-nucleon entanglement and magic
- \triangleright Transformations among the basis states and the use of a deformed/collective basis are expected to reduce the quantum complexity
- ▶ End goal is to gain insight to develop optimal partition of the workflow between classical and quantum computation in hybrid algorithms

Backup

$$
M_1 = -\sum_{\hat{P} \in \widetilde{G}_{n_Q}} \Xi_P \log_2 d \Xi_P
$$

\n
$$
\sum_{\hat{P} \in \widetilde{G}_{n_Q}} \Xi_P \log_2 \Xi_P = \langle \log_2 \Xi_P \rangle_{\Xi_P}
$$

\n
$$
M_1 \approx -\langle \log_2 \langle \Psi | P | \Psi \rangle^2 \rangle_{\Xi_P}
$$

\n
$$
M_2 = -\log_2 d \sum_{\hat{P} \in \widetilde{G}_{n_Q}} \Xi_P^2, \qquad \mathbb{E}(\alpha) = \langle \frac{\langle \Psi | P | \Psi \rangle^{2(\alpha - 1)}}{d^{(\alpha - 1)}} \rangle_{\Xi_P}
$$

\n
$$
M_2 \approx -\log_2 (d \mathbb{E}(2)) = -\log_2 \langle \langle \Psi | P | \Psi \rangle^2 \rangle_{\Xi_P},
$$

\n
$$
M_{lin} = 1 - d \sum_{\hat{P} \in \widetilde{G}_{n_Q}} \Xi_P^2
$$

\n
$$
M_{lin} \approx 1 - d \mathbb{E}(2) = 1 - \langle \langle \Psi | P | \Psi \rangle^2 \rangle_{\Xi_P}.
$$

PSIZe-MCMC

$$
\Xi_{\overline{P}} = \frac{\langle \Psi | \overline{P} | \Psi \rangle^2}{d} ,
$$

$$
\mathcal{P} = \sum_{\overline{P}} \Xi_{\overline{P}} \leq 1 ,
$$

$$
\mathcal{S}_{\overline{P}} = \sum_{\overline{P}} \Xi_{\overline{P}}^2 , \ \mathcal{L}_{\overline{P}} = \ - \sum_{\overline{P}} \Xi_{\overline{P}} \log_2 d \ \Xi_{\overline{P}} .
$$

$$
\mathcal{S}_{P \notin \overline{P}} = \sum_{P' \notin \overline{P}} \Xi_{P'}^2 \approx (1 - \mathcal{P}) \langle \Xi_{P'}^2 \rangle_{\text{MCMC}}
$$

 $\mathcal{L}_{P \notin \overline{P}} = - \ \sum$ $P' {\notin} \overline{P}$ $\Xi_{P'} \log_2 d \Xi_{P'} \approx -(1-\mathcal{P}) \langle \Xi_{P'} \log_2 d \Xi_{P'} \rangle_{\text{MCMC}}.$

$$
\sum_P \Xi_P^2 = \mathcal{S}_{\overline{P}} + \mathcal{S}_{P \notin \overline{P}}, \ \sum_P \Xi_P \log_2 d \Xi_P = \mathcal{L}_{\overline{P}} + \mathcal{L}_{P \notin \overline{P}}.
$$