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Outlook

▶ Nuclear Shell Model

▶ Mapping on a quantum computer

▶ Multi-partite entanglement in nuclei

▶ Non-stabilizerness measures in nuclei

▶ Comparisons

▶ Conclusions
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Spherical Shell Model

▶ The active valence space is a truncation of the full Hilbert
space

▶ The valence nucleons interact via a
phenomenologically-adjusted two-body Hamiltonian
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▶ The nuclear wavefunction is a linear combination of
proton and neutron Slater determinants

The nuclear wavefunction

|Ψ⟩ =
∑

απ,αν

Aαπ,αν |Φ⟩απ
⊗ |Φ⟩αν

|Φ⟩απ
:= Πi∈απ a†

i |0⟩

|Φ⟩αν
:= Πi∈αν a†

i |0⟩
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BIGSTICK: Johnson, Ormand, Krastev, Comp. Phys. Comm. 184 (2013)
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N-tangles* in the p-shell

τ
(n)
(i1...in) = |⟨Ψ|σ̂(i1)
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y |Ψ∗⟩|2
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*Wong, Christensen, PRA 63, 044301 (2001) 6



N-tangles in the sd-shell

e
(8)
i1i2

=
∑

i3<i4<i5<i6<i7<i8

τ
(8)
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Non-stabilizerness (magic)

▶ Stabilizer formalism centered around
the Pauli group:
GnQ = {φ σ̂(1) ⊗ σ̂(2) ⊗ ... ⊗ σ̂(nQ)}

▶ Pauli stabilizer group of |Ψ⟩:
S = {P̂ ∈ GnQs.t.P̂ |Ψ⟩ = |Ψ⟩}

▶ |Ψ⟩ is a stabilizer state if S contains
d = 2nQ elements and is fully specified
by it

▶ Stabilizer states can be prepared with
Clifford operations only
(Gottesman-Knill theorem) → efficient
classical simulation
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Stabilizer Rényi entropies

α-Rényi entropy

Mα(|Ψ⟩) = − log2 d + 1
1 − α

log2

 ∑
P̂ ∈G̃nQ

Ξα
P

 , ΞP = ⟨Ψ|P̂ |Ψ⟩2

d

▶ Vanishing SREs for stabilizer states
▶ Shannon entropy in the α = 1 limit
▶ α > 1 → distance from the nearest stabilizer state
▶ α < 1 → stabilizer rank and complexity of classical

simulations

Leone et al Phys. Rev. Lett. 128.5 050402 (2022)

Haug, Aolita, Kim, Probing quantum complexity via universal saturation of stabilizer
entropies, (2024), arXiv:2406.04190 9



New PSIZe-MCMC algorithm
▶ First use of MCMC

techniques to compute
SREs in Tarabunga et al

▶ Slow thermalization of the
chains in non-spherical
nuclei, due to the
amplitude distribution in
the wavefunction

▶ d = 2nQ strings have
typically a higher
probability (ΞP ∼ 1) than
the other d2 − d

▶ Pauli-String ÎẐ exact
MCMC

26Al

Tarabunga et al PRX Quantum 4, 040317 (2023)
10



M1=1.0422
M2=0.8465

M1=5.6194
M2=4.2940

Collective structure phe-
nomena influence quantum
complexity
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▶ Maximal magic is found to
coincide with the maximal
deformation β

▶ The quantum complexity
persists beyond where β

becomes small and
extends through the
region of shape
co-existence

▶ The magic dependence
upon Jz is a modest-sized
effect
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Comparisons for the Ne and Mg isotope chains

▶ Magic and n-tangles
remain significant
after β drops to zero

▶ The classical
computing
resources scale
exponentially with
the
“shape-complexity”
of the nucleus

13



Conclusions

▶ We need both entanglement and magic to represent
quantum complexity

▶ We introduced the PSIZe-MCMC algorithm to accelerate
the convergence of MCMC evaluations in deformed nuclei

▶ The complexity of p-shell and sd-shell nuclei is reflected in
multi-nucleon entanglement and magic

▶ Transformations among the basis states and the use of a
deformed/collective basis are expected to reduce the
quantum complexity

▶ End goal is to gain insight to develop optimal partition of
the workflow between classical and quantum computation
in hybrid algorithms
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Backup

M1 = −
∑

P̂ ∈G̃nQ

ΞP log2 d ΞP

∑
P̂ ∈G̃nQ

ΞP log2 ΞP = ⟨log2 ΞP ⟩ΞP

M1 ≈ −
〈
log2 ⟨Ψ|P |Ψ⟩2

〉
ΞP

M2 = − log2 d
∑

P̂ ∈G̃nQ

Ξ2
P , E(α) =

〈
⟨Ψ|P |Ψ⟩2(α−1)

d(α−1)

〉
ΞP

M2 ≈ − log2 (d E(2)) = − log2

〈
⟨Ψ|P |Ψ⟩2

〉
ΞP

,

Mlin = 1 − d
∑

P̂ ∈G̃nQ

Ξ2
P

Mlin ≈ 1 − d E(2) = 1 −
〈

⟨Ψ|P |Ψ⟩2
〉

ΞP
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PSIZe-MCMC

ΞP = ⟨Ψ|P |Ψ⟩2

d
,

P =
∑
P

ΞP ≤ 1 ,

SP =
∑
P

Ξ2
P

, LP = −
∑
P

ΞP log2 d ΞP .

SP /∈P =
∑

P ′ /∈P

Ξ2
P ′ ≈ (1 − P) ⟨Ξ2

P ′⟩MCMC

LP /∈P = −
∑

P ′ /∈P

ΞP ′ log2 d ΞP ′ ≈ − (1 − P) ⟨ΞP ′ log2 d ΞP ′⟩MCMC .

∑
P

Ξ2
P = SP + SP /∈P ,

∑
P

ΞP log2 d ΞP = LP + LP /∈P .
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