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Figure 7. The pairing gap calculated at constant density with (black circles) and without (red triangles)
the correction described in the text. Our calculations are compared to the old AFDMC results of
Refs. [44,45], and to those of Ref. [39]. The brown dashed curve shows the pairing gap predicted by BCS.

The calculations of the energies in Equation (31) are typically performed by simulating
the system at a constant density in order to minimize the FSE due to the truncation of the
potential energy in the periodic box. However, for the free Fermi gas, this procedure would
give a non-zero pairing gap. We corrected our results of the pairing gap by subtracting that of
the free Fermi gas obtained at constant densities. The correction is negligible at low densities,
as can be seen in Figure 7, and within error bars at large densities. In a few cases, we also
performed simulations at a constant volume instead of constant density and the results are
very similar to corrected constant-density ones.

In summary, we performed a detailed ab initio study of the S wave pairing in low-density
NM found in the inner crust of cold NSs. We calculated the EoS and the pairing gap by means
of AFDMC simulations for a range of densities, using a variationally optimized trial state
benchmarked against previous calculations at low densities. A study of the FSE within a
symmetry-restored mean-field treatment shows that the AFDMC energies and pairing gaps
are within ⇠2.5% and ⇠5% from the TL, respectively. Our AFDMC pairing gaps show a
modest suppression with respect to the mean-field BCS values. These results can be used in
calculations of the thermal properties of NSs and be indirectly tested in cold atom experiments
utilizing the universality of the unitary Fermi gas.
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Abstract: We report ab initio calculations of the S wave pairing gap in neutron matter calculated
using realistic nuclear Hamiltonians that include two- and three-body interactions. We use a trial
state, properly optimized to capture the essential pairing correlations, from which we extract ground
state properties by means of auxiliary field diffusion Monte Carlo simulations. We extrapolate our
results to the thermodynamic limit by studying the finite-size effects in the symmetry-restored projected
Bardeen-Cooper-Schrieffer (PBCS) theory and compare our results to other ab initio studies done in the
past. Our quantum Monte Carlo results for the pairing gap show a modest suppression with respect to
the mean-field BCS values. These results can be connected to cold atom experiments, via the unitarity
regime where fermionic superfluidity assumes a unified description, and they are important in the
prediction of thermal properties and the cooling of neutron stars.

Keywords: neutron matter; superfluidity; pairing; neutron star; cold atoms; ab initio; quantum monte
carlo; BCS

Strongly paired Fermi systems offer a unique regime for quantum many-body physics as
their relevance spans many physical settings of various scales: From the structure of neutron
stars (NSs) and the physics of neutron-rich nuclei to cold-atom experiments. Neutron matter
(NM), one of the most strongly interacting Fermi systems found in nature, is an important
ingredient of NSs, playing an essential role in their structure [1] while strongly interacting
fermionic atoms are now routinely used in experiments shedding light on the properties of
strongly interacting superfluids [2]. While it initially appears different, the description of
these systems can be unified via their proximity to the unitary Fermi gas, connecting atomic
experiments on Earth to the NS matter.

Neutrons found in the inner crust of quiescent NSs are known to form 1S0 pairs, turning
low-density NM to a S wave superfluid [1,3,4]. The correct description of such neutron fluids
is integral to the understanding of NS physics. Properties of low-density NM can explain
observations such as irregularities in the periods of NSs and their cooling [5–8], while the
equation of state (EoS) of high-density NM impacts the mass-radius relations of NSs [1,9] and
the hydrodynamic description of their inner crust [10]. Neutron matter of the same densities
is also found on the exterior of neutron-rich nuclei [1,4]. Therefore, a correct description of
low-density NM is crucial to our understanding of nuclear systems of various sizes.

Strongly interacting cold Fermi atoms have been the subject of many theoretical investi-
gations [11–18]. Experimentally, they have been studied extensively since the beginning of
the century, owing in part, to the simplicity of these experiments compared to those for their
bosonic counterparts [2]. In these cold atom experiments, the strength of the interaction can be
tuned through Feshbach resonances to yield a specific scattering length. Many experimental
studies of strongly interacting Fermi gases utilize a 6Li gas, which exhibits a very broad
Feshbach resonance, with a vanishing effective range re [19]. This allows one to perform
studies of atomic superfluids from close to the Bardeen-Cooper-Schrieffer (BCS) limit (small
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uk and vk are not optimized to yield minimum energy. However, the error introduced is
small for strongly paired systems [33], such as NM. Dealing with S wave superfluidity, we
must again isolate the S wave terms from a partial wave expansion, and so the energy of
the PBCS ground states for even and odd systems are:

EPBCS
even (N) = Â

k
M(k)e(k)2v(k)2 R1

1(k)
R0

0

+ Â
kp

M(k)M(p)V0(k, p)u(k)v(k)u(p)v(p)
R2

1(k p)
R0

0
, (16)

EPBCS
odd (b; N) = Â

k 6=b
M(k)e(k)2v2(k)

R2
1(b k)

R1
0(b)

+ Â
kp

M(k)M(p)V0(k, p)u(k)v(k)u(p)v(p)
R3

1(b k p)
R1

0(b)
. (17)

where we defined the residuum integrals,

Rm
n (k1 k2 . . . km) =

Z 2p

0

df

2p
e�i( N

2 �n)f ’
k 6=k1,k1,...km

⇣
u2

k + eifv2
k

⌘
. (18)

The energy per particle calculated with Equations (16) and (17), or Equations (12)
and (13), for a given density is not equal to the TL value of the energy, as is the case
with any intensive quantity of a finite system. This is known as the finite-size effects
(FSE) and they can be seen in the left panel of Figure 2. By studying the FSE of intensive
quantities, we can prescribe extrapolation schemes to the TL and estimate their accuracy.
In the case of superfluidity, pairing tends to create smooth FSE for the energy with no
abrupt changes, compared to the FSE of the free Fermi gas. This can be most clearly seen
in a comparison of the superfluid kinetic energy with that of the free Fermi gas, plotted
in Figure 3. This can be attributed to the pairing’s smearing of the Fermi surface (see
Figure 4). When studying the FSE, the particle-number projection of PBCS should be seen
as separating the contribution of a system with N neutrons from the linear combination
of systems with average particle-number hNi, that is the BCS state. As such, the PBCS
curves in Figures 2 and 3 represent more well-defined FSE curves compared to the BCS
ones. A detailed study of the FSE in BCS and PBCS for NM was carried out in ref. [29]. The
prescription of the pairing gap defined in the BCS theory in Equation (6) cannot be applied
in the PBCS theory. Alternatively, one can define the odd-even staggering (OES),

D(N) =
(�1)N

2
[2E(N)� E(N + 1)� E(N � 1)] , (19)

inspired by the odd-even mass staggering of nuclei. It has been demonstrated that for
the 1S0 pairing gap in NM, DMF and D are probing the same physical quantity and
Equations (6) and (19) can be used interchangeably [29], as shown in the right panel of
Figure 2. Since the pairing gap is an intensive quantity, it generally suffers from larger FSE
than the energy (see the right panel of Figure 2).
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Figure 4. The pair probability distribution used in this work (solid line) and the pairing function of
the BCS ground state (dashed line) for N = 40 particles at kF = 0.4 fm�1.

2. Ab Initio: DMC and AFDMC
While the mean-field description, given by BCS, provides a qualitative understanding

of strongly paired systems, accuracy demands that we treat pairing correlations from first
principles. For NM, this can be done by numerically solving Schrödinger’s equation for
the nuclear Hamiltonian, to find the ground state of a finite number of neutrons, and then
extrapolating the results to the TL. We employ the non-relativistic nuclear Hamiltonian:

H = � h̄2

2m

N

Â
i=1

r2
i + Â

i<j
vij + Â

i<j<k
Vijk , (20)

where m is the mass of the neutron, and vij and Vijk are two- and three-body potentials. All
the results presented in this paper have been obtained using the Argonne AV8’ and the
Urbana-IX (UIX) [34,35]. The AV8’ belongs to the Argonne family of realistic two-nucleon
potentials, which are generated by high-precision fitting of experimental scattering data.
The functional form of the AV8’,

vij =
8

Â
p=1

vp(rij)O(p)(i, j) , (21)

contains eight two-particle operators: The four central components 1, ti · t j, si · s j, (ti ·
t j)(si · s j), the tensor Sij and the tensor-t Sij(ti · t j) components, the spin-orbit Lij · Sij,
and the spin-orbit-t Lij · Sij(ti · t j) components (where Sij = 3(si · r̂ij)(s j · r̂ij)� (si · s j)
and Lij, Sij are the relative angular momentum and the total spin of the particle ij). The
UIX is a three-body potential,

Vijk = V2p + VR , (22)

which describes the exchange of two pions between three nucleons via a spin-isospin
dependent term [36] and it is fit to reproduce the correct triton energy in Green’s function
Monte Carlo calculations and the expected saturation energy of nuclear matter in the
Fermi hypernetted-chain approximation [35]. The remaining term is a phenomenological
part that sums other neglected terms. We have also considered two- and three-body local
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We consider here the same heat equation as in previous
studies but we take into account the effect of gapless super-
fluidity on the neutron specific heat. The thermal evolution
of KS 1731−260 and MXB 1659−29 after an outburst is
computed using the crustcool code1, which solves the
time-dependent equations for the temperature and luminosity
in the neutron-star crust together with the hydrostatic struc-
ture equations in the plane-parallel approximation assuming
a constant gravity (see Ref. [9]). The underlying model of
accreted neutron-star crust and heating is that of Haensel
and Zdunik [2,34,35]. We have modified this code to account
(1) for neutron diffusion resulting in a different composition
of the crust and a reduction of the heat sources, (2) for the
change of neutron critical temperature and neutron specific
heat in presence of superflow, both of which can be expressed
as universal functions of Vn/VLn [61]. These two modifica-
tions are discussed in the next subsections.

3.2 Neutron diffusion

To account for the diffusion of free neutrons throughout the
crust, we have modified the original crustcool code fol-
lowing the prescription given in Refs. [40,41,46], namely:

• For the outer crust we have taken the composition and the
equation of state of accreted crusts to be the same as that
of the traditional Haensel and Zdunik model [2] (which
assumes ashes of X-ray bursts made of pure 56Fe), down
to the bottom of the outer-crust where the proton number
Z becomes equal to 20 [41].

• Due to shell effects, the proton number remains Z = 20
in the inner crust. The mass number Acl of clusters is
found assuming the proton fraction Yp = Z/Acl and
the fraction of free neutrons are the same as the ones
found in the non-accreted crust model of Douchin and
Haensel [99].

• The heat released by electron captures and pycnonuclear
reactions is reduced to Qnuc = 0.1 MeV/nucleon in the
outer crust and Qnuc = 0.3 MeV/nucleon in the inner
crust [46].

3.3 Gapless neutron superfluidity and specific heat

The specific heat of the crust is the sum of three contribu-
tions due electrons, ions and free neutrons (in the inner crust).
The expressions of the first two are the same as the ones
described in Ref. [9]. For the neutron contribution, we have
added the reduction factors (20) and (21) in the crustcool
code to include the possibility of gapless superfluidity with
VLn ≤ Vn ≤ V(0)

cn . In the absence of superflow Vn = 0,

1 https://github.com/andrewcumming/crustcool.

Fig. 4 Neutron pairing gap !
(0)
n (at zero temperature and in the

absence of superflow) as a function of the neutron Fermi wave num-
ber kFn as predicted by renormalization group [101] (RG), quantum
Monte Carlo calculations from 2008 [28] (QMC08) and 2022 [29]
(QMC22), Brueckner Hartree–Fock theory [71] (BHF), self-consistent
Green function theory [30] (SCGF), and other diagrammatic calcula-
tions [31] (MB23). The dashed and dotted yellow curves correspond to
the “Deep” and “Small” gaps fine-tuned in Ref. [26] to fit the cooling
data of SXTs. Shaded area indicates Fermi wave numbers reached in
the outer core of neutron stars

the reduction factor of Ref. [100] is used. We have not con-
sidered the intermediate subgapless regime 0 < Vn < VLn .
Indeed, looking at Fig. 3 and Eq. (75) of Ref. [61], the neu-
tron specific heat remains exponentially suppressed as in the
absence of superflow, except for Vn very close to VLn . There-
fore, the cooling curves are not expected to be very different
from those obtained for Vn = 0. At the onset of the gap-
less regime (Vn = VLn), the reduction factor (20) depends
on the neutron pairing gap !

(0)
n through the critical tempera-

ture (15). For higher Vn , the reduction factor (21) is expressed
as a universal function of Vn/VLn . The neutron specific heat
still implicitly depends on !

(0)
n in the sense that superfluidity

obviously disappears whenever T > Tcn (the relevant crit-
ical temperature given by Eq. (16) is directly proportional
to !

(0)
n ), in which case the neutron specific heat reduces to

Eq. (19). At each cooling stage, we check whether neutrons
are superfluid or not in each crustal layer. The neutron spe-
cific heat in the normal phase is given by Eq. (19). In the
code, the neutron effective mass is set to m⊕

n = mn . As can
be seen from Eq. (11), the effective superfluid velocity VnVnVn
coincides exactly with the superfluid velocity VnVnVn in this case.

The actual value of Vn/VLn depends on the dynamical
evolution of the neutron star and may vary with depth. In this
paper, we treat this ratio as a free constant parameter. The
only microscopic inputs are therefore the neutron pairing gap
!

(0)
n through the critical temperature, as seen from Eqs. (16)

and (15). We have implemented more recent microscopic
calculations of !

(0)
n shown in Fig. 4. For comparison, we

123

Eur. Phys. J. A (2024) 60:116
https://doi.org/10.1140/epja/s10050-024-01329-z

Regular Article - Theoretical Physics

Gapless neutron superfluidity in the crust of the accreting neutron
stars KS 1731−260 and MXB 1659−29

Valentin Allarda , Nicolas Chamelb

Institute of Astronomy and Astrophysics, Université Libre de Bruxelles, Boulevard du Triomphe, Brussels 1050, Belgium

Received: 31 October 2023 / Accepted: 27 April 2024 / Published online: 29 May 2024
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2024
Communicated by David Blaschke

Abstract The interpretation of the thermal evolution of
the transiently accreting neutron stars MXB 1659−29 and
KS 1731−260 after an outburst is challenging, both within
the traditional deep-crustal heating paradigm and the thermo-
dynamically consistent approach of Gusakov and Chugunov
that accounts for neutron diffusion throughout the crust. All
these studies assume that the neutron superfluid in the crust is
at rest. However, we have recently shown that a finite super-
flow could exist and could lead to a new gapless superfluid
phase if quantized vortices are pinned. We have revisited
the cooling of MXB 1659−29 and KS 1731−260 and we
have found that gapless superfluidity could naturally explain
their late time cooling. We pursue here our investigation by
performing new simulations of the thermal relaxation of the
crust of MXB 1659−29 and KS 1731−260 within a Markov
Chain Monte Carlo method accounting for neutron diffu-
sion and allowing for gapless superfluidity. We have varied
the global structure of the neutron star, the composition of
the heat-blanketing envelope, and the mass accretion rate. In
all cases, observations are best fitted by models with gap-
less superfluidity. Finally, we make predictions that could be
tested by future observations.

1 Introduction

Quasipersistent soft X-ray transients (SXTs) are neutron stars
episodically accreting material from a stellar companion in a
low-mass X-ray binary [1]. Accretion outbursts can last years
to decades, a time long enough for the crust to be heated out
of thermal equilibrium with the core due to compression-
induced nuclear reactions, mainly pycnonuclear reactions
taking place in the deep layers of the inner crust at densities
of order 1012−1013 g cm−3 [2] (for this reason, this process

a e-mail: valentin.allard@ulb.be
b e-mail: nicolas.chamel@ulb.be (corresponding author)

is usually referred to as “deep crustal heating” [3]). In qui-
escence, heat is transported to the surface thus cooling down
the neutron star until the crust-core thermal equilibrium is
restored. This leads to a soft component in the X-ray spec-
trum (below a few keV), first detected in KS 1731−260 [4]
in March 2001, a few months after the end of an outburst
of 12.5 years. Subsequent observations [5,6] were consistent
with the expected thermal emission from the neutron star sur-
face [7–9]. However, the star appeared colder than predicted
when it was observed again in May 2009 [10]. Observations
taken six years later suggested that the crust had thermally
relaxed [11]. Observations are summarized in Table 1. The
second source for which the thermal emission was detected
is MXB 1659−29. This source went into quiescence also in
2001 after an accretion period of 2.5 years and was regularly
observed [6,12–15] (see Table 2) before entering into a new
accretion episode in 2015 [16,17]. This outburst ended in
2017 after 1.7 years and the X-ray emission during quies-
cence was observed up to about 500 days [18] (see Table 3).
At the time of this writing, KS 1731−260 and MXB 1659−29
are still in quiescence. Several other SXTs have been mon-
itored (see, e.g., Ref. [19] and references therein). These
observations directly probe the properties of the inner crust
and neutron superfluidity [20,21].

The standard cooling paradigm has been challenged
by these observations. First, some additional heat sources
located in the shallow layers of the crust are needed to explain
the thermal evolution during the first months following the
end of an outburst [9] (shallow heating is also expected to play
a role in the spin down of accreting neutron stars [22]). The
required heat sources are compiled in Ref. [23]. Moreover,
the late time cooling after 103−104 days revealed unexpected
features, especially the dimming of the X-ray emission after
the first outburst of MXB 1659−29 (see the last row in
Table 2), suggesting a further cooling of the crust [15]. Run-
ning classical molecular dynamics simulations, Horowitz et
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Fig. 3. (a) Screening and QMC results for the gap in neutron matter as a function of the
Fermi momentum kF. The blue dashes and red dots are the final results of the screening
calculations of Cao et al. [35] and of our own work [37], respectively. The turquoise triangles,
purple points, and green squares are QMC results of Gandolfi et al. [38], Abe and Seki [39],
and Gezerlis and Carlson [40], respectively. For comparison, the BCS result �BCS obtained
without e↵ective mass is shown as the black line (same as in Fig. 1). (b) Same data as in
(a) but normalized to �BCS. The GMB result [30] is shown as the black star.

There have been many attempts to calculate the induced interactions in the lit-
erature [31–37]. Especially the earlier calculations [31,32] found an extremely strong
suppression of the gap. However, since the work by Cao et al. [35] a consensus seems
to emerge that the gap is not too strongly reduced. This is shown in Fig. 3 which
summarizes more recent screening and QMC results. In Fig. 3(b) we also show the
result �/�BCS = (4e)�1/3 ⇡ 0.45 (black star) obtained long ago by Gor’kov and
Melik-Barkhudarov (GMB) [30], which should become valid in the limit |kFann| ⌧ 1,
with ann ⇡ �18.5 fm the nn scattering length.

It is seen that the two screening calculations [35,37] do still not quite agree with
each other. We will come back to a more detailed discussion of these calculations
below. The QMC calculations, which are supposed to be, up to numerical limitations,
exact solutions of the many-body problem, show only a moderate suppression. The
gaps of Ref. [38] (turquoise triangles), were obtained with the auxiliary-field di↵usion
Monte Carlo technique using the Argonne V80 nn interaction (AV80) and the Urbana
IX three-body force (UIX) and is not significantly reduced compared to �BCS up
to kF ⇠ 0.6 fm�1, but the error bars are huge. The green points of Ref. [39] were
obtained within a method based on the discretization of the Hamiltonian on a lattice
(determinantal quantum Monte Carlo). The interaction used in this calculation is
much simpler, as it includes only the leading and next-to-leading orders (NLO) of
pionless e↵ective field theory (EFT), and is only valid at low momenta, i.e., low
densities. These gaps are reduced by an almost constant factor of about 0.6 � 0.7
compared to �BCS (see Fig. 3(b)). The almost perfect agreement of these results
with the red dashed curve is probably accidental. A similar behavior was found in
Ref. [40] using the AV4 interaction within the variational and subsequent Green’s
function Monte-Carlo method. At very low densities, these results tend (within the
error bars) towards the GMB limit. According to Ref. [40], the discrepancy between
Refs. [38] and [40] might be due to the less optimized wave function used in Ref. [38].

Let us now discuss in some more detail the screening calculations. In Fig. 4 we
display again the ratios of screened gaps to our reference curve �BCS which is the
BCS gap with the free neutron mass (black solid line in Fig. 1), including the results
obtained at intermediate steps on the way to the final results. Figure 4(a) summarizes
the neutron-matter results of Ref. [35]. In that work, the 3p1h vertices Ṽ (dotted lines
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Abstract. We review the long standing problem of superfluid pairing
in pure neutron matter. For the s-wave pairing, we summarize the
state of the art of many-body approaches including di↵erent nn inter-
actions, medium polarization, short-range correlations and BCS-BEC
crossover e↵ects, and compare them with quantum Monte Carlo results
at low-densities. We also address pairing in the p-wave, which appears
at higher densities and hence has large uncertainties due to the poorly
constrained interactions, medium e↵ects and many-body forces.

1 Introduction

Superfluiditity in nuclei is nearly a 60 year old problem. However, a satisfactory micro-
scopic description of the phenomenon continues to remain a challenge as the problem
is marred by uncertainties in the input interactions, both at the few body level and
the medium corrections. The possibility of neutron superfluidity was already pointed
out around 1960 [1,2]. The observational confirmation began with the discovery of
pulsars [3], their connection to rotating neutron stars [4] and the subsequent obser-
vation of glitches in the period of rotation of these pulsars. Rotating neutron stars
are almost perfect clocks with a period of rotation that increases very slowly with
time. However, sometimes the period of rotation suddenly decreases, followed by long
relaxation times (over years) before it returns to its pre-glitch value. Such glitches can
be explained if one allows for the existence of a superfluid phase in the inner crust
of the star through the mechanism of vortex unpinning [5,6] (maybe one needs also
superfluidity in the core [7]). Further, the existence of a superfluid state is crucial to
explain the observational data on cooling [8–10].

The two-body interaction between two neutrons has attractive components and
while it is not su�cient to produce a bound di-neutron state in free space, in the
presence of other neutrons this attraction leads to Cooper instability leading to the
existence of a superfluid phase with s-wave pairing, which typically exists in the inner
crust of neutron stars. The NN interaction is attractive in the spin triplet state as
well that leads to p-wave pairing, and such a phase is assumed to exist at higher
densities in the outer layers of the core of the star.

In addition to the physics of neutron star crusts, pairing plays a crucial role in
finite nuclei as well by contributing to extra binding, for example the extra binding
leading to an energy gap in even-even nuclei compared to the quasi-particle spectrum
of odd-A nuclei or the even-odd staggering in binding energy [11,12]. Close to the
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FIG. 7. The figure shows the density dependence of the singlet
pairing interaction in both “parquet//1” approximation (black lines)
and including both “beyond parquet” corrections and those stemming
from using a superfluid Lindhard function (red lines).

of −0.5eF , and that value of the Lindhard function changes
by about 20%, can change the induced interaction by a factor
of 2 which is seen in the left part of Fig. 4. This finding is
consistent with the observation that the effect is smaller when
nonparquet diagrams are included because the magnitude of
Ṽp−h(0+) is decreased. Of course, it must be kept in mind that
the agreement between the F s

0 obtained from Ṽp−h(0+), see
Eq. (2.20), and that obtained from the hydrodynamic speed of
sound, Eq. (3.3), is only approximate [16].

The similarly significant change of the longitudinal part of
the effective interaction, as shown in the right part of Fig. 4,
is much more expected and comparable in both parquet and
“beyond parquet” results. As we go to higher density, see
Figs. 5, the effects become smaller simply due to the fact that
the superfluid gap becomes smaller, but they are still quite
visible.

Since we are concerned with 1S0 pairing, we need to map
the 1, L̂, and T̂ channel interactions onto the S wave,

W̃ (S)(q) = W̃ (1)(q) −W̃ (L)(q) − 2W̃ (T )(q). (3.4)

The interactions are shown in Fig. 6. Somewhat unexpectedly,
the results show much less effect from using the superfluid
Lindhard functions. The reason is found in the fact that the
corrections go, in both the central and the spin channels, in the
same direction and lead to an apparent partial cancellation, see
Eq. (3.4). We could not see an argument that this cancellation
is generic, but rather we consider it a coincidence.

Figure 7 gives an overall account of the density dependence
of the S-wave pairing interaction. Generally, the inclusion of
“beyond-parquet” diagrams reduces the interaction strength,
the effect is most pronounced at intermediate densities. We
also see clearly that the corrections from using a superfluid
Lindhard function are smaller, with increasing density, at
longer wavelengths which is due to the fact that the gap gets
smaller.

C. BCS pairing

Once the ground-state correlations and effective interac-
tions are known, the superfluid gap function !k can be
determined by solving the gap equation (2.17).

The gap equation was solved by the eigenvalue method
with an adaptive mesh as outlined in the Appendix of
Ref. [15]. We have adopted a free single-particle spectrum
for ek as it occurs in Eqs. (2.14) and (2.17). One could also
use the actual spectrum of CBF single-particle energies [39],
in both the pairing interaction (2.14) and the denominator of
Eq. (2.17). We have discussed and studied the effect of these
modifications in previous work [32], there is no reason for
repetition. A recent very extensive comparison with earlier
work [35,41,54,59–65] is found in Ref. [36]. We can, there-
fore, focus in this paper on the aspect where we went beyond
previous work [25,32].

Our results for the superfluid gap for the two potentials are
shown in Fig. 8. Evidently the difference of the gap between
these two potential models is almost negligible and certainly
within the accuracy of both the FHNC/parquet//1 approxi-
mation. We have above shown that specific “beyond parquet”
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FIG. 8. Superfluid gap !kF at the Fermi momentum as a function of Fermi wave number kF for the Argonne V6 interaction (left figure)
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Lindhard function for normal systems, and the “beyond parquet” results using the superfluid Lindhard function (red curves). The crosses show
the results for the bare Argonne and Reid interactions, these data are from Ref. [66]. The magenta squares in the left figure are quantum Monte
Carlo data from Ref. [67].
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I. INTRODUCTION

The nature and role of fermionic pairing and superfluid-
ity in nuclei and nuclear matter has been a subject of great
interest for many years [1]. Beginning with work by Bohr,
Mottelson, and Pines [2] there was persistent interest among
nuclear theorists in what could be learned from the quantum
many-body problem of infinite nuclear matter composed of
nucleons interacting through the best nucleon-nucleon (NN)
interaction available.

Bardeen-Cooper-Schrieffer (BCS) theory as originally for-
mulated [3] is intrinsically a mean-field theory. Cooper, Mills,
and Sessler [4] were the first to realize that the BCS equa-
tion per se could also be solved for hard-core interactions,
but that still leaves the question open to what extent such
a theory could capture the physics of a strongly interact-
ing system. This issue was addressed by the introduction
of Jastrow-Feenberg correlation factors [5–7]. Major ad-
vances were made with the replacement of cluster expansions
by Fermi hypernetted-chain (FHNC) diagram-resummation
techniques [8,9], facilitating the unconstrained optimiza-
tion of Jastrow-Feenberg correlations (FHNC-Euler-Lagrange
(FHNC-EL) method). The fact that optimized hypernetted-
chain summations included the summations of high-order
contributions to the perturbation series was first observed
by Sim, Buchler, and Woo [10], it was put on a rigorous
foundation in the work by Jackson, Lande, and Smith [11,12]
who showed, for bosons, that the optimized hypernetted chain
theory for Jastrow-Feenberg correlations is equivalent to the
self-consistent summation of all ring and ladder diagrams, the
“parquet” diagrams.

When implemented in a BCS extension, these advances
have made possible the development of a rigorous corre-
lated BCS (CBCS) theory (Ref. [13], see also Ref. [14])
that respects the U(1) symmetry-breaking aspect of the su-
perfluid state—i.e.,the nonconservation of particle number. A

recent in-depth study of correlations in the low-density Fermi
gas [15], with emphasis on the presence of Cooper pairing
and dimerization, documents the power of the Euler-Lagrange
(EL) FHNC approach adopted in the present work. The ma-
jor drawback of these calculations was that they employed
simple state-independent correlation functions. This makes
the method suitable for simple interactions, but improvements
must be sought for realistic nuclear Hamiltonians.

In recent work [16,17], we have utilized the equivalence
between parquet-diagram summations and optimized varia-
tional methods to develop methods that address exactly this
problem. We will review these in the next section.

II. VARIATIONAL AND PARQUET-DIAGRAM THEORY

A. The normal ground state

Let us briefly describe the Jastrow-Feenberg variational
and parquet-diagram summation method and its implementa-
tion to superfluid systems.

We assume a nonrelativistic many-body Hamiltonian,

H = −
∑

i

h̄2

2m
∇2

i +
∑

i< j

v(i, j). (2.1)

Popular models of the nucleon-nucleon force [18–22] rep-
resent the interaction as a sum of local functions times
correlation operators, i.e.,

v̂(i, j) =
n∑

α=1

vα (ri j ) Ôα (i, j), (2.2)

where ri j = |ri − r j | is the distance between particles i and
j, and the Oα (i, j) are operators acting on the spin, isospin,
and possibly the relative angular momentum variables of the
individual particles. According to the number of operators n,
the potential model is referred to as a vn model potential.
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FIG. 7. The BCS integral equation for the superfluid gap, represented by the empty triangle.

Appendix A: Superfluid gap from the BCS equations

In the presence of a Fermi surface, any attractive interaction leads to superfluidity at zero tem-
perature [24, 25]. The superfluid gap may be obtained from the BCS equations, which are readily
derived in the grand canonical ensemble using the Matsubara formalism. Supplementing the La-
grange density, Eq. (6), describing the fermion interactions in free space, with a chemical potential
term, µF † and transforming to Euclidean space allows the thermodynamic potential ⌦(µF , T ) to
be identified with the effective action. A Hubbard-Stratonovich transformation can then be carried
out to render the four-fermion interaction quadratic by introducing bosonic fields. Ignoring the
fluctuations in the bosonic fields, and evaluating them at their equilibrium values, leads to the BCS
mean-field approximation. In particular, minimizing the thermodynamic potential, and taking the
zero-temperature limit, one finds the equation for the gap,

�(k) = �
Z

d3q

(2⇡)3
V (k,q)�(q)

2
q
(!q � µF )

2 + |�(q)|2
. (A1)

For the momentum-independent interaction considered in this work V (k,q) = g . Diagrammati-
cally, this integral equation is given in Fig. 7. The equation for the density is finite and obtained
by differentiating the thermodynamic potential with respect to µF :

⇢ =
k3F
3⇡2

=

Z
d3q

(2⇡)3

"
1 � (!q � µF )q

(!q � µF )
2 + |�(q)|2

#
. (A2)

Note that the density of the free Fermi gas is not changed by the interaction, as an interaction that
conserves particle number will simply shift the single-particle levels, which in the ground state are
still filled up to kF .

Choosing the ansatz �(q) = �̂0(kF ), in the EFT considered here, the gap equation is:

1

g
= �

⇣µ
2

⌘3�d
Z

ddq

(2⇡)d
1

2
q

(!q � µF )
2 + �̂2

0

. (A3)

It is straightforward to evaluate this linearly-divergent integral in DR with PDS [26, 28, 56]. One
finds

1

gR
=

1

g
+

Mµ

4⇡
=

M

4⇡a
=

M3/2

2
p
2⇡

µ1/2
F

�
1 + x2

�1/4
P1/2

⇣
�
�
1 + x2

��1/2
⌘

(A4)

where x ⌘ �̂0/µF , Pn is a Legendre polynomial, and the renormalization prescription of Eq. (10)
has been adopted. Finally, one obtains

1

(2MµF )1/2 a
=

�
1 + x2

�1/4
P1/2

⇣
�
�
1 + x2

��1/2
⌘

. (A5)
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be identified with the effective action. A Hubbard-Stratonovich transformation can then be carried
out to render the four-fermion interaction quadratic by introducing bosonic fields. Ignoring the
fluctuations in the bosonic fields, and evaluating them at their equilibrium values, leads to the BCS
mean-field approximation. In particular, minimizing the thermodynamic potential, and taking the
zero-temperature limit, one finds the equation for the gap,
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For the momentum-independent interaction considered in this work V (k,q) = g . Diagrammati-
cally, this integral equation is given in Fig. 7. The equation for the density is finite and obtained
by differentiating the thermodynamic potential with respect to µF :
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Note that the density of the free Fermi gas is not changed by the interaction, as an interaction that
conserves particle number will simply shift the single-particle levels, which in the ground state are
still filled up to kF .

Choosing the ansatz �(q) = �̂0(kF ), in the EFT considered here, the gap equation is:
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It is straightforward to evaluate this linearly-divergent integral in DR with PDS [26, 28, 56]. One
finds
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where x ⌘ �̂0/µF , Pn is a Legendre polynomial, and the renormalization prescription of Eq. (10)
has been adopted. Finally, one obtains
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FIG. 7. The BCS integral equation for the superfluid gap, represented by the empty triangle.

Appendix A: Superfluid gap from the BCS equations
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I. INTRODUCTION

Dense systems of cold neutrons, as found in, for example, neutron stars and the outer shells of
certain heavy-nuclei [1, 2], are believed to be in a superfluid phase. An important quantity that
characterizes this phase is the superfluid energy gap �, that separates the ground and first excited
states in the many-body system. Quantitative knowledge of the gap is needed to understand
properties of neutron stars, such as their cooling rates [3] and spin frequency [4]. For recent reviews
on the role of superfluidity in neutrons star physics see Refs. [5–8]. Despite considerable effort by
nuclear theorists to compute the superfluid gap in neutron matter, there is little consensus among
different techniques [9–17]. This is likely due to a series of independent complications, including
the smallness of the gap energy relative to the scale of the strong interaction, the absence of a clear
hierarchy of scales at moderate densities, and the intrinsic complexity of the in-medium interaction.
In parallel, there have also been ab initio approaches that determine the gap using Quantum Monte
Carlo (QMC) simulations [18–22]. In principle, these QMC simulations do not rely on uncontrolled
approximations, and provide a powerful benchmark for nuclear theorists to compare to.

At very-low temperatures and densities, many-body systems of fermions are universally char-
acterized by a momentum-independent interaction, with a strength proportional to the free-space
s-wave scattering length a. Relevant to superfluid pairing is the momentum of fermions at the Fermi
surface, kF , that is related to the number density by ⇢ = N/V = k3F /(3⇡

2). In the presence of a
Fermi surface, one may then expect to develop a perturbation theory organized in powers of the
dimensionless quantity kFa, while accounting for the essential singularity at vanishing coupling due
to the BCS instability. However, as the BCS instability is inherently non-perturbative [23–25], the
formulation of a perturbative EFT description, which by definition is systematically improvable, is
complicated even in the simplest case of a weak finite-range potential [26–29]. In neutron matter
the scattering length is very large, and the densities where such a perturbation theory applies are
not of much physical interest. However, in atomic physics, where the scattering length can be tuned
with Feshbach resonances [30, 31], the dependence of the gap on kFa is essential to understanding
the BCS-BEC crossover [32, 33]. In any case, the simplicity of this universal system offers a useful
theoretical laboratory for the development of systematic methods, and will be the focus of this
work.

In BCS theory (see App. A for a derivation), the superfluid gap is given in terms of the scattering
length by

�BCS =
8

e2
!kF exp

✓
⇡

2kFa

◆
, (1)

where !kF ⌘ k2F /(2M) is the Fermi energy with fermion mass M , and e is Euler’s number. The
effects of particle-hole screening were computed by Gor’kov-Melik-Barkhudarov (GM) in Ref. [34]
leading to the universal suppression,

�GM =
1

(4e)1/3
�BCS = (0.45138 . . .)�BCS . (2)

In addition, further subleading corrections have been sketched out and computed for the induced [35]
p-wave gaps [36–38] but, as far as the authors are aware, a full calculation of the subleading
contributions to the (s-wave) neutron superfluid gap does not exist.

A goal of this paper is to establish an EFT formulation for calculating the superfluid gap in
the case of a momentum-independent potential. In this formulation, the gap is extracted through
a singularity analysis of the in-medium four-point correlation function [39], which is determined
order-by-order in perturbation theory. Using this formulation, the subleading correction to the

+ . . .
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FIG. 2. The connected four-point vertex function �↵�,��(k,k0; 2E) for BCS kinematics to one loop.

B. The Gap at LO

For generic kinematics that do not lead to singularities in the BCS or ZS diagrams, the vertex
function to LO is simply given by the tree diagram,

�↵�,��(k,k
0; 2E) = � g(�↵���� � �↵����) + O(g2) . (14)

For BCS kinematics, it will be shown that p-p loops are no longer suppressed by powers of the
coupling due to the BCS singularity. The vertex function to one loop is given by

�↵�,��(k,k
0; 2E) = (�g + g2⇧pp(E))(�↵���� � �↵����)

� g2
�
⇧ph(k,�k0)�↵���� �⇧ph(k,k

0)�↵����
�
, (15)

where ⇧pp and ⇧ph come from evaluating the loop integrals in the BCS and ZS diagrams respectively;
see Fig. 2. The ⇧ph terms do not contain the BCS singularity, and to this order can be dropped.
Evaluating the BCS diagram gives

⇧pp(E) = �i

Z
d4l

(2⇡)4
G0(�l0,�l)G0(l0 + 2E, l)

= �M

Z
d3l

(2⇡)3
1

2ME � l2 + i✏
+ 2M�

Z
d3l

(2⇡)3
✓(kF � l)

2ME � l2
. (16)

The first term in the second line of Eq. (16) is the same as in vacuum, and is given by Eq. (9).
The second term in the second line of Eq. (16) has a logarithmic divergence at 2E = 2!kF , that is
regulated by the imaginary piece of the energy (i�). This singularity can be extracted through an
integration by parts [45],

2M�
Z

d3l

(2⇡)3
✓(kF � l)

2ME � l2
=

M

2⇡2


�
Z kF

0

dl log
�
2ME � l2

�
� kF log (2ME � k2F )

�
. (17)

The first term is finite for E = !kF , and a perturbatively small � can be expanded in a power series.
This is not the case for the second term, which gives log (iM�). Looking ahead, the solution for the
gap in Eq. (1) reveals that while powers of � are exponentially small in g, log� has an expansion
in g that starts at O(g�1). This implies that one can set E = !kF everywhere except in terms of
the form log (E � !kF ). Combined with the additional factor of g from the vertex, this piece of the
p-p loop integral can formally be taken to be of the same order as the tree level contribution. In
fact, any number of p-p loops enter at the same order, and LO consists of the sum of an infinite
number of diagrams. A key observation, that will simplify higher order calculations, is that the
log� piece of this loop integral occurs when the loop momenta are on-shell and at l = kF , since it
arises from the boundary of the integral.2

2
That the internal lines are on-shell is easiest to see if the c.o.m. energy in the loop is split symmetrically as l0 +E
and �l0 + E. In this case, l0 = 0 when l = kF and the energy of each internal line is E = !kF .

Here consider EFT of contact operators at T=0 
and consider the in-medium 4-point function:

Must get same answer as with BCS equations: Kohn-Luttinger-Ward theorem

4

B. Finite density EFT

The zero-temperature superfluid gap is traditionally computed in the finite-temperature Matsubara
formalism (see App. A) with the zero-temperature limit taken at the end. Here, by contrast,
the zero-temperature Feynman diagram expansion will be used to compute the in-medium four-
point correlation function. That these two methods lead to equivalent physical results is known
as the Kohn-Luttinger-Ward theorem [43, 44], and is discussed at length in the context of the
EFT of contact forces in Ref. [28, 45]. A consequence of working in the zero-temperature EFT
is that the chemical potential, µF , is taken to have its own expansion in the interaction strength
with the leading contribution given by the Fermi energy (see App. B). The relevant Feynman
rules for computing Feynman diagrams in-medium in the EFT at weak coupling can be found in
Refs. [28, 39, 46]. In particular, the interaction vertex can be taken from the Lagrange density in
Eq. (6), and internal lines are assigned propagators

iG0(k0,k)�↵� = i�↵�

✓
✓(k � kF )

k0 � !k + i✏
+

✓(kF � k)

k0 � !k � i✏

◆

= �↵�

✓
i

k0 � !k + i�
� 2⇡�(k0 � !k)✓(kF � k)

◆
, (12)

where ↵ and � are spin indices, and !k = k2/2M . The first line splits the propagator between
particles and holes and the second line splits the propagator between vacuum and in-medium
components [47]. Arrows on fermion lines are used to differentiate particles and holes in in-medium
Feynman diagrams.

III. SUPERFLUID GAP IN PERTURBATION THEORY

A. Basic methodology

In a Fermi gas at zero temperature with attractive interactions, superfluid pairing is present between
particles with momentum k1 and k2 that satisfy k1 = �k2 and k1 = k2 = kF . These momenta
will be referred to as the “BCS kinematics". Pairing is due to the presence of a Fermi surface,
and implies that attractive interactions between particles with BCS kinematics are never “weak".
This leads to the formation of Cooper pairs, characterized by strong correlations between pairs of
particles in momentum space, and an energy gap � between the ground and first excited state of
the Fermi gas.

In many-body perturbation theory, superfluid pairing manifests as a singularity in the 4-point
vertex function �(k,k0; 2E), shown to one loop in Fig. 2. At one loop order there is the Zero
Sound (ZS) diagram that has particle-hole (p-h) intermediate lines, and the BCS diagram that
has particle-particle (p-p) intermediate lines. The strategy for computing � will be to compute
�(k,k0; 2E) to a given order in kFa, with the gap equal to the imaginary part of the pole in total
energy [39, 48, 49] i.e. solves,

⇥
�(k,k0;Re[2E] + i�)

⇤�1
= 0 . (13)

At a practical level, the BCS singularity necessitates the summation of all p-p loops —the so-called
ladder diagrams— and therefore pairing is an inherently non-perturbative phenomenon. Despite
this proliferation of diagrams, perturbation theory can still be used to determine which diagrams are
included at a given order. The power counting used to organize perturbation theory must account
for powers of kFa coming both from the bare interaction and from the BCS singularity. The latter
contribution is subtle to categorize, and will be motivated with an explicit calculation of � to LO.
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Power counting the BCS singularity

2

s-wave gap is found to be

� = �GM

✓
1 +

0.95238(40)

⇡
kFa + O[(kFa)

2]

◆
. (3)

This result was obtained to very high accuracy by using a technique originally developed in the
context of relativistic quantum field theory to numerically evaluate in-medium Feynman diagrams.
See App. C for details and references. As a < 0 (attractive potential), the gap is reduced relative
to �GM, in agreement with the QMC simulations in Ref. [19].

Although the gap is inherently non-perturbative, the logarithm of the gap has a well-defined
expansion in powers of the dimensionless quantity � = 2kFa/⇡ (this quantity is referred to as the
gas parameter in Ref. [39]),

log

✓
�

!kF

◆
=

c�1

�
+ c0 + c1� + . . . (4)

where cn are the coefficients of the terms with �n.1 The result in Eq. (3) gives coefficients of natural
size,

c�1 = 1 , c0 =
7

3
(log 2 � 1) = �0.71599... , c1 = 0.47619(20) . (5)

The basis for the EFT developed in this work is a power counting scheme for collecting the
Feynman diagrams that contribute to log� at a given order in �. The novel feature utilized here
is the explicit tracking of powers of � arising from the BCS singularities in particle-particle loops.
By consistently counting powers of �, it is clear that the prefactor of the exponential in �BCS has
no particular meaning as it arises from an inconsistent treatment of perturbation theory: only part
of the contributions to c0 are taken into account. This has led to confusion in the literature since
the GM suppression relative to the BCS prediction is over 50%, and suggests that particle-hole
screening is an anomalously large effect. In some sense, the GM result is the true leading order
(LO) prediction for the gap, as it is the first order where a quantitative prediction can be made.
The coefficient c�1 only determines the exponential dependence of the gap, and c0 is needed to
set the O(1) prefactor to the exponential. In this paper, working to LO, NLO and NNLO will
correspond to calculating c�1, c0 and c1 respectively.

This paper is organized as follows. Section II reviews the necessary EFT ingredients. The free-
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FIG. 1. Sum of Feynman diagrams contributing to fermion-fermion scattering. The black blob corresponds
to the g interaction from Eq. (6).

II. EFT PRELIMINARIES

A. Free-space EFT

Consider a system of spin-1/2 Fermions in vacuum which interact via two-body contact forces. At
very low energies, the Lagrange density takes the Galilean invariant form
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where the field  †
� creates a fermion of spin � =", # and g is the bare coupling constant. The s-wave

scattering amplitude corresponding to a momentum independent interaction is

T (k) = �4⇡
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h
� 1/a� ik
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, (7)

where k =
p
ME is the on-shell center-of-mass (c.o.m.) momentum and a is the scattering length.

Computing the scattering amplitude in the EFT from the sum of Feynman diagrams shown in
Fig. 1 gives

T (k) = g + g2 I(k) + g3 I(k)2 + . . . =
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where the geometric series has been summed and where the divergent integral
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has been evaluated in dimensional regularization with the PDS scheme [40, 41], where d is the num-
ber of spatial dimensions and µ is the renormalization group (RG) scale. Matching the scattering
amplitudes in Eqs. (7) and (8) gives
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where the renormalized coupling gR has been defined. Note that � = (M kF gR)/(2⇡2). For most
of the calculations in this work it is convenient to work in the MS scheme where µ = 0 and gR = g.
However, the PDS scheme is useful as a consistency check that the theory is renormalizable; i.e., that
all the µ-dependence cancels in physical quantities. In PDS, the bare coupling in the Lagrangian
Eq. (6), runs with the RG in such a way to cancel the UV divergences (µ-dependence) coming from
the loop integrals. That is,

g(µ) =
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=

4⇡a

M

�
1 + aµ � O

⇥
(aµ)2

⇤�
. (11)

In a consistent EFT, observables will be µ-independent at each order in the expansion. This is
verified for the gap calculation to NNLO in App. C.
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scattering amplitude corresponding to a momentum independent interaction is

T (k) = �4⇡
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where k =
p
ME is the on-shell center-of-mass (c.o.m.) momentum and a is the scattering length.

Computing the scattering amplitude in the EFT from the sum of Feynman diagrams shown in
Fig. 1 gives
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where the geometric series has been summed and where the divergent integral
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has been evaluated in dimensional regularization with the PDS scheme [41, 42], where d is the num-
ber of spatial dimensions and µ is the renormalization group (RG) scale. Matching the scattering
amplitudes in Eqs. (7) and (8) gives
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, (10)

where the renormalized coupling gR has been defined. Note that � = (M kF gR)/(2⇡2). For most
of the calculations in this work it is convenient to work in the MS scheme where µ = 0 and gR = g.
However, the PDS scheme is useful as a consistency check that the theory is renormalizable; i.e., that
all the µ-dependence cancels in physical quantities. In PDS, the bare coupling in the Lagrangian
Eq. (6), runs with the RG in such a way to cancel the UV divergences (µ-dependence) coming from
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In a consistent EFT, observables will be µ-independent at each order in the expansion. This is
verified for the gap calculation to NNLO in App. C.
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Abstract

We point out a redundancy in the operator structure of the pionless effec-
tive field theory, EFT(π/), which dramatically simplifies computations. This
redundancy is best exploited by using dibaryon fields as fundamental degrees

of freedom. In turn, this suggests a new power counting scheme which sums
range corrections to all orders. We explore this method with a few simple

observables: the deuteron charge form factor, np → dγ, and Compton scat-
tering from the deuteron. Unlike EFT(π/), the higher dimension operators
involving electroweak gauge fields are not renormalized by the s-wave strong

interactions, and therefore do not scale with inverse powers of the renormal-
ization scale. Thus, naive dimensional analysis of these operators is sufficient

to estimate their contribution to a given process.
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FIG. 1. Sum of Feynman diagrams contributing to fermion-fermion scattering. The black blob corresponds
to the g interaction from Eq. (6).
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where the field  †
� creates a fermion of spin � =", # and g is the bare coupling constant. The s-wave

scattering amplitude corresponding to a momentum independent interaction is
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where k =
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has been evaluated in dimensional regularization with the PDS scheme [40, 41], where d is the num-
ber of spatial dimensions and µ is the renormalization group (RG) scale. Matching the scattering
amplitudes in Eqs. (7) and (8) gives
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, (10)

where the renormalized coupling gR has been defined. Note that � = (M kF gR)/(2⇡2). For most
of the calculations in this work it is convenient to work in the MS scheme where µ = 0 and gR = g.
However, the PDS scheme is useful as a consistency check that the theory is renormalizable; i.e., that
all the µ-dependence cancels in physical quantities. In PDS, the bare coupling in the Lagrangian
Eq. (6), runs with the RG in such a way to cancel the UV divergences (µ-dependence) coming from
the loop integrals. That is,
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In a consistent EFT, observables will be µ-independent at each order in the expansion. This is
verified for the gap calculation to NNLO in App. C.
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of the calculations in this work it is convenient to work in the MS scheme where µ = 0 and gR = g.
However, the PDS scheme is useful as a consistency check that the theory is renormalizable; i.e., that
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We point out a redundancy in the operator structure of the pionless effec-
tive field theory, EFT(π/), which dramatically simplifies computations. This
redundancy is best exploited by using dibaryon fields as fundamental degrees

of freedom. In turn, this suggests a new power counting scheme which sums
range corrections to all orders. We explore this method with a few simple

observables: the deuteron charge form factor, np → dγ, and Compton scat-
tering from the deuteron. Unlike EFT(π/), the higher dimension operators
involving electroweak gauge fields are not renormalized by the s-wave strong

interactions, and therefore do not scale with inverse powers of the renormal-
ization scale. Thus, naive dimensional analysis of these operators is sufficient

to estimate their contribution to a given process.
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to the g interaction from Eq. (6).
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where the field  †
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where the renormalized coupling gR has been defined. Note that � = (M kF gR)/(2⇡2). For most
of the calculations in this work it is convenient to work in the MS scheme where µ = 0 and gR = g.
However, the PDS scheme is useful as a consistency check that the theory is renormalizable; i.e., that
all the µ-dependence cancels in physical quantities. In PDS, the bare coupling in the Lagrangian
Eq. (6), runs with the RG in such a way to cancel the UV divergences (µ-dependence) coming from
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In a consistent EFT, observables will be µ-independent at each order in the expansion. This is
verified for the gap calculation to NNLO in App. C.
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FIG. 1. Sum of Feynman diagrams contributing to fermion-fermion scattering. The black blob corresponds
to the g interaction from Eq. (6).

II. EFT PRELIMINARIES

A. Free-space EFT

Consider a system of spin-1/2 Fermions in vacuum which interact via two-body contact forces. At
very low energies, the Lagrange density takes the Galilean invariant form
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where the field  †
� creates a fermion of spin � =", # and g is the bare coupling constant. The s-wave

scattering amplitude corresponding to a momentum independent interaction is
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where k =
p
ME is the on-shell center-of-mass (c.o.m.) momentum and a is the scattering length.

Computing the scattering amplitude in the EFT from the sum of Feynman diagrams shown in
Fig. 1 gives
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has been evaluated in dimensional regularization with the PDS scheme [41, 42], where d is the num-
ber of spatial dimensions and µ is the renormalization group (RG) scale. Matching the scattering
amplitudes in Eqs. (7) and (8) gives
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where the renormalized coupling gR has been defined. Note that � = (M kF gR)/(2⇡2). For most
of the calculations in this work it is convenient to work in the MS scheme where µ = 0 and gR = g.
However, the PDS scheme is useful as a consistency check that the theory is renormalizable; i.e., that
all the µ-dependence cancels in physical quantities. In PDS, the bare coupling in the Lagrangian
Eq. (6), runs with the RG in such a way to cancel the UV divergences (µ-dependence) coming from
the loop integrals. That is,
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In a consistent EFT, observables will be µ-independent at each order in the expansion. This is
verified for the gap calculation to NNLO in App. C.
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FIG. 3. Diagrammatic expansion of the p-p loops in powers of g. The red dashed line represents the O(g�1)
contribution that has loop four-momentum at the Fermi surface and on-shell.

The p-p loops (ladder diagrams) do not mix partial waves or spin projections, and can be
summed as a geometric series,

�↵�,��(k,k
0; 2E) = � g

1 + g⇧pp(E)
(�↵���� � �↵����) + O(g2) . (18)

For future convenience, the whole ⇧pp(E) has been resummed, but, to this order, only the log�
piece should be kept. Solving Eq. (13) gives

0 = 1� g
MkF
2⇡2

log�+O(g) , (19)

with solution

�LO ⇠ exp

✓
⇡

2kFa

◆
, (20)

where g = 4⇡a/M has been used. Crucially, the prefactor of the exponential cannot be determined
at this order. The exponential dependence agrees with Eq. (2), and the resummation of the p-p
loops predicated on log� effects beginning at O(g�1) is consistent.

C. Power Counting

The LO calculation presented in the previous section demonstrated that in a consistent power-
counting scheme, p-p loops are assigned powers of g. To make the power counting manifest, it is
beneficial to expand ⇧pp(E) as,

⇧pp(E) = ⇧(g�1
)

pp + ⇧(g0)
pp + ⇧(g)

pp + . . . , (21)

where the E dependence on the RHS has been dropped for simplicity. This is shown diagram-
matically in Fig. 3. With this identification, it is possible to collect the Feynman diagrams that
contribute to the vertex function � at a given order in g. A key feature is that any sub-diagram
connected to ⇧(g�1

)

pp can be evaluated on-shell and at the Fermi surface, since these are the kine-
matics that give rise to log�. This will simplify the NLO and NNLO calculations presented below.
The diagrams that contribute to LO and NLO are given in Fig. 5, with sub-diagrams defined in
Fig. 4.3 For the NNLO calculation it is convenient to treat LO, NLO and NNLO together as shown
in Fig. 6. A breakdown of the NNLO diagrams is given in Figs. 8 and 9.

3
Note that the grey box with a dashed red line defined in Fig. 4 is counted as O(g0) on external lines but O(g�1)
on internal lines.
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FIG. 1. Sum of Feynman diagrams contributing to fermion-fermion scattering. The black blob corresponds
to the g interaction from Eq. (6).
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of the calculations in this work it is convenient to work in the MS scheme where µ = 0 and gR = g.
However, the PDS scheme is useful as a consistency check that the theory is renormalizable; i.e., that
all the µ-dependence cancels in physical quantities. In PDS, the bare coupling in the Lagrangian
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In a consistent EFT, observables will be µ-independent at each order in the expansion. This is
verified for the gap calculation to NNLO in App. C.
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FIG. 1. Sum of Feynman diagrams contributing to fermion-fermion scattering. The black blob corresponds
to the g interaction from Eq. (6).

II. EFT PRELIMINARIES

A. Free-space EFT

Consider a system of spin-1/2 Fermions in vacuum which interact via two-body contact forces. At
very low energies, the Lagrange density takes the Galilean invariant form

L =
X
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where the field  †
� creates a fermion of spin � =", # and g is the bare coupling constant. The s-wave

scattering amplitude corresponding to a momentum independent interaction is

T (k) = �4⇡

M

h
� 1/a� ik

i�1

, (7)

where k =
p
ME is the on-shell center-of-mass (c.o.m.) momentum and a is the scattering length.

Computing the scattering amplitude in the EFT from the sum of Feynman diagrams shown in
Fig. 1 gives

T (k) = g + g2 I(k) + g3 I(k)2 + . . . =

✓
1

g
� I(k)

◆�1

, (8)

where the geometric series has been summed and where the divergent integral
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(2⇡)d
1
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has been evaluated in dimensional regularization with the PDS scheme [41, 42], where d is the num-
ber of spatial dimensions and µ is the renormalization group (RG) scale. Matching the scattering
amplitudes in Eqs. (7) and (8) gives

1

a
=

4⇡

Mg
+ µ ⌘ 4⇡

MgR
, (10)

where the renormalized coupling gR has been defined. Note that � = (M kF gR)/(2⇡2). For most
of the calculations in this work it is convenient to work in the MS scheme where µ = 0 and gR = g.
However, the PDS scheme is useful as a consistency check that the theory is renormalizable; i.e., that
all the µ-dependence cancels in physical quantities. In PDS, the bare coupling in the Lagrangian
Eq. (6), runs with the RG in such a way to cancel the UV divergences (µ-dependence) coming from
the loop integrals. That is,

g(µ) =
4⇡a

M

1

1� aµ
=
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M

�
1 + aµ � O
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(aµ)2
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In a consistent EFT, observables will be µ-independent at each order in the expansion. This is
verified for the gap calculation to NNLO in App. C.
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FIG. 3. Diagrammatic expansion of the p-p loops in powers of g. The red dashed line represents the O(g�1)
contribution that has loop four-momentum at the Fermi surface and on-shell.

The p-p loops (ladder diagrams) do not mix partial waves or spin projections, and can be
summed as a geometric series,

�↵�,��(k,k
0; 2E) = � g

1 + g⇧pp(E)
(�↵���� � �↵����) + O(g2) . (18)

For future convenience, the whole ⇧pp(E) has been resummed, but, to this order, only the log�
piece should be kept. Solving Eq. (13) gives

0 = 1� g
MkF
2⇡2

log�+O(g) , (19)

with solution

�LO ⇠ exp

✓
⇡

2kFa

◆
, (20)

where g = 4⇡a/M has been used. Crucially, the prefactor of the exponential cannot be determined
at this order. The exponential dependence agrees with Eq. (2), and the resummation of the p-p
loops predicated on log� effects beginning at O(g�1) is consistent.

C. Power Counting

The LO calculation presented in the previous section demonstrated that in a consistent power-
counting scheme, p-p loops are assigned powers of g. To make the power counting manifest, it is
beneficial to expand ⇧pp(E) as,

⇧pp(E) = ⇧(g�1
)

pp + ⇧(g0)
pp + ⇧(g)

pp + . . . , (21)

where the E dependence on the RHS has been dropped for simplicity. This is shown diagram-
matically in Fig. 3. With this identification, it is possible to collect the Feynman diagrams that
contribute to the vertex function � at a given order in g. A key feature is that any sub-diagram
connected to ⇧(g�1

)

pp can be evaluated on-shell and at the Fermi surface, since these are the kine-
matics that give rise to log�. This will simplify the NLO and NNLO calculations presented below.
The diagrams that contribute to LO and NLO are given in Fig. 5, with sub-diagrams defined in
Fig. 4.3 For the NNLO calculation it is convenient to treat LO, NLO and NNLO together as shown
in Fig. 6. A breakdown of the NNLO diagrams is given in Figs. 8 and 9.

3
Note that the grey box with a dashed red line defined in Fig. 4 is counted as O(g0) on external lines but O(g�1)
on internal lines.
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FIG. 3. Diagrammatic expansion of the p-p loops in powers of g. The red dashed line represents the O(g�1)
contribution that has loop four-momentum at the Fermi surface and on-shell.

The p-p loops (ladder diagrams) do not mix partial waves or spin projections, and can be
summed as a geometric series,

�↵�,��(k,k
0; 2E) = � g

1 + g⇧pp(E)
(�↵���� � �↵����) + O(g2) . (18)

For future convenience, the whole ⇧pp(E) has been resummed, but, to this order, only the log�
piece should be kept. Solving Eq. (13) gives

0 = 1� g
MkF
2⇡2

log�+O(g) , (19)

with solution

�LO ⇠ exp

✓
⇡

2kFa

◆
, (20)

where g = 4⇡a/M has been used. Crucially, the prefactor of the exponential cannot be determined
at this order. The exponential dependence agrees with Eq. (2), and the resummation of the p-p
loops predicated on log� effects beginning at O(g�1) is consistent.

C. Power Counting

The LO calculation presented in the previous section demonstrated that in a consistent power-
counting scheme, p-p loops are assigned powers of g. To make the power counting manifest, it is
beneficial to expand ⇧pp(E) as,

⇧pp(E) = ⇧(g�1
)

pp + ⇧(g0)
pp + ⇧(g)

pp + . . . , (21)

where the E dependence on the RHS has been dropped for simplicity. This is shown diagram-
matically in Fig. 3. With this identification, it is possible to collect the Feynman diagrams that
contribute to the vertex function � at a given order in g. A key feature is that any sub-diagram
connected to ⇧(g�1

)

pp can be evaluated on-shell and at the Fermi surface, since these are the kine-
matics that give rise to log�. This will simplify the NLO and NNLO calculations presented below.
The diagrams that contribute to LO and NLO are given in Fig. 5, with sub-diagrams defined in
Fig. 4.3 For the NNLO calculation it is convenient to treat LO, NLO and NNLO together as shown
in Fig. 6. A breakdown of the NNLO diagrams is given in Figs. 8 and 9.

3
Note that the grey box with a dashed red line defined in Fig. 4 is counted as O(g0) on external lines but O(g�1)
on internal lines.
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FIG. 2. The connected four-point vertex function �↵�,��(k,k0; 2E) for BCS kinematics to one loop.

B. The Gap at LO

For generic kinematics that do not lead to singularities in the BCS or ZS diagrams, the vertex
function to LO is simply given by the tree diagram,

�↵�,��(k,k
0; 2E) = � g(�↵���� � �↵����) + O(g2) . (14)

For BCS kinematics, it will be shown that p-p loops are no longer suppressed by powers of the
coupling due to the BCS singularity. The vertex function to one loop is given by

�↵�,��(k,k
0; 2E) = (�g + g2⇧pp(E))(�↵���� � �↵����)

� g2
�
⇧ph(k,�k0)�↵���� �⇧ph(k,k

0)�↵����
�
, (15)

where ⇧pp and ⇧ph come from evaluating the loop integrals in the BCS and ZS diagrams respectively;
see Fig. 2. The ⇧ph terms do not contain the BCS singularity, and to this order can be dropped.
Evaluating the BCS diagram gives

⇧pp(E) = �i

Z
d4l

(2⇡)4
G0(�l0,�l)G0(l0 + 2E, l)

= �M

Z
d3l

(2⇡)3
1

2ME � l2 + i✏
+ 2M�

Z
d3l

(2⇡)3
✓(kF � l)

2ME � l2
. (16)

The first term in the second line of Eq. (16) is the same as in vacuum, and is given by Eq. (9).
The second term in the second line of Eq. (16) has a logarithmic divergence at 2E = 2!kF , that is
regulated by the imaginary piece of the energy (i�). This singularity can be extracted through an
integration by parts [45],

2M�
Z

d3l

(2⇡)3
✓(kF � l)

2ME � l2
=

M

2⇡2


�
Z kF

0

dl log
�
2ME � l2

�
� kF log (2ME � k2F )

�
. (17)

The first term is finite for E = !kF , and a perturbatively small � can be expanded in a power series.
This is not the case for the second term, which gives log (iM�). Looking ahead, the solution for the
gap in Eq. (1) reveals that while powers of � are exponentially small in g, log� has an expansion
in g that starts at O(g�1). This implies that one can set E = !kF everywhere except in terms of
the form log (E � !kF ). Combined with the additional factor of g from the vertex, this piece of the
p-p loop integral can formally be taken to be of the same order as the tree level contribution. In
fact, any number of p-p loops enter at the same order, and LO consists of the sum of an infinite
number of diagrams. A key observation, that will simplify higher order calculations, is that the
log� piece of this loop integral occurs when the loop momenta are on-shell and at l = kF , since it
arises from the boundary of the integral.2

2
That the internal lines are on-shell is easiest to see if the c.o.m. energy in the loop is split symmetrically as l0 +E
and �l0 + E. In this case, l0 = 0 when l = kF and the energy of each internal line is E = !kF .
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FIG. 4. Resummed classes of diagrams. The grey blob is defined in Fig. 1, and a dashed red line corresponds
to evaluating the kinematics on-shell and at the Fermi surface. A dashed line running through a p-p loop
represents the leading O(g�1) contribution.

FIG. 5. The diagrams that contribute to the vertex function for BCS kinematics at LO and NLO.

D. The Gap at NLO

At NLO there are two new diagrams contributing to the vertex function, as shown in Fig. 5.
Diagram 2a) includes a single insertion of ⇧(g0)

pp , and summing both LO and NLO gives,

�1a + �2a = � g

1 + g⇧(g�1)
pp

 
1� g⇧(g0)

pp

1 + g⇧(g�1)
pp

!
. (22)

Diagram 2b) involves an infinite sum of p-p loops, followed by a p-h (ZS) bubble, followed by
another infinite sum of p-p loops. At this order, only ⇧(g�1

)

pp contributes to each p-p loop, and
therefore the p-h bubble can be evaluated with external legs on-shell and at the Fermi surface.
This results in,

�2b =
�V (g2)

⇣
1 + g⇧(g�1)

pp

⌘2 , (23)

where V (gn) is the s-wave component of the two-particle irreducible (2PI) potential that scales as
gn, and is evaluated for external legs on-shell and at the Fermi surface.

The full 2PI potential is determined from the sum of all 2PI diagrams and contains projections
onto all partial waves. The O(g) contribution comes from the tree diagram, and the O(g2) contri-
bution comes from the ZS diagram in Fig. 2. Evaluating these diagrams in the c.o.m. frame one
finds (note the opposite sign relative to �),

V (g2)
↵�,��(k,k

0;!) = g2
�
⇧ph(k,�k0;!)�↵���� �⇧ph(k,k

0;!)�↵����
�
, (24)
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where g = 4⇡a/M has been used. Crucially, the prefactor of the exponential cannot be determined
at this order. The exponential dependence agrees with Eq. (2), and the resummation of the p-p
loops predicated on log� effects beginning at O(g�1) is consistent.

C. Power Counting

The LO calculation presented in the previous section demonstrated that in a consistent power-
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contribute to the vertex function � at a given order in g. A key feature is that any sub-diagram
connected to ⇧(g�1

)

pp can be evaluated on-shell and at the Fermi surface, since these are the kine-
matics that give rise to log�. This will simplify the NLO and NNLO calculations presented below.
The diagrams that contribute to LO and NLO are given in Fig. 5, with sub-diagrams defined in
Fig. 4.3 For the NNLO calculation it is convenient to treat LO, NLO and NNLO together as shown
in Fig. 6. A breakdown of the NNLO diagrams is given in Figs. 8 and 9.

3
Note that the grey box with a dashed red line defined in Fig. 4 is counted as O(g0) on external lines but O(g�1)
on internal lines.

6

FIG. 3. Diagrammatic expansion of the p-p loops in powers of g. The red dashed line represents the O(g�1)
contribution that has loop four-momentum at the Fermi surface and on-shell.

The p-p loops (ladder diagrams) do not mix partial waves or spin projections, and can be
summed as a geometric series,

�↵�,��(k,k
0; 2E) = � g

1 + g⇧pp(E)
(�↵���� � �↵����) + O(g2) . (18)

For future convenience, the whole ⇧pp(E) has been resummed, but, to this order, only the log�
piece should be kept. Solving Eq. (13) gives

0 = 1� g
MkF
2⇡2

log�+O(g) , (19)

with solution

�LO ⇠ exp

✓
⇡

2kFa

◆
, (20)

where g = 4⇡a/M has been used. Crucially, the prefactor of the exponential cannot be determined
at this order. The exponential dependence agrees with Eq. (2), and the resummation of the p-p
loops predicated on log� effects beginning at O(g�1) is consistent.

C. Power Counting

The LO calculation presented in the previous section demonstrated that in a consistent power-
counting scheme, p-p loops are assigned powers of g. To make the power counting manifest, it is
beneficial to expand ⇧pp(E) as,

⇧pp(E) = ⇧(g�1
)

pp + ⇧(g0)
pp + ⇧(g)

pp + . . . , (21)

where the E dependence on the RHS has been dropped for simplicity. This is shown diagram-
matically in Fig. 3. With this identification, it is possible to collect the Feynman diagrams that
contribute to the vertex function � at a given order in g. A key feature is that any sub-diagram
connected to ⇧(g�1

)

pp can be evaluated on-shell and at the Fermi surface, since these are the kine-
matics that give rise to log�. This will simplify the NLO and NNLO calculations presented below.
The diagrams that contribute to LO and NLO are given in Fig. 5, with sub-diagrams defined in
Fig. 4.3 For the NNLO calculation it is convenient to treat LO, NLO and NNLO together as shown
in Fig. 6. A breakdown of the NNLO diagrams is given in Figs. 8 and 9.

3
Note that the grey box with a dashed red line defined in Fig. 4 is counted as O(g0) on external lines but O(g�1)
on internal lines.

prefactor 
undetermined at 

this order!



recovering Gor’kov,Melik-Barkhudarov effectNLO:

7

FIG. 4. Resummed classes of diagrams. The grey blob is defined in Fig. 1, and a dashed red line corresponds
to evaluating the kinematics on-shell and at the Fermi surface. A dashed line running through a p-p loop
represents the leading O(g�1) contribution.

FIG. 5. The diagrams that contribute to the vertex function for BCS kinematics at LO and NLO.

D. The Gap at NLO

At NLO there are two new diagrams contributing to the vertex function, as shown in Fig. 5.
Diagram 2a) includes a single insertion of ⇧(g0)

pp , and summing both LO and NLO gives,

�1a + �2a = � g

1 + g⇧(g�1)
pp

 
1� g⇧(g0)

pp

1 + g⇧(g�1)
pp

!
. (22)

Diagram 2b) involves an infinite sum of p-p loops, followed by a p-h (ZS) bubble, followed by
another infinite sum of p-p loops. At this order, only ⇧(g�1

)

pp contributes to each p-p loop, and
therefore the p-h bubble can be evaluated with external legs on-shell and at the Fermi surface.
This results in,

�2b =
�V (g2)

⇣
1 + g⇧(g�1)

pp

⌘2 , (23)

where V (gn) is the s-wave component of the two-particle irreducible (2PI) potential that scales as
gn, and is evaluated for external legs on-shell and at the Fermi surface.

The full 2PI potential is determined from the sum of all 2PI diagrams and contains projections
onto all partial waves. The O(g) contribution comes from the tree diagram, and the O(g2) contri-
bution comes from the ZS diagram in Fig. 2. Evaluating these diagrams in the c.o.m. frame one
finds (note the opposite sign relative to �),

V (g2)
↵�,��(k,k

0;!) = g2
�
⇧ph(k,�k0;!)�↵���� �⇧ph(k,k

0;!)�↵����
�
, (24)
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where

⇧ph(k,k
0;!) = i

Z
d4l

(2⇡)4
⇥
G0(l0, l)G0(l0 + !, l+ k� k0)

⇤

!=0
= �2M

Z
d3l

(2⇡)3
✓(kF � l)

(l� k) · (k� k0)
, (25)

with ! = k0 � k0
0

the energy transfer. Relevant for V (g2) are kinematics with k = k0 = kF and
! = 0 giving,

⇧ph(q) =
MkF
4⇡2

✓
1 +

4� q2

4q
log

����
2 + q

2� q

����

◆
, (26)

where q = |k� k0|/kF =
p
2� 2 cos ✓ and ✓ is the angle between k and k0.4 The potential can now

be expanded onto partial waves as

V↵�,��(✓) =

8
<

:

P
l(2l + 1)Pl(✓)Vl(�↵���� � �↵����) l even ,

P
l(2l + 1)Pl(✓)Vl(�↵���� + �↵����) l odd ,

(27)

where the Vl are obtained by integrating against the relevant Legendre polynomial Pl(✓). Projecting
onto the s-wave results in [36, 49]

V (g2) =
g2

2

Z
2

0

dq q⇧ph(q) =
Mg2kF
8⇡2

4

3
(1 + 2 log 2) . (28)

Adding together Eq. (22) and Eq. (23) gives the NLO gap equation,

0 = [�1a + �2a + �2b]
�1

= 1 + g
⇣
⇧(g�1

)

pp +⇧(g0)
pp

⌘
� V (g2)

g
+ O(g2)

= 1 + �


log

✓
8!kF

e2�

◆
� 1

3
(1 + 2 log 2)

�
, (29)

where the quantity

g
⇣
⇧(g�1

)

pp +⇧(g0)
pp

⌘
= � log

✓
8!kF

e2�

◆
, (30)

has been determined from the integral in Eq. (16) using the MS scheme. Solving for the gap recovers
the GM result [34],

�NLO = �GM =
8!kF

e2(4e)1/3
exp

✓
⇡

2kFa

◆
. (31)

4
This depends non-analytically on cos ✓, and therefore possesses all partial waves. This is true even for the

momentum-independent s-wave potential used in this work, and the attractive potential induced in higher partial

waves leads to the Kohn-Luttinger effect [35] for a > 0.
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FIG. 8. New diagrams contributing to the vertex function for the NNLO determination of the gap.

The pole in energy is now at E = µF + i�
2
. Inserting this gives

⇧pp(E) =
iM

4⇡
kF +

M

2⇡2

Z kF

0

dl log
�
k2F � l2

�
� kF log (iM�)

�
+ O(�)

=
MkF
2⇡2


2(log 2� 1) � log

✓
�

2!kF

◆�
, (B4)

in agreement with Eq. (30). Therefore, the gap gets its “units" from !kF , not µF , and to NNLO it
is consistent to ignore effects coming from µF � !kF 6= 0 as has been done in the main text.

It is instructive to consider the more general case of a propagator with the dispersion relation
left arbitrary,

G(k0,k) =
✓(k � kF )

k0 � "(k) + i✏
+

✓(kF � k)

k0 � "(k)� i✏
. (B5)

Relevant to the “units" of the gap is the in-medium part of ⇧pp(E),

�
Z

d3l

(2⇡)3
✓(kF � l)

E � "(l)
=

1

2⇡2
�
Z kF

0

dl l2
1

E � "(kF )� (l � kF )vF +O[(l � kF )2]

= � 1

4⇡2v3F


kF vF (2E � 2"(kF ) + 3kF vF ) + 2(E � "(kF ) + kF vF )

2 log

✓
"(kF )� E

E � "(kF ) + kF vF

◆�

E!"(kF )+i�/2
= � k2F

4⇡2vF


3 + 2 log

✓
�i�

2kF vF

◆�
+O(�) , (B6)

where vF = d
dk"(k)

��
kF

is the velocity of quasi-particles at the Fermi surface. The third line has
been evaluated at the pole E = "(kF ) + i�/2. This shows that the “units" of the gap come from
vFkF , and are therefore unaffected by a constant energy shift to "(k), i.e. by the chemical potential
µF .

Appendix C: Details of the NNLO Calculation

The diagrams that contribute to the NNLO gap are shown in Fig. 6. For completeness, the new
diagrams at this order are explicitly given in Fig. 8. It is straightforward to evaluate diagram 3a):
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FIG. 9. Diagrams contributing to the 2PI potential at O(g3).

⇧(a)
ppph(k,k

0) =

Z
d4l

(2⇡)4

Z
d4l0

(2⇡)4
G0(E + l0, l)G0(l

0
0 � l0, l

0 � l)G0(l
0
0, l

0 � k)G0(l
0
0, l

0 � k0) , (C6)

⇧(b)
phph(k,k

0) =

Z
d4l

(2⇡)4

Z
d4l0

(2⇡)4
G0(E + l0 � l00, l� l0 + k0 + k)G0(l0, l)

⇥G0(l
0
0, l

0 � k0)G0(l
0
0, l

0 � k) , (C7)

⇧(e)
phph(k,k

0) =

Z
d4l

(2⇡)4

Z
d4l0

(2⇡)4
G0(l0, l+ k� k0)G0(l0, l)G0(l

0
0, l

0 + k� k0)G0(l
0
0, l

0)

= �
⇥
⇧ph(k,k

0; 0)
⇤2

. (C8)

The functional dependence on k0 = k0
0

has been omitted as both energies are set to !kF . Putting
these together, the O(g3) contribution to the full 2PI potential is

V (g3)
↵�,��(k,k

0) =

g3
⇢
�↵����

h
⇧(a)

ppph(k,k
0) +⇧(a)

ppph(�k,�k0)
i

� �↵����
h
⇧(a)

ppph(k,�k0) +⇧(a)
ppph(�k,k0)

i

+ �↵����
h
⇧(b)

phph(k,k
0) +⇧(b)

phph(�k,�k0)
i

� �↵����
h
⇧(b)

phph(k,�k0) +⇧(b)
phph(�k,k0)

i

+ (�↵���� � �↵����)
�
[⇧ph(k,k

0; 0)]2 + [⇧ph(k,�k0; 0)]2
��

= g3
⇢
2�↵����⇧

(a)
ppph(k,k

0)� 2�↵����⇧
(a)
ppph(k,�k0) + 2�↵����⇧

(b)
phph(k,k

0)� 2�↵����⇧
(b)
phph(k,�k0)

+ (�↵���� � �↵����)
�
[⇧ph(k,k

0; 0)]2 + [⇧ph(k,�k0; 0)]2
��

s-wave
= 2g3 (�↵���� � �↵����)

⇣
[⇧ph(k,k

0; 0)]2 � ⇧(a)
ppph(k,k

0) + ⇧(b)
phph(k,k

0)
⌘

, (C9)

where the third equality has used the fact that the s-wave projection is invariant under k0 ! �k0.
The spin factors are determined from the dotted-line decomposition shown in Fig. 10.

To determine V (g3) the potential has to be projected onto the s-wave. For numerical evaluation
it is convenient to do this by fixing k = kF ẑ and integrating over k0 in the x-z plane i.e. k0 =

NNLO

+
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FIG. 6. The diagrams that contribute to the vertex function for BCS kinematics through NNLO. The “+ 4
diagrams" corresponds to the 4 other diagrams contributing to the NNLO two-particle-irreducible potential
shown in Fig. 9. At this order there are also corrections to the propagator, which affect 3a), and are not
explicitly shown.

E. The Gap at NNLO

For the NNLO calculation it is convenient to treat LO, NLO and NNLO together. There are five
types of diagrams that contribute to the vertex function, as shown in Fig. 6. The evaluation of the
diagrams �3a,b,c,d,e, is treated in App. C, and the NNLO gap equation is
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⇧(g0)

pp V (g2)
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accounts for the effects of V (g2) evaluated for kinematics away from the Fermi
surface. The uncertainties are due to Monte Carlo integration.

At this order, it is also necessary to consider modifications to the propagator, i.e. the self energy.5
These effects can be parameterized by an effective mass M? and wavefunction renormalization Z
given by [39]

M?

M
= 1 + �2

2

15
(7 log 2� 1) + O(�3) , Z = 1� �2 log 2 + O(�3) . (33)

Taking this into account, and solving for the gap, gives
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For an attractive interaction (a < 0) the gap at NNLO is reduced relative to NLO. In neutron-
neutron scattering, the scattering length is a�1 ⇡ �10.7MeV [50], and perturbation theory is
expected to break down around kF ⇡ 17MeV.

5
The effects of the chemical potential shifted away from !kF do not change the NNLO calculation as shown in

App. B.
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FIG. 9. Diagrams contributing to the 2PI potential at O(g3).
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The functional dependence on k0 = k0
0

has been omitted as both energies are set to !kF . Putting
these together, the O(g3) contribution to the full 2PI potential is
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where the third equality has used the fact that the s-wave projection is invariant under k0 ! �k0.
The spin factors are determined from the dotted-line decomposition shown in Fig. 10.

To determine V (g3) the potential has to be projected onto the s-wave. For numerical evaluation
it is convenient to do this by fixing k = kF ẑ and integrating over k0 in the x-z plane i.e. k0 =
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FIG. 10. Spin contractions for V (g3).
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where the integral in curly braces is evaluated with Monte Carlo integration.
To verify renormalizability, it can be shown that all µ-dependence cancels at this order. The
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where the PDS coupling has been expanded in powers of (aµ) using Eq. (11). This µ-dependence
must cancel in physical quantities, for example in the NNLO gap equation, Eq. (32). Only the sumh
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removes all µ-dependence from the NNLO gap equation.
Next is the evaluation of ⇧(b)
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This expression has no non-integrable singularities, and the contribution to the s-wave potential
can be directly computed using Eq. (C10).

As a check, the potential can be projected onto the p-wave, and compared to Eq. (18) in Ref. [40].
The p-wave potential is
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contribute for odd partial waves, and that k0 ! �k0 causes a change of sign (and hence no minus
in front of ⇧(a)).

2. Computing �3e

Determining the NNLO gap requires computing diagram 3e) in Fig. 6,
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This expression has no non-integrable singularities, and the contribution to the s-wave potential
can be directly computed using Eq. (C10).

As a check, the potential can be projected onto the p-wave, and compared to Eq. (18) in Ref. [40].
The p-wave potential is
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contribute for odd partial waves, and that k0 ! �k0 causes a change of sign (and hence no minus
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where the integral in curly braces is evaluated with Monte Carlo integration.
To verify renormalizability, it can be shown that all µ-dependence cancels at this order. The
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where the PDS coupling has been expanded in powers of (aµ) using Eq. (11). This µ-dependence
must cancel in physical quantities, for example in the NNLO gap equation, Eq. (32). Only the sumh
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removes all µ-dependence from the NNLO gap equation.
Next is the evaluation of ⇧(b)
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This expression has no non-integrable singularities, and the contribution to the s-wave potential
can be directly computed using Eq. (C10).

As a check, the potential can be projected onto the p-wave, and compared to Eq. (18) in Ref. [40].
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FIG. 6. The diagrams that contribute to the vertex function for BCS kinematics through NNLO. The “+ 4
diagrams" corresponds to the 4 other diagrams contributing to the NNLO two-particle-irreducible potential
shown in Fig. 9. At this order there are also corrections to the propagator, which affect 3a), and are not
explicitly shown.

E. The Gap at NNLO

For the NNLO calculation it is convenient to treat LO, NLO and NNLO together. There are five
types of diagrams that contribute to the vertex function, as shown in Fig. 6. The evaluation of the
diagrams �3a,b,c,d,e, is treated in App. C, and the NNLO gap equation is
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accounts for the effects of V (g2) evaluated for kinematics away from the Fermi
surface. The uncertainties are due to Monte Carlo integration.

At this order, it is also necessary to consider modifications to the propagator, i.e. the self energy.5
These effects can be parameterized by an effective mass M? and wavefunction renormalization Z
given by [39]
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M
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Taking this into account, and solving for the gap, gives
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For an attractive interaction (a < 0) the gap at NNLO is reduced relative to NLO. In neutron-
neutron scattering, the scattering length is a�1 ⇡ �10.7MeV [50], and perturbation theory is
expected to break down around kF ⇡ 17MeV.

5
The effects of the chemical potential shifted away from !kF do not change the NNLO calculation as shown in

App. B.
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(Gezerlis,Carlson)

1

I. INTRODUCTION

Dense systems of cold neutrons, as found in, for example, neutron stars and the outer shells of
certain heavy-nuclei [1, 2], are believed to be in a superfluid phase. An important quantity that
characterizes this phase is the superfluid energy gap �, that separates the ground and first excited
states in the many-body system. Quantitative knowledge of the gap is needed to understand
properties of neutron stars, such as their cooling rates [3] and spin frequency [4]. For recent reviews
on the role of superfluidity in neutrons star physics see Refs. [5–8]. Despite considerable effort by
nuclear theorists to compute the superfluid gap in neutron matter, there is little consensus among
different techniques [9–17]. This is likely due to a series of independent complications, including
the smallness of the gap energy relative to the scale of the strong interaction, the absence of a clear
hierarchy of scales at moderate densities, and the intrinsic complexity of the in-medium interaction.
In parallel, there have also been ab initio approaches that determine the gap using Quantum Monte
Carlo (QMC) simulations [18–22]. In principle, these QMC simulations do not rely on uncontrolled
approximations, and provide a powerful benchmark for nuclear theorists to compare to.

At very-low temperatures and densities, many-body systems of fermions are universally char-
acterized by a momentum-independent interaction, with a strength proportional to the free-space
s-wave scattering length a. Relevant to superfluid pairing is the momentum of fermions at the Fermi
surface, kF , that is related to the number density by ⇢ = N/V = k3F /(3⇡

2). In the presence of a
Fermi surface, one may then expect to develop a perturbation theory organized in powers of the
dimensionless quantity kFa, while accounting for the essential singularity at vanishing coupling due
to the BCS instability. However, as the BCS instability is inherently non-perturbative [23–25], the
formulation of a perturbative EFT description, which by definition is systematically improvable, is
complicated even in the simplest case of a weak finite-range potential [26–29]. In neutron matter
the scattering length is very large, and the densities where such a perturbation theory applies are
not of much physical interest. However, in atomic physics, where the scattering length can be tuned
with Feshbach resonances [30, 31], the dependence of the gap on kFa is essential to understanding
the BCS-BEC crossover [32, 33]. In any case, the simplicity of this universal system offers a useful
theoretical laboratory for the development of systematic methods, and will be the focus of this
work.

In BCS theory (see App. A for a derivation), the superfluid gap is given in terms of the scattering
length by

�BCS =
8

e2
!kF exp

✓
⇡

2kFa

◆
, (1)

where !kF ⌘ k2F /(2M) is the Fermi energy with fermion mass M , and e is Euler’s number. The
effects of particle-hole screening were computed by Gor’kov-Melik-Barkhudarov (GM) in Ref. [34]
leading to the universal suppression,

�GM =
1

(4e)1/3
�BCS = (0.45138 . . .)�BCS . (2)

In addition, further subleading corrections have been sketched out and computed for the induced [35]
p-wave gaps [36–38] but, as far as the authors are aware, a full calculation of the subleading
contributions to the (s-wave) neutron superfluid gap does not exist.

A goal of this paper is to establish an EFT formulation for calculating the superfluid gap in
the case of a momentum-independent potential. In this formulation, the gap is extracted through
a singularity analysis of the in-medium four-point correlation function [39], which is determined
order-by-order in perturbation theory. Using this formulation, the subleading correction to the
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FIG. 6. The diagrams that contribute to the vertex function for BCS kinematics through NNLO. The “+ 4
diagrams" corresponds to the 4 other diagrams contributing to the NNLO two-particle-irreducible potential
shown in Fig. 9. At this order there are also corrections to the propagator, which affect 3a), and are not
explicitly shown.

E. The Gap at NNLO

For the NNLO calculation it is convenient to treat LO, NLO and NNLO together. There are five
types of diagrams that contribute to the vertex function, as shown in Fig. 6. The evaluation of the
diagrams �3a,b,c,d,e, is treated in App. C, and the NNLO gap equation is
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where I
h
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pp V (g2)
i

accounts for the effects of V (g2) evaluated for kinematics away from the Fermi
surface. The uncertainties are due to Monte Carlo integration.

At this order, it is also necessary to consider modifications to the propagator, i.e. the self energy.5
These effects can be parameterized by an effective mass M? and wavefunction renormalization Z
given by [39]

M?

M
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Taking this into account, and solving for the gap, gives
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For an attractive interaction (a < 0) the gap at NNLO is reduced relative to NLO. In neutron-
neutron scattering, the scattering length is a�1 ⇡ �10.7MeV [50], and perturbation theory is
expected to break down around kF ⇡ 17MeV.

5
The effects of the chemical potential shifted away from !kF do not change the NNLO calculation as shown in

App. B.
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1

I. INTRODUCTION

Dense systems of cold neutrons, as found in, for example, neutron stars and the outer shells of
certain heavy-nuclei [1, 2], are believed to be in a superfluid phase. An important quantity that
characterizes this phase is the superfluid energy gap �, that separates the ground and first excited
states in the many-body system. Quantitative knowledge of the gap is needed to understand
properties of neutron stars, such as their cooling rates [3] and spin frequency [4]. For recent reviews
on the role of superfluidity in neutrons star physics see Refs. [5–8]. Despite considerable effort by
nuclear theorists to compute the superfluid gap in neutron matter, there is little consensus among
different techniques [9–17]. This is likely due to a series of independent complications, including
the smallness of the gap energy relative to the scale of the strong interaction, the absence of a clear
hierarchy of scales at moderate densities, and the intrinsic complexity of the in-medium interaction.
In parallel, there have also been ab initio approaches that determine the gap using Quantum Monte
Carlo (QMC) simulations [18–22]. In principle, these QMC simulations do not rely on uncontrolled
approximations, and provide a powerful benchmark for nuclear theorists to compare to.

At very-low temperatures and densities, many-body systems of fermions are universally char-
acterized by a momentum-independent interaction, with a strength proportional to the free-space
s-wave scattering length a. Relevant to superfluid pairing is the momentum of fermions at the Fermi
surface, kF , that is related to the number density by ⇢ = N/V = k3F /(3⇡

2). In the presence of a
Fermi surface, one may then expect to develop a perturbation theory organized in powers of the
dimensionless quantity kFa, while accounting for the essential singularity at vanishing coupling due
to the BCS instability. However, as the BCS instability is inherently non-perturbative [23–25], the
formulation of a perturbative EFT description, which by definition is systematically improvable, is
complicated even in the simplest case of a weak finite-range potential [26–29]. In neutron matter
the scattering length is very large, and the densities where such a perturbation theory applies are
not of much physical interest. However, in atomic physics, where the scattering length can be tuned
with Feshbach resonances [30, 31], the dependence of the gap on kFa is essential to understanding
the BCS-BEC crossover [32, 33]. In any case, the simplicity of this universal system offers a useful
theoretical laboratory for the development of systematic methods, and will be the focus of this
work.

In BCS theory (see App. A for a derivation), the superfluid gap is given in terms of the scattering
length by

�BCS =
8

e2
!kF exp

✓
⇡

2kFa

◆
, (1)

where !kF ⌘ k2F /(2M) is the Fermi energy with fermion mass M , and e is Euler’s number. The
effects of particle-hole screening were computed by Gor’kov-Melik-Barkhudarov (GM) in Ref. [34]
leading to the universal suppression,

�GM =
1

(4e)1/3
�BCS = (0.45138 . . .)�BCS . (2)

In addition, further subleading corrections have been sketched out and computed for the induced [35]
p-wave gaps [36–38] but, as far as the authors are aware, a full calculation of the subleading
contributions to the (s-wave) neutron superfluid gap does not exist.

A goal of this paper is to establish an EFT formulation for calculating the superfluid gap in
the case of a momentum-independent potential. In this formulation, the gap is extracted through
a singularity analysis of the in-medium four-point correlation function [39], which is determined
order-by-order in perturbation theory. Using this formulation, the subleading correction to the
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lines on the fourth diagram in Fig. 2 which gives a con-
tribution to  in the second order with respect to λ.
Quite clearly, the second diagram in Fig. 3 paired with
its corresponding diagram where the substitution p is
made in the sum is the correction to the dashed line in
Fig. 2.

These corrections only differ from the first term of
the Born series for the scattering amplitude in that they
contain the single-particle Green’s functions in the
medium G and not in vacuum G(0). However, at large
momenta the difference between G and G(0) disappears
so that the divergence in the diagram in Fig. 7 can be
eliminated by changing from the seed interaction g to
the scattering length a (renormalization procedure).
This length is determined by the scattering amplitude
of two particles in vacuum in the limit where the ener-
gies of the colliding particles tend to zero and may be
obtained from 

(13)
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2ε p( ) i0+
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m
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After integrating in diagram Fig. 6d over the inter-
mediate frequency of the Cooper loop ω, we obtain the
expression

(14)

where

The integral over the internal momentum p from the
expression in brackets diverges at the upper limit. As
we have noted, this is because it is the same as the Born
correction to the scattering amplitude in this region.
This divergence can be eliminated in the second-order
diagram in Fig. 2d by going over from the seed interac-
tion constant g to the zero-energy particle scattering
amplitude a in the center-of-mass system.
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Fig. 3. Skeleton diagrams of the third order of perturbation
theory for the irreducible vertex . Γ̃1

= +

+

Fig. 4. Skeleton “nonoriented” diagrams of the fourth order
of perturbation theory for the irreducible vertex . Γ̃1

Fig. 5. Example of decoding “nonoriented” diagrams (first
diagram in Fig. 4).
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Fig. 6. First third-order diagram from Fig. 3 showing dia-
gram corresponding to the substitution p3 ↔ –p3 in
expanded representation.
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I. INTRODUCTION

Dense systems of cold neutrons, as found in, for example, neutron stars and the outer shells of
certain heavy-nuclei [1, 2], are believed to be in a superfluid phase. An important quantity that
characterizes this phase is the superfluid energy gap �, that separates the ground and first excited
states in the many-body system. Quantitative knowledge of the gap is needed to understand
properties of neutron stars, such as their cooling rates [3] and spin frequency [4]. For recent reviews
on the role of superfluidity in neutrons star physics see Refs. [5–8]. Despite considerable effort by
nuclear theorists to compute the superfluid gap in neutron matter, there is little consensus among
different techniques [9–17]. This is likely due to a series of independent complications, including
the smallness of the gap energy relative to the scale of the strong interaction, the absence of a clear
hierarchy of scales at moderate densities, and the intrinsic complexity of the in-medium interaction.
In parallel, there have also been ab initio approaches that determine the gap using Quantum Monte
Carlo (QMC) simulations [18–22]. In principle, these QMC simulations do not rely on uncontrolled
approximations, and provide a powerful benchmark for nuclear theorists to compare to.

At very-low temperatures and densities, many-body systems of fermions are universally char-
acterized by a momentum-independent interaction, with a strength proportional to the free-space
s-wave scattering length a. Relevant to superfluid pairing is the momentum of fermions at the Fermi
surface, kF , that is related to the number density by ⇢ = N/V = k3F /(3⇡

2). In the presence of a
Fermi surface, one may then expect to develop a perturbation theory organized in powers of the
dimensionless quantity kFa, while accounting for the essential singularity at vanishing coupling due
to the BCS instability. However, as the BCS instability is inherently non-perturbative [23–25], the
formulation of a perturbative EFT description, which by definition is systematically improvable, is
complicated even in the simplest case of a weak finite-range potential [26–29]. In neutron matter
the scattering length is very large, and the densities where such a perturbation theory applies are
not of much physical interest. However, in atomic physics, where the scattering length can be tuned
with Feshbach resonances [30, 31], the dependence of the gap on kFa is essential to understanding
the BCS-BEC crossover [32, 33]. In any case, the simplicity of this universal system offers a useful
theoretical laboratory for the development of systematic methods, and will be the focus of this
work.

In BCS theory (see App. A for a derivation), the superfluid gap is given in terms of the scattering
length by

�BCS =
8

e2
!kF exp

✓
⇡

2kFa

◆
, (1)

where !kF ⌘ k2F /(2M) is the Fermi energy with fermion mass M , and e is Euler’s number. The
effects of particle-hole screening were computed by Gor’kov-Melik-Barkhudarov (GM) in Ref. [34]
leading to the universal suppression,

�GM =
1

(4e)1/3
�BCS = (0.45138 . . .)�BCS . (2)

In addition, further subleading corrections have been sketched out and computed for the induced [35]
p-wave gaps [36–38] but, as far as the authors are aware, a full calculation of the subleading
contributions to the (s-wave) neutron superfluid gap does not exist.

A goal of this paper is to establish an EFT formulation for calculating the superfluid gap in
the case of a momentum-independent potential. In this formulation, the gap is extracted through
a singularity analysis of the in-medium four-point correlation function [39], which is determined
order-by-order in perturbation theory. Using this formulation, the subleading correction to the
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(PWA93)

FIG. 1. The 1S0 np phase shift to O(k0) (solid line), O(k2) (dashed line), and O(k4) (dotted line) in the
ERE. The cyan polygons are the Nijmegen phase shift analysis (PWA93) [36].

The 1S0 phase shift for neutron-proton (np) scattering1 is shown as a function of k in Fig. 1 for
three orders in the ERE. The 1S0 np effective-range parameters used here are a = �23.714 fm,
r = 2.64 fm and v2 = 0.15 fm3. A striking feature of the singlet nucleon-nucleon phase shift data
is the very-large and large sizes of a and r, respectively, and the correspondingly small relative size
of the shape parameters, all as compared to a typical scale which one may take as ⇠ 1 fm. These
observations are made clear in Fig. 1 by the striking dependence of the phase shift on a and r, and
by the evident diminishing returns as one adds the O(k4) correction.

The most basic formulation of EFT(⇡/) treats a to all orders and r in perturbation theory. Here
effective range corrections will be treated to all orders in order to maximize the densities at which the
gap can be reliably computed. Extensions of EFT(⇡/) to include all-orders effective range corrections
have long been considered [30–32]. Recently, it has been noted that the ancient experimental
observation that a and r are large as compared to the vi has a symmetry explanation [33–35]
that provides a useful scheme for organizing the EFT(⇡/) operators consistent with the observed
hierarchy [32–35]. This proves useful in a rigorous determination of the superfluid gap in EFT(⇡/).
From the perspective of EFT operators, this scheme amounts to a specific infinite resummation of
EFT operators to form rank-one separable potentials.

As noted above, the densities where knowledge of the gap are perhaps most interesting, in
particular the region where the gap is expected to vanish, require chiral EFT and perhaps beyond.
Here the rational property of the S-matrix in the ERE will be assumed to continue to hold, and
The goal is of course to find a class of realistic potentials which roughly reproduce 1S0 np phase
shift data up to center-of-mass momentum k⇤ ' 353 MeV where the phase shift changes sign and
the interaction becomes effectively repulsive. Essential to the consideration of neutron matter with
any of these potentials is the weakness of the effective coupling constant given in Eq. (1) over the
densities in question.

This paper is organized as follows. Section II is dedicated to designing simple and yet realistic
nuclear forces for use in-medium. Section IIA develops basic properties of the rational form of
1

Note that the np scattering data will be used in discussion of the free-space nucleon-nucleon force. However, in

computing neutron-matter properties, best neutron-neutron (nn) scattering parameters will be used. In particular,

the values a = �18.5 fm and r = 2.7 fm will be used as best estimates of the nn parameters, following Ref. [29].
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FIG. 1. The 1S0 np phase shift to O(k0) (solid line), O(k2) (dashed line), and O(k4) (dotted line) in the
ERE. The cyan polygons are the Nijmegen phase shift analysis (PWA93) [36].

The 1S0 phase shift for neutron-proton (np) scattering1 is shown as a function of k in Fig. 1 for
three orders in the ERE. The 1S0 np effective-range parameters used here are a = �23.714 fm,
r = 2.64 fm and v2 = 0.15 fm3. A striking feature of the singlet nucleon-nucleon phase shift data
is the very-large and large sizes of a and r, respectively, and the correspondingly small relative size
of the shape parameters, all as compared to a typical scale which one may take as ⇠ 1 fm. These
observations are made clear in Fig. 1 by the striking dependence of the phase shift on a and r, and
by the evident diminishing returns as one adds the O(k4) correction.

The most basic formulation of EFT(⇡/) treats a to all orders and r in perturbation theory. Here
effective range corrections will be treated to all orders in order to maximize the densities at which the
gap can be reliably computed. Extensions of EFT(⇡/) to include all-orders effective range corrections
have long been considered [30–32]. Recently, it has been noted that the ancient experimental
observation that a and r are large as compared to the vi has a symmetry explanation [33–35]
that provides a useful scheme for organizing the EFT(⇡/) operators consistent with the observed
hierarchy [32–35]. This proves useful in a rigorous determination of the superfluid gap in EFT(⇡/).
From the perspective of EFT operators, this scheme amounts to a specific infinite resummation of
EFT operators to form rank-one separable potentials.

As noted above, the densities where knowledge of the gap are perhaps most interesting, in
particular the region where the gap is expected to vanish, require chiral EFT and perhaps beyond.
Here the rational property of the S-matrix in the ERE will be assumed to continue to hold, and
The goal is of course to find a class of realistic potentials which roughly reproduce 1S0 np phase
shift data up to center-of-mass momentum k⇤ ' 353 MeV where the phase shift changes sign and
the interaction becomes effectively repulsive. Essential to the consideration of neutron matter with
any of these potentials is the weakness of the effective coupling constant given in Eq. (1) over the
densities in question.

This paper is organized as follows. Section II is dedicated to designing simple and yet realistic
nuclear forces for use in-medium. Section IIA develops basic properties of the rational form of
1

Note that the np scattering data will be used in discussion of the free-space nucleon-nucleon force. However, in

computing neutron-matter properties, best neutron-neutron (nn) scattering parameters will be used. In particular,

the values a = �18.5 fm and r = 2.7 fm will be used as best estimates of the nn parameters, following Ref. [29].
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Pairing from realistic potentials

1

I. INTRODUCTION

Dense systems of cold neutrons are thought to be found in neutron stars and in the outer shells
of certain heavy-nuclei [1, 2]. As neutrons experience attractive interactions, in the presence of a
Fermi surface, they pair and the many-neutron system is in a superfluid phase [3, 4]. This phase
is characterized by the energy gap, �, that separates the ground and first excited states of the
many-body system. Quantitative knowledge of the gap is essential for understanding properties of
neutron stars. While the equation-of-state of neutron matter is largely insensitive to pairing, the
specific heat and the neutrino emmissivity depend strongly on the superfluid gap, and these in turn
influence the neutron star cooling rates [5]. In addition, observables like the spin frequency [6] are
sensitive to gap effects. For recent reviews of the role of superfluidity in neutrons star physics see
Refs. [7–10]. Despite considerable effort by nuclear theorists over many decades to compute the
superfluid gap in neutron matter, there is at present little consensus among different techniques [11–
19]. This is due to several factors. Firstly, the gap energy is very small relative to a typical scale of
the strong interaction. In addition, there is both an absence of a clear hierarchy of scales, as well as
the possible presence of significant many-body forces, at moderate densities. Finally, and perhaps
most relevant to the present discussion is the intrinsic complexity of the in-medium interaction
which plays a critical role is a systematic calculation of the gap. In parallel with various theoretical
methods, there have also been ab initio approaches that determine the gap using Quantum Monte
Carlo (QMC) simulations [20–23]. While, in principle, these QMC simulations do not rely on
uncontrolled approximations, and provide a powerful benchmark for nuclear theorists to compare
to, these determinations of the gap work far from the thermodynamic limit, which may give rise to
uncontrolled finite-size effects which could distort the in-medium interaction.

Recent work has developed a power-counting scheme for the effective field theory (EFT) com-
putation of the superfluid gap in a many-body system of spin-1/2 fermions, which interact via
momentum-independent contact forces [24]. This scheme has enabled the computation of the uni-
versal corrections to the leading particle-hole screening effects computed long ago by Gor’kov-Melik-
Barkhudarov (GM) in Ref. [25]. The EFT is organized as an expansion in kFa, where a is the s-wave
fermion-fermion scattering length. Generally, one expects an expansion in the quantum mechanical
two-body potential, V (k,k0), which is a function of the relative momenta, k and k0, of the incoming
and outgoing particles. Specifically, the expansion parameter is taken as

MkF
4⇡

V (kF , kF ) , (1)

where M is the nucleon mass, and in the momentum-independent case, V = 4⇡a/M . Given the
large scattering length in the singlet nucleon-nucleon system, the perturbative expansion in kFa is
valid only for very small densities that are not of particular phenomenological interest. The goal of
this paper is to compute the gap with realistic potentials up to and beyond the nuclear saturation
density.

In order to extend the gap calculation to higher densities, it is necessary to construct the
potentials that reproduce the nucleon-nucleon phase shifts up to a given value of the center-of-mass
(c.o.m.) momentum, k. As a first step in this direction, consider the pionless EFT (EFT(⇡/)) [26–
28]. This is an EFT of contact operators that is formally valid for k < M⇡/2 (and in most practical
applications for k < M⇡). The low-energy constants in this EFT are matched to the effective-range
parameters. For the s-wave, the effective range expansion (ERE) takes the form,

k cot �(k) = �1

a
+

1

2
rk2 + v2k

4 + v3k
6 +O(k8) , (2)

where here �(k) is the 1S0 phase shift, r is the effective range, and the vi are shape parameters.
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FIG. 1. The 1S0 np phase shift to O(k0) (solid line), O(k2) (dashed line), and O(k4) (dotted line) in the
ERE. The cyan polygons are the Nijmegen phase shift analysis (PWA93) [36].

The 1S0 phase shift for neutron-proton (np) scattering1 is shown as a function of k in Fig. 1 for
three orders in the ERE. The 1S0 np effective-range parameters used here are a = �23.714 fm,
r = 2.64 fm and v2 = 0.15 fm3. A striking feature of the singlet nucleon-nucleon phase shift data
is the very-large and large sizes of a and r, respectively, and the correspondingly small relative size
of the shape parameters, all as compared to a typical scale which one may take as ⇠ 1 fm. These
observations are made clear in Fig. 1 by the striking dependence of the phase shift on a and r, and
by the evident diminishing returns as one adds the O(k4) correction.

The most basic formulation of EFT(⇡/) treats a to all orders and r in perturbation theory. Here
effective range corrections will be treated to all orders in order to maximize the densities at which the
gap can be reliably computed. Extensions of EFT(⇡/) to include all-orders effective range corrections
have long been considered [30–32]. Recently, it has been noted that the ancient experimental
observation that a and r are large as compared to the vi has a symmetry explanation [33–35]
that provides a useful scheme for organizing the EFT(⇡/) operators consistent with the observed
hierarchy [32–35]. This proves useful in a rigorous determination of the superfluid gap in EFT(⇡/).
From the perspective of EFT operators, this scheme amounts to a specific infinite resummation of
EFT operators to form rank-one separable potentials.

As noted above, the densities where knowledge of the gap are perhaps most interesting, in
particular the region where the gap is expected to vanish, require chiral EFT and perhaps beyond.
Here the rational property of the S-matrix in the ERE will be assumed to continue to hold, and
The goal is of course to find a class of realistic potentials which roughly reproduce 1S0 np phase
shift data up to center-of-mass momentum k⇤ ' 353 MeV where the phase shift changes sign and
the interaction becomes effectively repulsive. Essential to the consideration of neutron matter with
any of these potentials is the weakness of the effective coupling constant given in Eq. (1) over the
densities in question.

This paper is organized as follows. Section II is dedicated to designing simple and yet realistic
nuclear forces for use in-medium. Section IIA develops basic properties of the rational form of
1

Note that the np scattering data will be used in discussion of the free-space nucleon-nucleon force. However, in

computing neutron-matter properties, best neutron-neutron (nn) scattering parameters will be used. In particular,

the values a = �18.5 fm and r = 2.7 fm will be used as best estimates of the nn parameters, following Ref. [29].

3

the S-matrix. This form is exact in the context of EFT(⇡/), which reproduces the ERE, and is
considered in section II B. Modeling beyond EFT(⇡/) is considered in section II C.

II. REALISTIC NUCLEAR FORCES

A. Rational S-matrix and separable interactions

The S-matrix which describes s-wave scattering in an EFT of contact forces is of rational form,

S = ei�
nY

a=1

k + i�a
k � i�a

, (3)

where � is a phase, n represents the number of poles of S, and the �a are complex numbers2, with
real, (negative) positive �a in correspondence with (virtual) bound states3. When n is even, this
S-matrix gives O(kn) in the ERE as a special case. The corresponding phase shift is

� =
nX

a=1

tan�1
�a
k

. (4)

The S-matrix is manifestly invariant with respect to permutations of the pole positions. As it is the
ratio of a polynomial and its complex conjugate, all scattering parameters will be symmetric poly-
nomials in the pole positions. Any symmetric polynomial can be expressed in terms of elementary
symmetric polynomials (ESPs), defined as

e(n)k ⌘ ek(�1, . . . , �n) =
X

1j1<j2<···<jkn

�j1 · · · �jk . (5)

The ESPs therefore serve as compact building blocks when considering scattering parameters and
potentials that are related to rational S-matrices.

Given the S-matrix, one is faced with the inverse problem of finding a potential which generates
the rational S-matrix with a given number of poles. There is considerable freedom in defining the
potential as it is neither unique nor observable. As EFT(⇡/) generates momentum-dependent, non-
local (in coordinate space) and separable potentials to any order in the EFT expansion, this paper
will consider momentum-dependent potentials which are non-local in coordinate space and rank-one
separable. Advantages of working with this class of potential is that they can be designed to have
a one-to-one correspondence with the ERE and its extensions beyond EFT(⇡/). Here potentials will
be considered that can be expressed as

V
�
k, k0

�
= gV(k)V(k0) , (6)

where g is a generic coupling constant. The solution of the Lippmann-Schwinger equation for this
class of potentials gives the scattering amplitude

T (E) =
V (k, k)

1 + gJ(E)
, (7)

where E is the c.o.m. energy and

J(E) = �M

Z
d3l

(2⇡)3
V(l)2 1

2ME � l2 + i✏
. (8)

2
Unitarity requires that complex poles come in complex-conjugate pairs.

3
If the on-shell potential is given by N(m)/D(n) where N(m) and D(n) are polynomials of degree m and n,

respectively, then the S-matrix will contain max(n,m+ 1) poles.
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Abstract

We point out a redundancy in the operator structure of the pionless effec-
tive field theory, EFT(π/), which dramatically simplifies computations. This
redundancy is best exploited by using dibaryon fields as fundamental degrees

of freedom. In turn, this suggests a new power counting scheme which sums
range corrections to all orders. We explore this method with a few simple

observables: the deuteron charge form factor, np → dγ, and Compton scat-
tering from the deuteron. Unlike EFT(π/), the higher dimension operators
involving electroweak gauge fields are not renormalized by the s-wave strong

interactions, and therefore do not scale with inverse powers of the renormal-
ization scale. Thus, naive dimensional analysis of these operators is sufficient

to estimate their contribution to a given process.

1
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<latexit sha1_base64="ORgqm9qhI9Bmrs8oRFjWVd6DiZE=">AAAAAHicbVDLSgNBEJyNrxhfqx5zWQyCp7ArAQUvQVE8RsgLskuYnXSSIbMPZnrFsOTgxV/x4kERr36EN//GSbIHTSxoKKq66e7yY8EV2va3kVtZXVvfyG8WtrZ3dvfM/YOmihLJoMEiEcm2TxUIHkIDOQpoxxJo4Ato+aOrqd+6B6l4FNZxHIMX0EHI+5xR1FLXLLoID6hwLCB1ZWCxIZdUuBfXN/VJ1yzZZXsGa5k4GSmRDLWu+eX2IpYEECITVKmOY8fopVQiZwImBTdREFM2ogPoaBrSAJSXzp6YWMda6Vn9SOoK0ZqpvydSGig1DnzdGVAcqkVvKv7ndRLsn3spD+MEIWTzRf1EWBhZ00SsHpfAUIw1oUxyfatOgUrKUOdW0CE4iy8vk+Zp2amU7btKqXqZxZEnRXJETohDzkiV3JIaaRBGHskzeSVvxpPxYrwbH/PWnJHNHJI/MD5/APzCmEo=</latexit>

Neutron-proton singlet s-wave phase shift



3

the S-matrix. This form is exact in the context of EFT(⇡/), which reproduces the ERE, and is
considered in section II B. Modeling beyond EFT(⇡/) is considered in section II C.

II. REALISTIC NUCLEAR FORCES

A. Rational S-matrix and separable interactions

The S-matrix which describes s-wave scattering in an EFT of contact forces is of rational form,

S = ei�
nY

a=1

k + i�a
k � i�a

, (3)

where � is a phase, n represents the number of poles of S, and the �a are complex numbers2, with
real, (negative) positive �a in correspondence with (virtual) bound states3. When n is even, this
S-matrix gives O(kn) in the ERE as a special case. The corresponding phase shift is

� =
nX

a=1

tan�1
�a
k

. (4)

The S-matrix is manifestly invariant with respect to permutations of the pole positions. As it is the
ratio of a polynomial and its complex conjugate, all scattering parameters will be symmetric poly-
nomials in the pole positions. Any symmetric polynomial can be expressed in terms of elementary
symmetric polynomials (ESPs), defined as

e(n)k ⌘ ek(�1, . . . , �n) =
X

1j1<j2<···<jkn

�j1 · · · �jk . (5)

The ESPs therefore serve as compact building blocks when considering scattering parameters and
potentials that are related to rational S-matrices.

Given the S-matrix, one is faced with the inverse problem of finding a potential which generates
the rational S-matrix with a given number of poles. There is considerable freedom in defining the
potential as it is neither unique nor observable. As EFT(⇡/) generates momentum-dependent, non-
local (in coordinate space) and separable potentials to any order in the EFT expansion, this paper
will consider momentum-dependent potentials which are non-local in coordinate space and rank-one
separable. Advantages of working with this class of potential is that they can be designed to have
a one-to-one correspondence with the ERE and its extensions beyond EFT(⇡/). Here potentials will
be considered that can be expressed as

V
�
k, k0

�
= gV(k)V(k0) , (6)

where g is a generic coupling constant. The solution of the Lippmann-Schwinger equation for this
class of potentials gives the scattering amplitude

T (E) =
V (k, k)

1 + gJ(E)
, (7)

where E is the c.o.m. energy and

J(E) = �M

Z
d3l

(2⇡)3
V(l)2 1

2ME � l2 + i✏
. (8)

2
Unitarity requires that complex poles come in complex-conjugate pairs.

3
If the on-shell potential is given by N(m)/D(n) where N(m) and D(n) are polynomials of degree m and n,

respectively, then the S-matrix will contain max(n,m+ 1) poles.
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Abstract

We point out a redundancy in the operator structure of the pionless effec-
tive field theory, EFT(π/), which dramatically simplifies computations. This
redundancy is best exploited by using dibaryon fields as fundamental degrees

of freedom. In turn, this suggests a new power counting scheme which sums
range corrections to all orders. We explore this method with a few simple

observables: the deuteron charge form factor, np → dγ, and Compton scat-
tering from the deuteron. Unlike EFT(π/), the higher dimension operators
involving electroweak gauge fields are not renormalized by the s-wave strong

interactions, and therefore do not scale with inverse powers of the renormal-
ization scale. Thus, naive dimensional analysis of these operators is sufficient

to estimate their contribution to a given process.
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the S-matrix. This form is exact in the context of EFT(⇡/), which reproduces the ERE, and is
considered in section II B. Modeling beyond EFT(⇡/) is considered in section II C.

II. REALISTIC NUCLEAR FORCES

A. Rational S-matrix and separable interactions

The S-matrix which describes s-wave scattering in an EFT of contact forces is of rational form,

S = ei�
nY

a=1

k + i�a
k � i�a

, (3)

where � is a phase, n represents the number of poles of S, and the �a are complex numbers2, with
real, (negative) positive �a in correspondence with (virtual) bound states3. When n is even, this
S-matrix gives O(kn) in the ERE as a special case. The corresponding phase shift is

� =
nX

a=1

tan�1
�a
k

. (4)

The S-matrix is manifestly invariant with respect to permutations of the pole positions. As it is the
ratio of a polynomial and its complex conjugate, all scattering parameters will be symmetric poly-
nomials in the pole positions. Any symmetric polynomial can be expressed in terms of elementary
symmetric polynomials (ESPs), defined as

e(n)k ⌘ ek(�1, . . . , �n) =
X

1j1<j2<···<jkn

�j1 · · · �jk . (5)

The ESPs therefore serve as compact building blocks when considering scattering parameters and
potentials that are related to rational S-matrices.

Given the S-matrix, one is faced with the inverse problem of finding a potential which generates
the rational S-matrix with a given number of poles. There is considerable freedom in defining the
potential as it is neither unique nor observable. As EFT(⇡/) generates momentum-dependent, non-
local (in coordinate space) and separable potentials to any order in the EFT expansion, this paper
will consider momentum-dependent potentials which are non-local in coordinate space and rank-one
separable. Advantages of working with this class of potential is that they can be designed to have
a one-to-one correspondence with the ERE and its extensions beyond EFT(⇡/). Here potentials will
be considered that can be expressed as

V
�
k, k0

�
= gV(k)V(k0) , (6)

where g is a generic coupling constant. The solution of the Lippmann-Schwinger equation for this
class of potentials gives the scattering amplitude

T (E) =
V (k, k)

1 + gJ(E)
, (7)

where E is the c.o.m. energy and

J(E) = �M

Z
d3l

(2⇡)3
V(l)2 1

2ME � l2 + i✏
. (8)

2
Unitarity requires that complex poles come in complex-conjugate pairs.

3
If the on-shell potential is given by N(m)/D(n) where N(m) and D(n) are polynomials of degree m and n,

respectively, then the S-matrix will contain max(n,m+ 1) poles.
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the S-matrix. This form is exact in the context of EFT(⇡/), which reproduces the ERE, and is
considered in section II B. Modeling beyond EFT(⇡/) is considered in section II C.

II. REALISTIC NUCLEAR FORCES

A. Rational S-matrix and separable interactions

The S-matrix which describes s-wave scattering in an EFT of contact forces is of rational form,
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, (3)

where � is a phase, n represents the number of poles of S, and the �a are complex numbers2, with
real, (negative) positive �a in correspondence with (virtual) bound states3. When n is even, this
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ratio of a polynomial and its complex conjugate, all scattering parameters will be symmetric poly-
nomials in the pole positions. Any symmetric polynomial can be expressed in terms of elementary
symmetric polynomials (ESPs), defined as

e(n)k ⌘ ek(�1, . . . , �n) =
X
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�j1 · · · �jk . (5)

The ESPs therefore serve as compact building blocks when considering scattering parameters and
potentials that are related to rational S-matrices.

Given the S-matrix, one is faced with the inverse problem of finding a potential which generates
the rational S-matrix with a given number of poles. There is considerable freedom in defining the
potential as it is neither unique nor observable. As EFT(⇡/) generates momentum-dependent, non-
local (in coordinate space) and separable potentials to any order in the EFT expansion, this paper
will consider momentum-dependent potentials which are non-local in coordinate space and rank-one
separable. Advantages of working with this class of potential is that they can be designed to have
a one-to-one correspondence with the ERE and its extensions beyond EFT(⇡/). Here potentials will
be considered that can be expressed as
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4

B. ERE / EFT(⇡/)

It is a simple matter to express the effective range parameters at O(kn) in the ERE in terms of the
ESPs. One finds to O(kn) in the ERE,

a =
e(n)n�1

e(n)n

, r = 2
e(n)n�2

e(n)n�1

, vm = (�1)m�1
e(n)n�2m

e(n)n

✓ (n� 2m) . (9)

For n > 2 one has in addition the constraints

0 = e(n)` , (10)

for ` = n� 3, n� 5, n� 7, . . . > 0. These constraints ensure that the ERE terminates at O(kn).
As noted in the introduction, the case n = 2 is special in the spin-singlet channel where ar < 0.

Here there is a UV/IR symmetry [33, 34] which serves as a starting point for a systematic EFT
expansion [32, 35]. That is, the S-matrix is invariant with respect to the transformation

k 7! e(2)
2

k
. (11)

Consequence of this symmetry are that a and r effects are treated to all orders and vi = 0 8 i. It is
straightforward to include shape parameter effects in perturbation theory as higher-order UV/IR
symmetry-breaking effects in the EFT [35].

For the computation of the superfluid gap in EFT(⇡/), the case n = 2 will be taken as the leading
free-space interaction. For simplicity in the computation of the gap, the subleading v2 effects will
be treated to all orders by considering the case n = 4. Consider the pole positions for the two cases
of interest. For n = 2 there are two poles of the S-matrix, at k = i�1, i�2, with

�1 = 157.93 MeV , �2 = �7.93 MeV . (12)

Note that �2 corresponds to the physical, virtual bound state in the 1S0 channel, whereas �1 is a
singularity outside of EFT(⇡/). For n = 4 one has

�1 = 172.04 MeV , �2 = 486.66 MeV , �3 = �650.77 MeV , �4 = �7.93 MeV . (13)

It is straightforward to find the separable potential which gives the rational S-matrix of the ERE
to O(kn):

V
�
k, k0

�
= �4⇡

M

��e(n)n�1

��
n/2Y

a=1

1p
�2a + k2

p
�2a + k02

. (14)

The effective expansion parameter of Eq. (1) is plotted in Fig. 2 for the two cases of interest
here, n = 2, 4. It is noteworthy that while these potentials differ substantially at low-k, they are
approximately phase equivalent for k < M⇡/2. In principle, phase equivalence can provide a sense of
the systematic uncertainty due to the omission of higher-body forces in the many-body calculation
of the superfluid gap.
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separable. Advantages of working with this class of potential is that they can be designed to have
a one-to-one correspondence with the ERE and its extensions beyond EFT(⇡/). Here potentials will
be considered that can be expressed as

V
�
k, k0

�
= gV(k)V(k0) , (6)

where g is a generic coupling constant. The solution of the Lippmann-Schwinger equation for this
class of potentials gives the scattering amplitude

T (E) =
V (k, k)

1 + gJ(E)
, (7)

where E is the c.o.m. energy and

J(E) = �M

Z
d3l

(2⇡)3
V(l)2 1

2ME � l2 + i✏
. (8)

2
Unitarity requires that complex poles come in complex-conjugate pairs.

3
If the on-shell potential is given by N(m)/D(n) where N(m) and D(n) are polynomials of degree m and n,

respectively, then the S-matrix will contain max(n,m+ 1) poles.
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Abstract

We point out a redundancy in the operator structure of the pionless effec-
tive field theory, EFT(π/), which dramatically simplifies computations. This
redundancy is best exploited by using dibaryon fields as fundamental degrees

of freedom. In turn, this suggests a new power counting scheme which sums
range corrections to all orders. We explore this method with a few simple

observables: the deuteron charge form factor, np → dγ, and Compton scat-
tering from the deuteron. Unlike EFT(π/), the higher dimension operators
involving electroweak gauge fields are not renormalized by the s-wave strong

interactions, and therefore do not scale with inverse powers of the renormal-
ization scale. Thus, naive dimensional analysis of these operators is sufficient

to estimate their contribution to a given process.
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2.4 E↵ective pole theory (EPT)

2.4.1 LO (Model 1)

It is straightforward to construct solvable potentials which match exactly to a given order in

the ERE. Consider the separable potential

V
�
k, k0

�
= g

1p
�2 + k2

p
�2 + k02

. (2.8)

This potential is regular at the origin and yields the solution

T (k) =
1

�2 + k2

✓
� M

4⇡ (� + ⌫)
� H(k)

◆�1

, (2.9)

where, assuming Re� < 0,

H(k) ⌘ M

Z
d3q

(2⇡)3
1

�2 + q2
1

k2 � q2 + i✏
=

M

4⇡

(� � ik)

(�2 + k2)
. (2.10)

Matching to the e↵ective range expansion gives

a = � 1

� � 4⇡�2

gM

, r = � 8⇡

gM
, vn = 0 , (2.11)

and therefore

k cot �(k) = �1

a
+

1

2
rk2 . (2.12)

Now note that there are two poles of the S-matrix, at k = i�1, i�2, with �1 = ��, �2 =

� �Mg/(4⇡) ⌘ �⌫. It then follows that

g =
4⇡

M
(� + ⌫) , a = � 1

�
� 1

⌫
, r = � 2

� + ⌫
, vn = 0 . (2.13)

And finally,

V
�
k, k0

�
=

4⇡

M
(� + ⌫)

1p
�2 + k2

p
�2 + k02

. (2.14)

Here in the 1S0 channel, the poles of the scattering amplitude occur at �i(9.86) MeV and

i(154.92) MeV, corresponding to a virtual bound state and a bound state, respectively. Now,

as we’ve assumed that Re� < 0, Here we must choose

� = ��1 = �152.97 MeV , ⌫ = ��2 = 7.92 MeV . (2.15)

And we can write

V
�
k, k0

�
= �4⇡

M

���1 + �2
�� 1p

�2
1
+ k2

p
�2
1
+ k02

(2.16)

with corresponding S-matrix

S =
k + i�1
k � i�1

k + i�2
k � i�2

. (2.17)

– 5 –

4

B. ERE / EFT(⇡/)

It is a simple matter to express the effective range parameters at O(kn) in the ERE in terms of the
ESPs. One finds to O(kn) in the ERE,

a =
e(n)n�1

e(n)n

, r = 2
e(n)n�2

e(n)n�1

, vm = (�1)m�1
e(n)n�2m

e(n)n

✓ (n� 2m) . (9)

For n > 2 one has in addition the constraints

0 = e(n)` , (10)

for ` = n� 3, n� 5, n� 7, . . . > 0. These constraints ensure that the ERE terminates at O(kn).
As noted in the introduction, the case n = 2 is special in the spin-singlet channel where ar < 0.

Here there is a UV/IR symmetry [33, 34] which serves as a starting point for a systematic EFT
expansion [32, 35]. That is, the S-matrix is invariant with respect to the transformation

k 7! e(2)
2

k
. (11)

Consequence of this symmetry are that a and r effects are treated to all orders and vi = 0 8 i. It is
straightforward to include shape parameter effects in perturbation theory as higher-order UV/IR
symmetry-breaking effects in the EFT [35].

For the computation of the superfluid gap in EFT(⇡/), the case n = 2 will be taken as the leading
free-space interaction. For simplicity in the computation of the gap, the subleading v2 effects will
be treated to all orders by considering the case n = 4. Consider the pole positions for the two cases
of interest. For n = 2 there are two poles of the S-matrix, at k = i�1, i�2, with

�1 = 157.93 MeV , �2 = �7.93 MeV . (12)

Note that �2 corresponds to the physical, virtual bound state in the 1S0 channel, whereas �1 is a
singularity outside of EFT(⇡/). For n = 4 one has

�1 = 172.04 MeV , �2 = 486.66 MeV , �3 = �650.77 MeV , �4 = �7.93 MeV . (13)

It is straightforward to find the separable potential which gives the rational S-matrix of the ERE
to O(kn):

V
�
k, k0

�
= �4⇡

M

��e(n)n�1

��
n/2Y

a=1

1p
�2a + k2

p
�2a + k02

. (14)

The effective expansion parameter of Eq. (1) is plotted in Fig. 2 for the two cases of interest
here, n = 2, 4. It is noteworthy that while these potentials differ substantially at low-k, they are
approximately phase equivalent for k < M⇡/2. In principle, phase equivalence can provide a sense of
the systematic uncertainty due to the omission of higher-body forces in the many-body calculation
of the superfluid gap.
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tive field theory, EFT(π/), which dramatically simplifies computations. This
redundancy is best exploited by using dibaryon fields as fundamental degrees

of freedom. In turn, this suggests a new power counting scheme which sums
range corrections to all orders. We explore this method with a few simple

observables: the deuteron charge form factor, np → dγ, and Compton scat-
tering from the deuteron. Unlike EFT(π/), the higher dimension operators
involving electroweak gauge fields are not renormalized by the s-wave strong

interactions, and therefore do not scale with inverse powers of the renormal-
ization scale. Thus, naive dimensional analysis of these operators is sufficient

to estimate their contribution to a given process.
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B. ERE / EFT(⇡/)

It is a simple matter to express the effective range parameters at O(kn) in the ERE in terms of the
ESPs. One finds to O(kn) in the ERE,

a =
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, r = 2
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, vm = (�1)m�1
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✓ (n� 2m) . (9)

For n > 2 one has in addition the constraints

0 = e(n)` , (10)

for ` = n� 3, n� 5, n� 7, . . . > 0. These constraints ensure that the ERE terminates at O(kn).
As noted in the introduction, the case n = 2 is special in the spin-singlet channel where ar < 0.

Here there is a UV/IR symmetry [33, 34] which serves as a starting point for a systematic EFT
expansion [32, 35]. That is, the S-matrix is invariant with respect to the transformation

k 7! e(2)
2

k
. (11)

Consequence of this symmetry are that a and r effects are treated to all orders and vi = 0 8 i. It is
straightforward to include shape parameter effects in perturbation theory as higher-order UV/IR
symmetry-breaking effects in the EFT [35].

For the computation of the superfluid gap in EFT(⇡/), the case n = 2 will be taken as the leading
free-space interaction. For simplicity in the computation of the gap, the subleading v2 effects will
be treated to all orders by considering the case n = 4. Consider the pole positions for the two cases
of interest. For n = 2 there are two poles of the S-matrix, at k = i�1, i�2, with

�1 = 157.93 MeV , �2 = �7.93 MeV . (12)

Note that �2 corresponds to the physical, virtual bound state in the 1S0 channel, whereas �1 is a
singularity outside of EFT(⇡/). For n = 4 one has

�1 = 172.04 MeV , �2 = 486.66 MeV , �3 = �650.77 MeV , �4 = �7.93 MeV . (13)

It is straightforward to find the separable potential which gives the rational S-matrix of the ERE
to O(kn):

V
�
k, k0

�
= �4⇡

M

��e(n)n�1

��
n/2Y

a=1

1p
�2a + k2

p
�2a + k02

. (14)

The effective expansion parameter of Eq. (1) is plotted in Fig. 2 for the two cases of interest
here, n = 2, 4. It is noteworthy that while these potentials differ substantially at low-k, they are
approximately phase equivalent for k < M⇡/2. In principle, phase equivalence can provide a sense of
the systematic uncertainty due to the omission of higher-body forces in the many-body calculation
of the superfluid gap.
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2.4 E↵ective pole theory (EPT)
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It is straightforward to construct solvable potentials which match exactly to a given order in

the ERE. Consider the separable potential
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. (2.8)

This potential is regular at the origin and yields the solution

T (k) =
1

�2 + k2
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� M

4⇡ (� + ⌫)
� H(k)

◆�1

, (2.9)

where, assuming Re� < 0,

H(k) ⌘ M
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1
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=
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, vn = 0 , (2.11)

and therefore

k cot �(k) = �1
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+
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2
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Now note that there are two poles of the S-matrix, at k = i�1, i�2, with �1 = ��, �2 =

� �Mg/(4⇡) ⌘ �⌫. It then follows that

g =
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And finally,
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=
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(� + ⌫)
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�2 + k2

p
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. (2.14)

Here in the 1S0 channel, the poles of the scattering amplitude occur at �i(9.86) MeV and

i(154.92) MeV, corresponding to a virtual bound state and a bound state, respectively. Now,

as we’ve assumed that Re� < 0, Here we must choose

� = ��1 = �152.97 MeV , ⌫ = ��2 = 7.92 MeV . (2.15)

And we can write
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S =
k + i�1
k � i�1

k + i�2
k � i�2
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ESPs. One finds to O(kn) in the ERE,

a =
e(n)n�1

e(n)n

, r = 2
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, vm = (�1)m�1
e(n)n�2m

e(n)n

✓ (n� 2m) . (9)

For n > 2 one has in addition the constraints

0 = e(n)` , (10)

for ` = n� 3, n� 5, n� 7, . . . > 0. These constraints ensure that the ERE terminates at O(kn).
As noted in the introduction, the case n = 2 is special in the spin-singlet channel where ar < 0.

Here there is a UV/IR symmetry [33, 34] which serves as a starting point for a systematic EFT
expansion [32, 35]. That is, the S-matrix is invariant with respect to the transformation

k 7! e(2)
2

k
. (11)

Consequence of this symmetry are that a and r effects are treated to all orders and vi = 0 8 i. It is
straightforward to include shape parameter effects in perturbation theory as higher-order UV/IR
symmetry-breaking effects in the EFT [35].

For the computation of the superfluid gap in EFT(⇡/), the case n = 2 will be taken as the leading
free-space interaction. For simplicity in the computation of the gap, the subleading v2 effects will
be treated to all orders by considering the case n = 4. Consider the pole positions for the two cases
of interest. For n = 2 there are two poles of the S-matrix, at k = i�1, i�2, with

�1 = 157.93 MeV , �2 = �7.93 MeV . (12)

Note that �2 corresponds to the physical, virtual bound state in the 1S0 channel, whereas �1 is a
singularity outside of EFT(⇡/). For n = 4 one has

�1 = 172.04 MeV , �2 = 486.66 MeV , �3 = �650.77 MeV , �4 = �7.93 MeV . (13)

It is straightforward to find the separable potential which gives the rational S-matrix of the ERE
to O(kn):
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k, k0

�
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The effective expansion parameter of Eq. (1) is plotted in Fig. 2 for the two cases of interest
here, n = 2, 4. It is noteworthy that while these potentials differ substantially at low-k, they are
approximately phase equivalent for k < M⇡/2. In principle, phase equivalence can provide a sense of
the systematic uncertainty due to the omission of higher-body forces in the many-body calculation
of the superfluid gap.
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As noted in the introduction, the case n = 2 is special in the spin-singlet channel where ar < 0.

Here there is a UV/IR symmetry [33, 34] which serves as a starting point for a systematic EFT
expansion [32, 35]. That is, the S-matrix is invariant with respect to the transformation
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. (11)

Consequence of this symmetry are that a and r effects are treated to all orders and vi = 0 8 i. It is
straightforward to include shape parameter effects in perturbation theory as higher-order UV/IR
symmetry-breaking effects in the EFT [35].

For the computation of the superfluid gap in EFT(⇡/), the case n = 2 will be taken as the leading
free-space interaction. For simplicity in the computation of the gap, the subleading v2 effects will
be treated to all orders by considering the case n = 4. Consider the pole positions for the two cases
of interest. For n = 2 there are two poles of the S-matrix, at k = i�1, i�2, with

�1 = 157.93 MeV , �2 = �7.93 MeV . (12)

Note that �2 corresponds to the physical, virtual bound state in the 1S0 channel, whereas �1 is a
singularity outside of EFT(⇡/). For n = 4 one has

�1 = 172.04 MeV , �2 = 486.66 MeV , �3 = �650.77 MeV , �4 = �7.93 MeV . (13)

It is straightforward to find the separable potential which gives the rational S-matrix of the ERE
to O(kn):
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The effective expansion parameter of Eq. (1) is plotted in Fig. 2 for the two cases of interest
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approximately phase equivalent for k < M⇡/2. In principle, phase equivalence can provide a sense of
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free-space interaction. For simplicity in the computation of the gap, the subleading v2 effects will
be treated to all orders by considering the case n = 4. Consider the pole positions for the two cases
of interest. For n = 2 there are two poles of the S-matrix, at k = i�1, i�2, with

�1 = 157.93 MeV , �2 = �7.93 MeV . (12)

Note that �2 corresponds to the physical, virtual bound state in the 1S0 channel, whereas �1 is a
singularity outside of EFT(⇡/). For n = 4 one has

�1 = 172.04 MeV , �2 = 486.66 MeV , �3 = �650.77 MeV , �4 = �7.93 MeV . (13)

It is straightforward to find the separable potential which gives the rational S-matrix of the ERE
to O(kn):

V
�
k, k0

�
= �4⇡

M

��e(n)n�1

��
n/2Y

a=1

1p
�2a + k2

p
�2a + k02

. (14)

The effective expansion parameter of Eq. (1) is plotted in Fig. 2 for the two cases of interest
here, n = 2, 4. It is noteworthy that while these potentials differ substantially at low-k, they are
approximately phase equivalent for k < M⇡/2. In principle, phase equivalence can provide a sense of
the systematic uncertainty due to the omission of higher-body forces in the many-body calculation
of the superfluid gap.
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Abstract

We point out a redundancy in the operator structure of the pionless effec-
tive field theory, EFT(π/), which dramatically simplifies computations. This
redundancy is best exploited by using dibaryon fields as fundamental degrees

of freedom. In turn, this suggests a new power counting scheme which sums
range corrections to all orders. We explore this method with a few simple

observables: the deuteron charge form factor, np → dγ, and Compton scat-
tering from the deuteron. Unlike EFT(π/), the higher dimension operators
involving electroweak gauge fields are not renormalized by the s-wave strong

interactions, and therefore do not scale with inverse powers of the renormal-
ization scale. Thus, naive dimensional analysis of these operators is sufficient

to estimate their contribution to a given process.

1

4

B. ERE / EFT(⇡/)

It is a simple matter to express the effective range parameters at O(kn) in the ERE in terms of the
ESPs. One finds to O(kn) in the ERE,

a =
e(n)n�1

e(n)n

, r = 2
e(n)n�2

e(n)n�1

, vm = (�1)m�1
e(n)n�2m

e(n)n

✓ (n� 2m) . (9)

For n > 2 one has in addition the constraints

0 = e(n)` , (10)

for ` = n� 3, n� 5, n� 7, . . . > 0. These constraints ensure that the ERE terminates at O(kn).
As noted in the introduction, the case n = 2 is special in the spin-singlet channel where ar < 0.

Here there is a UV/IR symmetry [33, 34] which serves as a starting point for a systematic EFT
expansion [32, 35]. That is, the S-matrix is invariant with respect to the transformation
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Consequence of this symmetry are that a and r effects are treated to all orders and vi = 0 8 i. It is
straightforward to include shape parameter effects in perturbation theory as higher-order UV/IR
symmetry-breaking effects in the EFT [35].

For the computation of the superfluid gap in EFT(⇡/), the case n = 2 will be taken as the leading
free-space interaction. For simplicity in the computation of the gap, the subleading v2 effects will
be treated to all orders by considering the case n = 4. Consider the pole positions for the two cases
of interest. For n = 2 there are two poles of the S-matrix, at k = i�1, i�2, with

�1 = 157.93 MeV , �2 = �7.93 MeV . (12)

Note that �2 corresponds to the physical, virtual bound state in the 1S0 channel, whereas �1 is a
singularity outside of EFT(⇡/). For n = 4 one has

�1 = 172.04 MeV , �2 = 486.66 MeV , �3 = �650.77 MeV , �4 = �7.93 MeV . (13)

It is straightforward to find the separable potential which gives the rational S-matrix of the ERE
to O(kn):
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The effective expansion parameter of Eq. (1) is plotted in Fig. 2 for the two cases of interest
here, n = 2, 4. It is noteworthy that while these potentials differ substantially at low-k, they are
approximately phase equivalent for k < M⇡/2. In principle, phase equivalence can provide a sense of
the systematic uncertainty due to the omission of higher-body forces in the many-body calculation
of the superfluid gap.

Treat range corrections to all orders

k ! ��1�2
k

: S ! S

<latexit sha1_base64="7h7WaiOEvdnTvA1ELzf7Ax7CMVc=">AAAAAHicbZBNS8MwGMdTX+d8q3r0EhyCF0c7BooXh148TnQvsJaSZukWmrQlSYVR+nG8+FW8iCiyq5/EdOtBN5+Q5Mf/eR6S5+8njEplWVNjZXVtfWOzslXd3tnd2zcPDrsyTgUmHRyzWPR9JAmjEekoqhjpJ4Ig7jPS88PbIt97IkLSOHpUk4S4HI0iGlCMlJY88zqEDnRUrM9zJxAIZ84IcY48G5bQyLMwL4r0uirvh3mTBs+sWXVrFnAZ7BJqoIy2Z747wxinnEQKMyTlwLYS5WZIKIoZyatOKkmCcIhGZKAxQpxIN5sNmsNTrQxhEAu9IwVn6u+ODHEpJ9zXlRypsVzMFeJ/uUGqgks3o1GSKhLh+UNByqA2pnANDqkgWLGJBoQF1X+FeIy0XUp7W9Um2IsjL0O3Ubebdeu+WWvdlHZUwDE4AWfABhegBe5AG3QABs/gFXyAT+PFeDO+jOm8dMUoe47AnzC+fwAbpaLk</latexit>

Expansion about point of exact symmetry

(Farrell,SB)
(Peng,Lyu,König,Long)

(Timóteo,van Kolck)

Figure 1. Singlet s-wave np phase shifts plotted versus center-of-mass momentum k. The cyan
polygons are the Nijmegen phase shift analysis (PWA93) [11]. The red (dashed) curve is the LO
(NLO) phase shift in the pionless EFT.

Figure 2. Singlet s-wave np phase shifts plotted versus center-of-mass momentum k. The cyan
polygons are the Nijmegen phase shift analysis (PWA93) [11]. The black (solid,dashed,dotted) curves
are (LO,NLO,NNLO) phase shifts in EPT. The magenta dashed curve is the Pöschl-Teller potential
with fit scattering length and e↵ective range.

Note that the solution, i.e. the S-matrix, is invariant under interchange of the poles. As the

bound-state equation is a polynomial of second degree, the S2 permutation symmetry which

interchanges � and ⌫ is the Galois group of the polynomial.

The potential is plotted in Fig. 3. The corresponding phase shift is plotted in Fig. 2

(black solid curve).

2.4.2 NLO (Model 1b)

It is straightforward to include the next order in the ERE, with potential

V
�
k, k0

�
= �4⇡

M

���1�2�3+�1�2�4+�1�3�4+�2�3�4
�� 1p

(�2
1
+ k2)(�2

2
+ k2)

p
(�2

1
+ k02)(�2

2
+ k02)
(2.18)
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expansion [32, 35]. That is, the S-matrix is invariant with respect to the transformation

k 7! e(2)
2

k
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Consequence of this symmetry are that a and r effects are treated to all orders and vi = 0 8 i. It is
straightforward to include shape parameter effects in perturbation theory as higher-order UV/IR
symmetry-breaking effects in the EFT [35].

For the computation of the superfluid gap in EFT(⇡/), the case n = 2 will be taken as the leading
free-space interaction. For simplicity in the computation of the gap, the subleading v2 effects will
be treated to all orders by considering the case n = 4. Consider the pole positions for the two cases
of interest. For n = 2 there are two poles of the S-matrix, at k = i�1, i�2, with

�1 = 157.93 MeV , �2 = �7.93 MeV . (12)

Note that �2 corresponds to the physical, virtual bound state in the 1S0 channel, whereas �1 is a
singularity outside of EFT(⇡/). For n = 4 one has

�1 = 172.04 MeV , �2 = 486.66 MeV , �3 = �650.77 MeV , �4 = �7.93 MeV . (13)
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The effective expansion parameter of Eq. (1) is plotted in Fig. 2 for the two cases of interest
here, n = 2, 4. It is noteworthy that while these potentials differ substantially at low-k, they are
approximately phase equivalent for k < M⇡/2. In principle, phase equivalence can provide a sense of
the systematic uncertainty due to the omission of higher-body forces in the many-body calculation
of the superfluid gap.
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I. INTRODUCTION

Dense systems of cold neutrons are thought to be found in neutron stars and in the outer shells
of certain heavy-nuclei [1, 2]. As neutrons experience attractive interactions, in the presence of a
Fermi surface, they pair and the many-neutron system is in a superfluid phase [3, 4]. This phase
is characterized by the energy gap, �, that separates the ground and first excited states of the
many-body system. Quantitative knowledge of the gap is essential for understanding properties of
neutron stars. While the equation-of-state of neutron matter is largely insensitive to pairing, the
specific heat and the neutrino emmissivity depend strongly on the superfluid gap, and these in turn
influence the neutron star cooling rates [5]. In addition, observables like the spin frequency [6] are
sensitive to gap effects. For recent reviews of the role of superfluidity in neutrons star physics see
Refs. [7–10]. Despite considerable effort by nuclear theorists over many decades to compute the
superfluid gap in neutron matter, there is at present little consensus among different techniques [11–
19]. This is due to several factors. Firstly, the gap energy is very small relative to a typical scale of
the strong interaction. In addition, there is both an absence of a clear hierarchy of scales, as well as
the possible presence of significant many-body forces, at moderate densities. Finally, and perhaps
most relevant to the present discussion is the intrinsic complexity of the in-medium interaction
which plays a critical role is a systematic calculation of the gap. In parallel with various theoretical
methods, there have also been ab initio approaches that determine the gap using Quantum Monte
Carlo (QMC) simulations [20–23]. While, in principle, these QMC simulations do not rely on
uncontrolled approximations, and provide a powerful benchmark for nuclear theorists to compare
to, these determinations of the gap work far from the thermodynamic limit, which may give rise to
uncontrolled finite-size effects which could distort the in-medium interaction.

Recent work has developed a power-counting scheme for the effective field theory (EFT) com-
putation of the superfluid gap in a many-body system of spin-1/2 fermions, which interact via
momentum-independent contact forces [24]. This scheme has enabled the computation of the uni-
versal corrections to the leading particle-hole screening effects computed long ago by Gor’kov-Melik-
Barkhudarov (GM) in Ref. [25]. The EFT is organized as an expansion in kFa, where a is the s-wave
fermion-fermion scattering length. Generally, one expects an expansion in the quantum mechanical
two-body potential, V (k,k0), which is a function of the relative momenta, k and k0, of the incoming
and outgoing particles. Specifically, the expansion parameter is taken as

MkF
4⇡

V (kF , kF ) , (1)

where M is the nucleon mass, and in the momentum-independent case, V = 4⇡a/M . Given the
large scattering length in the singlet nucleon-nucleon system, the perturbative expansion in kFa is
valid only for very small densities that are not of particular phenomenological interest. The goal of
this paper is to compute the gap with realistic potentials up to and beyond the nuclear saturation
density.

In order to extend the gap calculation to higher densities, it is necessary to construct the
potentials that reproduce the nucleon-nucleon phase shifts up to a given value of the center-of-mass
(c.o.m.) momentum, k. As a first step in this direction, consider the pionless EFT (EFT(⇡/)) [26–
28]. This is an EFT of contact operators that is formally valid for k < M⇡/2 (and in most practical
applications for k < M⇡). The low-energy constants in this EFT are matched to the effective-range
parameters. For the s-wave, the effective range expansion (ERE) takes the form,

k cot �(k) = �1

a
+

1

2
rk2 + v2k

4 + v3k
6 +O(k8) , (2)

where here �(k) is the 1S0 phase shift, r is the effective range, and the vi are shape parameters.

g �!
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Fig. 1 The LO scattering amplitude from the LS equation. The blue circle corresponds to

the LO amplitude and the split square is an insertion of the LO separable potential.

with phase-equivalent potential V̄LO (µ, ⌫; p, p0) = ⇣VLO (⌫, µ; p, p0), and

a =
1

µ
+

1

⇣⌫
, r =

2

µ+ ⇣⌫
, vn = 0 . (47)

Having both a and r large as compared to the (inverse) UV scale M�1 ⇠
M�1

⇡ generally requires µ, ⌫ ⇠ @. Expanding VLO in powers of the momenta
for p, p0 ⌧ @ and matching onto the momentum expansion of Eq. (17) leads
to the scaling

C(0)
LO m ⇠ 4⇡

M@m+1
. (48)

The coe�cients of the residual potential are expected to be suppressed, in
a manner to be determined below, by the UV scale. As the potential is not
unique, the decomposition into IR enhanced and UV suppressed contribu-
tions is not unique. Treating the expanded LO potential as a renormalization

scheme, then for momenta p, p0 ⇠ @, all C(0)
LO m terms in the potential should

be summed into the LO potential to give Eq. (46) which is treated exactly in
the LS equation, while the residual potential is treated in perturbation theory.

4.6 Range corrections with a finite-range scheme: NLO

Recall that treating a, r ⇠ @�1 and vn ⇠ M�2n+1, for k ⌧ M, the ERE of
Eq. (1) can be expanded to give the NLO amplitude

TNLO(k) =
4⇡

M

✓
�1

a
+

1

2
rk2 � ik

◆�2

v2k
4 . (49)

Note that it has been assumed in this expression that r is close to its “physical”
value. More generally, and of greater utility when considering realistic NN
scattering, one can decompose r = rLO + rNLO, where rLO ⇠ @�1 and rNLO ⇠
M�1. In this case

TNLO(k) =
4⇡

M

✓
�1

a
+

1

2
rLOk

2 � ik

◆�2
1
2rNLOk2 (50)

so that shape-parameter corrections enter at NNLO (as a subleading contri-
bution to range-squared e↵ects).

3

FIG. 1. Sum of Feynman diagrams contributing to fermion-fermion scattering. The black blob corresponds
to the g interaction from Eq. (6).

II. EFT PRELIMINARIES

A. Free-space EFT

Consider a system of spin-1/2 Fermions in vacuum which interact via two-body contact forces. At
very low energies, the Lagrange density takes the Galilean invariant form

L =
X

�=",#

"
 †
�

 
i@t +

�!r 2

2M

!
 � � 1

2
g( †

� �)
2

#
, (6)

where the field  †
� creates a fermion of spin � =", # and g is the bare coupling constant. The s-wave

scattering amplitude corresponding to a momentum independent interaction is

T (k) = �4⇡

M

h
� 1/a� ik

i�1

, (7)

where k =
p
ME is the on-shell center-of-mass (c.o.m.) momentum and a is the scattering length.

Computing the scattering amplitude in the EFT from the sum of Feynman diagrams shown in
Fig. 1 gives

T (k) = g + g2 I(k) + g3 I(k)2 + . . . =

✓
1

g
� I(k)

◆�1

, (8)

where the geometric series has been summed and where the divergent integral

I(k) ⌘
⇣µ
2

⌘3�d
M

Z
ddl

(2⇡)d
1

k2 � l2 + i✏
PDS��! � M

4⇡
(µ+ ik) , (9)

has been evaluated in dimensional regularization with the PDS scheme [41, 42], where d is the num-
ber of spatial dimensions and µ is the renormalization group (RG) scale. Matching the scattering
amplitudes in Eqs. (7) and (8) gives

1

a
=

4⇡

Mg
+ µ ⌘ 4⇡

MgR
, (10)

where the renormalized coupling gR has been defined. Note that � = (M kF gR)/(2⇡2). For most
of the calculations in this work it is convenient to work in the MS scheme where µ = 0 and gR = g.
However, the PDS scheme is useful as a consistency check that the theory is renormalizable; i.e., that
all the µ-dependence cancels in physical quantities. In PDS, the bare coupling in the Lagrangian
Eq. (6), runs with the RG in such a way to cancel the UV divergences (µ-dependence) coming from
the loop integrals. That is,

g(µ) =
4⇡a

M

1

1� aµ
=

4⇡a

M

�
1 + aµ � O

⇥
(aµ)2

⇤�
. (11)

In a consistent EFT, observables will be µ-independent at each order in the expansion. This is
verified for the gap calculation to NNLO in App. C.

�!
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I. INTRODUCTION

Dense systems of cold neutrons are thought to be found in neutron stars and in the outer shells
of certain heavy-nuclei [1, 2]. As neutrons experience attractive interactions, in the presence of a
Fermi surface, they pair and the many-neutron system is in a superfluid phase [3, 4]. This phase
is characterized by the energy gap, �, that separates the ground and first excited states of the
many-body system. Quantitative knowledge of the gap is essential for understanding properties of
neutron stars. While the equation-of-state of neutron matter is largely insensitive to pairing, the
specific heat and the neutrino emmissivity depend strongly on the superfluid gap, and these in turn
influence the neutron star cooling rates [5]. In addition, observables like the spin frequency [6] are
sensitive to gap effects. For recent reviews of the role of superfluidity in neutrons star physics see
Refs. [7–10]. Despite considerable effort by nuclear theorists over many decades to compute the
superfluid gap in neutron matter, there is at present little consensus among different techniques [11–
19]. This is due to several factors. Firstly, the gap energy is very small relative to a typical scale of
the strong interaction. In addition, there is both an absence of a clear hierarchy of scales, as well as
the possible presence of significant many-body forces, at moderate densities. Finally, and perhaps
most relevant to the present discussion is the intrinsic complexity of the in-medium interaction
which plays a critical role is a systematic calculation of the gap. In parallel with various theoretical
methods, there have also been ab initio approaches that determine the gap using Quantum Monte
Carlo (QMC) simulations [20–23]. While, in principle, these QMC simulations do not rely on
uncontrolled approximations, and provide a powerful benchmark for nuclear theorists to compare
to, these determinations of the gap work far from the thermodynamic limit, which may give rise to
uncontrolled finite-size effects which could distort the in-medium interaction.

Recent work has developed a power-counting scheme for the effective field theory (EFT) com-
putation of the superfluid gap in a many-body system of spin-1/2 fermions, which interact via
momentum-independent contact forces [24]. This scheme has enabled the computation of the uni-
versal corrections to the leading particle-hole screening effects computed long ago by Gor’kov-Melik-
Barkhudarov (GM) in Ref. [25]. The EFT is organized as an expansion in kFa, where a is the s-wave
fermion-fermion scattering length. Generally, one expects an expansion in the quantum mechanical
two-body potential, V (k,k0), which is a function of the relative momenta, k and k0, of the incoming
and outgoing particles. Specifically, the expansion parameter is taken as

MkF
4⇡

V (kF , kF ) , (1)

where M is the nucleon mass, and in the momentum-independent case, V = 4⇡a/M . Given the
large scattering length in the singlet nucleon-nucleon system, the perturbative expansion in kFa is
valid only for very small densities that are not of particular phenomenological interest. The goal of
this paper is to compute the gap with realistic potentials up to and beyond the nuclear saturation
density.

In order to extend the gap calculation to higher densities, it is necessary to construct the
potentials that reproduce the nucleon-nucleon phase shifts up to a given value of the center-of-mass
(c.o.m.) momentum, k. As a first step in this direction, consider the pionless EFT (EFT(⇡/)) [26–
28]. This is an EFT of contact operators that is formally valid for k < M⇡/2 (and in most practical
applications for k < M⇡). The low-energy constants in this EFT are matched to the effective-range
parameters. For the s-wave, the effective range expansion (ERE) takes the form,

k cot �(k) = �1

a
+

1

2
rk2 + v2k

4 + v3k
6 +O(k8) , (2)

where here �(k) is the 1S0 phase shift, r is the effective range, and the vi are shape parameters.

g �!

<latexit sha1_base64="JSsBLtl+IOGh6psKKpvkM9CUuYM=">AAAAAHicbVBNSwMxEM3Wr1q/tnr0EiyCp7IrBT0WvXisYD+gXUo2Tbeh2WRJZi1l7U/x4kERr/4Sb/4b03YP2vpg4PHeDDPzwkRwA5737RQ2Nre2d4q7pb39g8Mjt3zcMirVlDWpEkp3QmKY4JI1gYNgnUQzEoeCtcPx7dxvPzJtuJIPME1YEJNI8iGnBKzUd8sR7gklI82jERCt1aTvVryqtwBeJ35OKihHo+9+9QaKpjGTQAUxput7CQQZ0cCpYLNSLzUsIXRMIta1VJKYmSBbnD7D51YZ4KHStiTghfp7IiOxMdM4tJ0xgZFZ9ebif143heF1kHGZpMAkXS4apgKDwvMc8IBrRkFMLSFUc3srpiOiCQWbVsmG4K++vE5al1W/VvXua5X6TR5HEZ2iM3SBfHSF6ugONVATUTRBz+gVvTlPzovz7nwsWwtOPnOC/sD5/AGScZQ0</latexit>

14 Silas R. Beane, Roland C. Farrell

+

<latexit sha1_base64="5gUpEueemIOpL4kdq4Bq/9+7w9Q=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXAuot6MVjAuYByRJmJ73JmNnZZWZWCCFf4MWDIl79JG/+jZNkD5pY0FBUddPdFSSCa+O6305ubX1jcyu/XdjZ3ds/KB4eNXWcKoYNFotYtQOqUXCJDcONwHaikEaBwFYwupv5rSdUmsfywYwT9CM6kDzkjBor1S96xZJbducgq8TLSAky1HrFr24/ZmmE0jBBte54bmL8CVWGM4HTQjfVmFA2ogPsWCpphNqfzA+dkjOr9EkYK1vSkLn6e2JCI63HUWA7I2qGetmbif95ndSE1/6EyyQ1KNliUZgKYmIy+5r0uUJmxNgSyhS3txI2pIoyY7Mp2BC85ZdXSfOy7FXKN/VKqXqbxZGHEziFc/DgCqpwDzVoAAOEZ3iFN+fReXHenY9Fa87JZo7hD5zPH3VljLs=</latexit>

=

<latexit sha1_base64="bfeCq9A8urWb9Kpp9lvP55mJeic=">AAAAAHicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoBeh6MVjC7YW2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53C2vrG5lZxu7Szu7d/UD48aus4VQxbLBax6gRUo+ASW4YbgZ1EIY0CgQ/B+HbmPzyh0jyW92aSoB/RoeQhZ9RYqXndL1fcqjsHWSVeTiqQo9Evf/UGMUsjlIYJqnXXcxPjZ1QZzgROS71UY0LZmA6xa6mkEWo/mx86JWdWGZAwVrakIXP190RGI60nUWA7I2pGetmbif953dSEV37GZZIalGyxKEwFMTGZfU0GXCEzYmIJZYrbWwkbUUWZsdmUbAje8surpH1R9WpVt1mr1G/yOIpwAqdwDh5cQh3uoAEtYIDwDK/w5jw6L86787FoLTj5zDH8gfP5A43LjMQ=</latexit>

Fig. 1 The LO scattering amplitude from the LS equation. The blue circle corresponds to

the LO amplitude and the split square is an insertion of the LO separable potential.

with phase-equivalent potential V̄LO (µ, ⌫; p, p0) = ⇣VLO (⌫, µ; p, p0), and

a =
1

µ
+

1

⇣⌫
, r =

2

µ+ ⇣⌫
, vn = 0 . (47)

Having both a and r large as compared to the (inverse) UV scale M�1 ⇠
M�1

⇡ generally requires µ, ⌫ ⇠ @. Expanding VLO in powers of the momenta
for p, p0 ⌧ @ and matching onto the momentum expansion of Eq. (17) leads
to the scaling

C(0)
LO m ⇠ 4⇡

M@m+1
. (48)

The coe�cients of the residual potential are expected to be suppressed, in
a manner to be determined below, by the UV scale. As the potential is not
unique, the decomposition into IR enhanced and UV suppressed contribu-
tions is not unique. Treating the expanded LO potential as a renormalization

scheme, then for momenta p, p0 ⇠ @, all C(0)
LO m terms in the potential should

be summed into the LO potential to give Eq. (46) which is treated exactly in
the LS equation, while the residual potential is treated in perturbation theory.

4.6 Range corrections with a finite-range scheme: NLO

Recall that treating a, r ⇠ @�1 and vn ⇠ M�2n+1, for k ⌧ M, the ERE of
Eq. (1) can be expanded to give the NLO amplitude

TNLO(k) =
4⇡

M

✓
�1

a
+

1

2
rk2 � ik

◆�2

v2k
4 . (49)

Note that it has been assumed in this expression that r is close to its “physical”
value. More generally, and of greater utility when considering realistic NN
scattering, one can decompose r = rLO + rNLO, where rLO ⇠ @�1 and rNLO ⇠
M�1. In this case

TNLO(k) =
4⇡

M

✓
�1

a
+

1

2
rLOk

2 � ik

◆�2
1
2rNLOk2 (50)

so that shape-parameter corrections enter at NNLO (as a subleading contri-
bution to range-squared e↵ects).

3

FIG. 1. Sum of Feynman diagrams contributing to fermion-fermion scattering. The black blob corresponds
to the g interaction from Eq. (6).

II. EFT PRELIMINARIES

A. Free-space EFT

Consider a system of spin-1/2 Fermions in vacuum which interact via two-body contact forces. At
very low energies, the Lagrange density takes the Galilean invariant form

L =
X

�=",#

"
 †
�

 
i@t +

�!r 2

2M

!
 � � 1

2
g( †

� �)
2

#
, (6)

where the field  †
� creates a fermion of spin � =", # and g is the bare coupling constant. The s-wave

scattering amplitude corresponding to a momentum independent interaction is

T (k) = �4⇡

M

h
� 1/a� ik

i�1

, (7)

where k =
p
ME is the on-shell center-of-mass (c.o.m.) momentum and a is the scattering length.

Computing the scattering amplitude in the EFT from the sum of Feynman diagrams shown in
Fig. 1 gives

T (k) = g + g2 I(k) + g3 I(k)2 + . . . =

✓
1

g
� I(k)

◆�1

, (8)

where the geometric series has been summed and where the divergent integral

I(k) ⌘
⇣µ
2

⌘3�d
M

Z
ddl

(2⇡)d
1

k2 � l2 + i✏
PDS��! � M

4⇡
(µ+ ik) , (9)

has been evaluated in dimensional regularization with the PDS scheme [41, 42], where d is the num-
ber of spatial dimensions and µ is the renormalization group (RG) scale. Matching the scattering
amplitudes in Eqs. (7) and (8) gives

1

a
=

4⇡

Mg
+ µ ⌘ 4⇡

MgR
, (10)

where the renormalized coupling gR has been defined. Note that � = (M kF gR)/(2⇡2). For most
of the calculations in this work it is convenient to work in the MS scheme where µ = 0 and gR = g.
However, the PDS scheme is useful as a consistency check that the theory is renormalizable; i.e., that
all the µ-dependence cancels in physical quantities. In PDS, the bare coupling in the Lagrangian
Eq. (6), runs with the RG in such a way to cancel the UV divergences (µ-dependence) coming from
the loop integrals. That is,

g(µ) =
4⇡a

M

1

1� aµ
=

4⇡a

M

�
1 + aµ � O

⇥
(aµ)2

⇤�
. (11)

In a consistent EFT, observables will be µ-independent at each order in the expansion. This is
verified for the gap calculation to NNLO in App. C.
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Many-body physics with momentum-dependent interaction

1

I. INTRODUCTION

Dense systems of cold neutrons are thought to be found in neutron stars and in the outer shells
of certain heavy-nuclei [1, 2]. As neutrons experience attractive interactions, in the presence of a
Fermi surface, they pair and the many-neutron system is in a superfluid phase [3, 4]. This phase
is characterized by the energy gap, �, that separates the ground and first excited states of the
many-body system. Quantitative knowledge of the gap is essential for understanding properties of
neutron stars. While the equation-of-state of neutron matter is largely insensitive to pairing, the
specific heat and the neutrino emmissivity depend strongly on the superfluid gap, and these in turn
influence the neutron star cooling rates [5]. In addition, observables like the spin frequency [6] are
sensitive to gap effects. For recent reviews of the role of superfluidity in neutrons star physics see
Refs. [7–10]. Despite considerable effort by nuclear theorists over many decades to compute the
superfluid gap in neutron matter, there is at present little consensus among different techniques [11–
19]. This is due to several factors. Firstly, the gap energy is very small relative to a typical scale of
the strong interaction. In addition, there is both an absence of a clear hierarchy of scales, as well as
the possible presence of significant many-body forces, at moderate densities. Finally, and perhaps
most relevant to the present discussion is the intrinsic complexity of the in-medium interaction
which plays a critical role is a systematic calculation of the gap. In parallel with various theoretical
methods, there have also been ab initio approaches that determine the gap using Quantum Monte
Carlo (QMC) simulations [20–23]. While, in principle, these QMC simulations do not rely on
uncontrolled approximations, and provide a powerful benchmark for nuclear theorists to compare
to, these determinations of the gap work far from the thermodynamic limit, which may give rise to
uncontrolled finite-size effects which could distort the in-medium interaction.

Recent work has developed a power-counting scheme for the effective field theory (EFT) com-
putation of the superfluid gap in a many-body system of spin-1/2 fermions, which interact via
momentum-independent contact forces [24]. This scheme has enabled the computation of the uni-
versal corrections to the leading particle-hole screening effects computed long ago by Gor’kov-Melik-
Barkhudarov (GM) in Ref. [25]. The EFT is organized as an expansion in kFa, where a is the s-wave
fermion-fermion scattering length. Generally, one expects an expansion in the quantum mechanical
two-body potential, V (k,k0), which is a function of the relative momenta, k and k0, of the incoming
and outgoing particles. Specifically, the expansion parameter is taken as

MkF
4⇡

V (kF , kF ) , (1)

where M is the nucleon mass, and in the momentum-independent case, V = 4⇡a/M . Given the
large scattering length in the singlet nucleon-nucleon system, the perturbative expansion in kFa is
valid only for very small densities that are not of particular phenomenological interest. The goal of
this paper is to compute the gap with realistic potentials up to and beyond the nuclear saturation
density.

In order to extend the gap calculation to higher densities, it is necessary to construct the
potentials that reproduce the nucleon-nucleon phase shifts up to a given value of the center-of-mass
(c.o.m.) momentum, k. As a first step in this direction, consider the pionless EFT (EFT(⇡/)) [26–
28]. This is an EFT of contact operators that is formally valid for k < M⇡/2 (and in most practical
applications for k < M⇡). The low-energy constants in this EFT are matched to the effective-range
parameters. For the s-wave, the effective range expansion (ERE) takes the form,

k cot �(k) = �1

a
+

1

2
rk2 + v2k

4 + v3k
6 +O(k8) , (2)

where here �(k) is the 1S0 phase shift, r is the effective range, and the vi are shape parameters.

kFa =
MkF
4⇡

· 4⇡a
M
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Dense systems of cold neutrons are thought to be found in neutron stars and in the outer shells
of certain heavy-nuclei [1, 2]. As neutrons experience attractive interactions, in the presence of a
Fermi surface, they pair and the many-neutron system is in a superfluid phase [3, 4]. This phase
is characterized by the energy gap, �, that separates the ground and first excited states of the
many-body system. Quantitative knowledge of the gap is essential for understanding properties of
neutron stars. While the equation-of-state of neutron matter is largely insensitive to pairing, the
specific heat and the neutrino emmissivity depend strongly on the superfluid gap, and these in turn
influence the neutron star cooling rates [5]. In addition, observables like the spin frequency [6] are
sensitive to gap effects. For recent reviews of the role of superfluidity in neutrons star physics see
Refs. [7–10]. Despite considerable effort by nuclear theorists over many decades to compute the
superfluid gap in neutron matter, there is at present little consensus among different techniques [11–
19]. This is due to several factors. Firstly, the gap energy is very small relative to a typical scale of
the strong interaction. In addition, there is both an absence of a clear hierarchy of scales, as well as
the possible presence of significant many-body forces, at moderate densities. Finally, and perhaps
most relevant to the present discussion is the intrinsic complexity of the in-medium interaction
which plays a critical role is a systematic calculation of the gap. In parallel with various theoretical
methods, there have also been ab initio approaches that determine the gap using Quantum Monte
Carlo (QMC) simulations [20–23]. While, in principle, these QMC simulations do not rely on
uncontrolled approximations, and provide a powerful benchmark for nuclear theorists to compare
to, these determinations of the gap work far from the thermodynamic limit, which may give rise to
uncontrolled finite-size effects which could distort the in-medium interaction.

Recent work has developed a power-counting scheme for the effective field theory (EFT) com-
putation of the superfluid gap in a many-body system of spin-1/2 fermions, which interact via
momentum-independent contact forces [24]. This scheme has enabled the computation of the uni-
versal corrections to the leading particle-hole screening effects computed long ago by Gor’kov-Melik-
Barkhudarov (GM) in Ref. [25]. The EFT is organized as an expansion in kFa, where a is the s-wave
fermion-fermion scattering length. Generally, one expects an expansion in the quantum mechanical
two-body potential, V (k,k0), which is a function of the relative momenta, k and k0, of the incoming
and outgoing particles. Specifically, the expansion parameter is taken as

MkF
4⇡

V (kF , kF ) , (1)

where M is the nucleon mass, and in the momentum-independent case, V = 4⇡a/M . Given the
large scattering length in the singlet nucleon-nucleon system, the perturbative expansion in kFa is
valid only for very small densities that are not of particular phenomenological interest. The goal of
this paper is to compute the gap with realistic potentials up to and beyond the nuclear saturation
density.

In order to extend the gap calculation to higher densities, it is necessary to construct the
potentials that reproduce the nucleon-nucleon phase shifts up to a given value of the center-of-mass
(c.o.m.) momentum, k. As a first step in this direction, consider the pionless EFT (EFT(⇡/)) [26–
28]. This is an EFT of contact operators that is formally valid for k < M⇡/2 (and in most practical
applications for k < M⇡). The low-energy constants in this EFT are matched to the effective-range
parameters. For the s-wave, the effective range expansion (ERE) takes the form,

k cot �(k) = �1
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+
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2
rk2 + v2k

4 + v3k
6 +O(k8) , (2)

where here �(k) is the 1S0 phase shift, r is the effective range, and the vi are shape parameters.
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Fig. 1 The LO scattering amplitude from the LS equation. The blue circle corresponds to

the LO amplitude and the split square is an insertion of the LO separable potential.

with phase-equivalent potential V̄LO (µ, ⌫; p, p0) = ⇣VLO (⌫, µ; p, p0), and

a =
1

µ
+

1

⇣⌫
, r =

2

µ+ ⇣⌫
, vn = 0 . (47)

Having both a and r large as compared to the (inverse) UV scale M�1 ⇠
M�1

⇡ generally requires µ, ⌫ ⇠ @. Expanding VLO in powers of the momenta
for p, p0 ⌧ @ and matching onto the momentum expansion of Eq. (17) leads
to the scaling

C(0)
LO m ⇠ 4⇡

M@m+1
. (48)

The coe�cients of the residual potential are expected to be suppressed, in
a manner to be determined below, by the UV scale. As the potential is not
unique, the decomposition into IR enhanced and UV suppressed contribu-
tions is not unique. Treating the expanded LO potential as a renormalization

scheme, then for momenta p, p0 ⇠ @, all C(0)
LO m terms in the potential should

be summed into the LO potential to give Eq. (46) which is treated exactly in
the LS equation, while the residual potential is treated in perturbation theory.

4.6 Range corrections with a finite-range scheme: NLO

Recall that treating a, r ⇠ @�1 and vn ⇠ M�2n+1, for k ⌧ M, the ERE of
Eq. (1) can be expanded to give the NLO amplitude

TNLO(k) =
4⇡

M

✓
�1

a
+

1

2
rk2 � ik

◆�2

v2k
4 . (49)

Note that it has been assumed in this expression that r is close to its “physical”
value. More generally, and of greater utility when considering realistic NN
scattering, one can decompose r = rLO + rNLO, where rLO ⇠ @�1 and rNLO ⇠
M�1. In this case

TNLO(k) =
4⇡

M

✓
�1

a
+

1

2
rLOk

2 � ik

◆�2
1
2rNLOk2 (50)

so that shape-parameter corrections enter at NNLO (as a subleading contri-
bution to range-squared e↵ects).
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FIG. 1. Sum of Feynman diagrams contributing to fermion-fermion scattering. The black blob corresponds
to the g interaction from Eq. (6).

II. EFT PRELIMINARIES

A. Free-space EFT

Consider a system of spin-1/2 Fermions in vacuum which interact via two-body contact forces. At
very low energies, the Lagrange density takes the Galilean invariant form

L =
X

�=",#

"
 †
�

 
i@t +

�!r 2

2M

!
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2
g( †

� �)
2

#
, (6)

where the field  †
� creates a fermion of spin � =", # and g is the bare coupling constant. The s-wave

scattering amplitude corresponding to a momentum independent interaction is

T (k) = �4⇡

M

h
� 1/a� ik

i�1

, (7)

where k =
p
ME is the on-shell center-of-mass (c.o.m.) momentum and a is the scattering length.

Computing the scattering amplitude in the EFT from the sum of Feynman diagrams shown in
Fig. 1 gives

T (k) = g + g2 I(k) + g3 I(k)2 + . . . =

✓
1

g
� I(k)

◆�1

, (8)

where the geometric series has been summed and where the divergent integral

I(k) ⌘
⇣µ
2

⌘3�d
M

Z
ddl

(2⇡)d
1

k2 � l2 + i✏
PDS��! � M

4⇡
(µ+ ik) , (9)

has been evaluated in dimensional regularization with the PDS scheme [41, 42], where d is the num-
ber of spatial dimensions and µ is the renormalization group (RG) scale. Matching the scattering
amplitudes in Eqs. (7) and (8) gives

1

a
=

4⇡

Mg
+ µ ⌘ 4⇡

MgR
, (10)

where the renormalized coupling gR has been defined. Note that � = (M kF gR)/(2⇡2). For most
of the calculations in this work it is convenient to work in the MS scheme where µ = 0 and gR = g.
However, the PDS scheme is useful as a consistency check that the theory is renormalizable; i.e., that
all the µ-dependence cancels in physical quantities. In PDS, the bare coupling in the Lagrangian
Eq. (6), runs with the RG in such a way to cancel the UV divergences (µ-dependence) coming from
the loop integrals. That is,

g(µ) =
4⇡a

M

1

1� aµ
=

4⇡a

M

�
1 + aµ � O

⇥
(aµ)2

⇤�
. (11)

In a consistent EFT, observables will be µ-independent at each order in the expansion. This is
verified for the gap calculation to NNLO in App. C.
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FIG. 2. The on-shell singlet np potential evaluated at kF in units of MkF /(4⇡) to O(k0) (solid line), O(k2)
(dashed line), and O(k4) (dotted line) in the ERE.

C. Resummed ERE

In order to go beyond EFT(⇡/), the pion should be included as a fundamental degree of freedom;
i.e. chiral EFT potentials should be used, including three-body force effects. Here, the new singu-
larities due to a physical, propagating pion will be modeled by simple poles so as to maintain the
rational form for the S-matrix and its correspondence with simple potentials which facilitate the
gap calculation. For obvious reasons, these potentials and their associated rational S-matrices will
be referred to as resummed ERE (rERE) models.

1. rERE Model 1

Consider the following phase shift:

k cot �(k) = �1

a
+

1

2
rk2

k2⇤
k2⇤ � k2

. (15)

This phase shift incorporates the zero at k⇤ = 353 MeV and is plotted in Fig. 3. It is a special case
of the rational S-matrix of Eq. (3) with three poles (n = 3) and � = ⇡. One readily finds

a =
e(3)
2

e(3)
3

, r = 2
(e(3)

1
e(3)
2

� e(3)
3

)

(e(3)
2

)2
, k2⇤ = e(3)

2
, (16)

where

�1 = 212.19 MeV , �2 = 618.74 MeV , �3 = �7.93 MeV . (17)

It is again straightforward to find the separable potential which gives this rational S-matrix:

V
�
k, k0

�
= c0

s
k2⇤ � k2

�2
1
+ k2

s
k2⇤ � k02

�2
1
+ k02

. (18)
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I. INTRODUCTION

Dense systems of cold neutrons are thought to be found in neutron stars and in the outer shells
of certain heavy-nuclei [1, 2]. As neutrons experience attractive interactions, in the presence of a
Fermi surface, they pair and the many-neutron system is in a superfluid phase [3, 4]. This phase
is characterized by the energy gap, �, that separates the ground and first excited states of the
many-body system. Quantitative knowledge of the gap is essential for understanding properties of
neutron stars. While the equation-of-state of neutron matter is largely insensitive to pairing, the
specific heat and the neutrino emmissivity depend strongly on the superfluid gap, and these in turn
influence the neutron star cooling rates [5]. In addition, observables like the spin frequency [6] are
sensitive to gap effects. For recent reviews of the role of superfluidity in neutrons star physics see
Refs. [7–10]. Despite considerable effort by nuclear theorists over many decades to compute the
superfluid gap in neutron matter, there is at present little consensus among different techniques [11–
19]. This is due to several factors. Firstly, the gap energy is very small relative to a typical scale of
the strong interaction. In addition, there is both an absence of a clear hierarchy of scales, as well as
the possible presence of significant many-body forces, at moderate densities. Finally, and perhaps
most relevant to the present discussion is the intrinsic complexity of the in-medium interaction
which plays a critical role is a systematic calculation of the gap. In parallel with various theoretical
methods, there have also been ab initio approaches that determine the gap using Quantum Monte
Carlo (QMC) simulations [20–23]. While, in principle, these QMC simulations do not rely on
uncontrolled approximations, and provide a powerful benchmark for nuclear theorists to compare
to, these determinations of the gap work far from the thermodynamic limit, which may give rise to
uncontrolled finite-size effects which could distort the in-medium interaction.

Recent work has developed a power-counting scheme for the effective field theory (EFT) com-
putation of the superfluid gap in a many-body system of spin-1/2 fermions, which interact via
momentum-independent contact forces [24]. This scheme has enabled the computation of the uni-
versal corrections to the leading particle-hole screening effects computed long ago by Gor’kov-Melik-
Barkhudarov (GM) in Ref. [25]. The EFT is organized as an expansion in kFa, where a is the s-wave
fermion-fermion scattering length. Generally, one expects an expansion in the quantum mechanical
two-body potential, V (k,k0), which is a function of the relative momenta, k and k0, of the incoming
and outgoing particles. Specifically, the expansion parameter is taken as

MkF
4⇡

V (kF , kF ) , (1)

where M is the nucleon mass, and in the momentum-independent case, V = 4⇡a/M . Given the
large scattering length in the singlet nucleon-nucleon system, the perturbative expansion in kFa is
valid only for very small densities that are not of particular phenomenological interest. The goal of
this paper is to compute the gap with realistic potentials up to and beyond the nuclear saturation
density.

In order to extend the gap calculation to higher densities, it is necessary to construct the
potentials that reproduce the nucleon-nucleon phase shifts up to a given value of the center-of-mass
(c.o.m.) momentum, k. As a first step in this direction, consider the pionless EFT (EFT(⇡/)) [26–
28]. This is an EFT of contact operators that is formally valid for k < M⇡/2 (and in most practical
applications for k < M⇡). The low-energy constants in this EFT are matched to the effective-range
parameters. For the s-wave, the effective range expansion (ERE) takes the form,

k cot �(k) = �1

a
+

1

2
rk2 + v2k

4 + v3k
6 +O(k8) , (2)

where here �(k) is the 1S0 phase shift, r is the effective range, and the vi are shape parameters.

kFa =
MkF
4⇡

· 4⇡a
M

�!
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FIG. 3. The 1S0 np phase shift in rERE model 1 (dashed line) and in rERE model 2 (dotted line). The
cyan polygons are the Nijmegen phase shift analysis (PWA93) [36].

This potential is no longer regular but is conveniently renormalized using dimensional regularization
with MS. One finds

c0
MS��! � 4⇡

M

⇣
e(3)
1

⌘�1

. (19)

The S-matrix and its partner potential are designed to account for the transition of the force from
attraction to repulsion. This is clearly exhibited by the on-shell potential. However, in the gap
calculation, the off-shell potential is relevant and one must be vigilant that no new singularities are
introduced in the loop integrations. Note that, due to the invariance of the S-matrix with respect
to permutations of the singularities, there is a phase-equivalent potential

V
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s
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�2
2
+ k02

. (20)

It is a useful feature of rational S-matrices that the permutation symmetry of the pole positions
allows simple identification of phase-equivalent potentials. The effective expansion parameters of
Eqs. (18) and (20) are plotted in Fig. 4.

2. rERE Model 2

It is straightforward to design models with additional freedom. Consider the following phase shift:

k cot �(k) = �1

a
+
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2
rk2 +

✓
v2 +

1
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rk�2

⇤

◆
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k2⇤
k2⇤ � k2

. (21)

This phase shift is plotted in Fig. 3. It is a special case of the rational S-matrix of Eq. (3) with
four poles (n = 4) and � = 0. One readily finds
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FIG. 3. The 1S0 np phase shift in rERE model 1 (dashed line) and in rERE model 2 (dotted line). The
cyan polygons are the Nijmegen phase shift analysis (PWA93) [36].

This potential is no longer regular but is conveniently renormalized using dimensional regularization
with MS. One finds
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The S-matrix and its partner potential are designed to account for the transition of the force from
attraction to repulsion. This is clearly exhibited by the on-shell potential. However, in the gap
calculation, the off-shell potential is relevant and one must be vigilant that no new singularities are
introduced in the loop integrations. Note that, due to the invariance of the S-matrix with respect
to permutations of the singularities, there is a phase-equivalent potential
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It is a useful feature of rational S-matrices that the permutation symmetry of the pole positions
allows simple identification of phase-equivalent potentials. The effective expansion parameters of
Eqs. (18) and (20) are plotted in Fig. 4.

2. rERE Model 2

It is straightforward to design models with additional freedom. Consider the following phase shift:
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This phase shift is plotted in Fig. 3. It is a special case of the rational S-matrix of Eq. (3) with
four poles (n = 4) and � = 0. One readily finds
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FIG. 2. The on-shell singlet np potential evaluated at kF in units of MkF /(4⇡) to O(k0) (solid line), O(k2)
(dashed line), and O(k4) (dotted line) in the ERE.

C. Resummed ERE

In order to go beyond EFT(⇡/), the pion should be included as a fundamental degree of freedom;
i.e. chiral EFT potentials should be used, including three-body force effects. Here, the new singu-
larities due to a physical, propagating pion will be modeled by simple poles so as to maintain the
rational form for the S-matrix and its correspondence with simple potentials which facilitate the
gap calculation. For obvious reasons, these potentials and their associated rational S-matrices will
be referred to as resummed ERE (rERE) models.

1. rERE Model 1

Consider the following phase shift:

k cot �(k) = �1
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k2⇤
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. (15)

This phase shift incorporates the zero at k⇤ = 353 MeV and is plotted in Fig. 3. It is a special case
of the rational S-matrix of Eq. (3) with three poles (n = 3) and � = ⇡. One readily finds
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where

�1 = 212.19 MeV , �2 = 618.74 MeV , �3 = �7.93 MeV . (17)

It is again straightforward to find the separable potential which gives this rational S-matrix:
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FIG. 2. The on-shell singlet np potential evaluated at kF in units of MkF /(4⇡) to O(k0) (solid line), O(k2)
(dashed line), and O(k4) (dotted line) in the ERE.

C. Resummed ERE

In order to go beyond EFT(⇡/), the pion should be included as a fundamental degree of freedom;
i.e. chiral EFT potentials should be used, including three-body force effects. Here, the new singu-
larities due to a physical, propagating pion will be modeled by simple poles so as to maintain the
rational form for the S-matrix and its correspondence with simple potentials which facilitate the
gap calculation. For obvious reasons, these potentials and their associated rational S-matrices will
be referred to as resummed ERE (rERE) models.

1. rERE Model 1

Consider the following phase shift:

k cot �(k) = �1

a
+

1

2
rk2

k2⇤
k2⇤ � k2

. (15)

This phase shift incorporates the zero at k⇤ = 353 MeV and is plotted in Fig. 3. It is a special case
of the rational S-matrix of Eq. (3) with three poles (n = 3) and � = ⇡. One readily finds
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where

�1 = 212.19 MeV , �2 = 618.74 MeV , �3 = �7.93 MeV . (17)

It is again straightforward to find the separable potential which gives this rational S-matrix:
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FIG. 3. The 1S0 np phase shift in rERE model 1 (dashed line) and in rERE model 2 (dotted line). The
cyan polygons are the Nijmegen phase shift analysis (PWA93) [36].

This potential is no longer regular but is conveniently renormalized using dimensional regularization
with MS. One finds
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The S-matrix and its partner potential are designed to account for the transition of the force from
attraction to repulsion. This is clearly exhibited by the on-shell potential. However, in the gap
calculation, the off-shell potential is relevant and one must be vigilant that no new singularities are
introduced in the loop integrations. Note that, due to the invariance of the S-matrix with respect
to permutations of the singularities, there is a phase-equivalent potential
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It is a useful feature of rational S-matrices that the permutation symmetry of the pole positions
allows simple identification of phase-equivalent potentials. The effective expansion parameters of
Eqs. (18) and (20) are plotted in Fig. 4.

2. rERE Model 2

It is straightforward to design models with additional freedom. Consider the following phase shift:
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This phase shift is plotted in Fig. 3. It is a special case of the rational S-matrix of Eq. (3) with
four poles (n = 4) and � = 0. One readily finds
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(Sánchez Sánchez et al)
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FIG. 2. The on-shell singlet np potential evaluated at kF in units of MkF /(4⇡) to O(k0) (solid line), O(k2)
(dashed line), and O(k4) (dotted line) in the ERE.

C. Resummed ERE

In order to go beyond EFT(⇡/), the pion should be included as a fundamental degree of freedom;
i.e. chiral EFT potentials should be used, including three-body force effects. Here, the new singu-
larities due to a physical, propagating pion will be modeled by simple poles so as to maintain the
rational form for the S-matrix and its correspondence with simple potentials which facilitate the
gap calculation. For obvious reasons, these potentials and their associated rational S-matrices will
be referred to as resummed ERE (rERE) models.

1. rERE Model 1

Consider the following phase shift:
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k2⇤
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. (15)

This phase shift incorporates the zero at k⇤ = 353 MeV and is plotted in Fig. 3. It is a special case
of the rational S-matrix of Eq. (3) with three poles (n = 3) and � = ⇡. One readily finds
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where

�1 = 212.19 MeV , �2 = 618.74 MeV , �3 = �7.93 MeV . (17)

It is again straightforward to find the separable potential which gives this rational S-matrix:

V
�
k, k0

�
= c0

s
k2⇤ � k2

�2
1
+ k2

s
k2⇤ � k02

�2
1
+ k02

. (18)

5

ERE n = 0

<latexit sha1_base64="EUMd9QUYDAj+RxC3qWnJyuIqml4=">AAAAAHicbVDLSgNBEJz1GeNr1YMHL4NB8BR2JaAXISgBj1HMA5IQZiedZMjs7DLTK4YlF3/FiwdFvPoZ3vwbJ4+DJlbTUFR1M9MVxFIY9LxvZ2l5ZXVtPbOR3dza3tl19/arJko0hwqPZKTrATMghYIKCpRQjzWwMJBQCwbXY7/2ANqISN3jMIZWyHpKdAVnaKW2e9hEeESDQwlp6a40ok1b6tJruzkv701AF4k/IzkyQ7ntfjU7EU9CUMglM6bhezG2UqZRcAmjbDMxEDM+YD1oWKpYCKaVTg4Y0ROrdGg30rYV0on6eyNloTHDMLCTIcO+mffG4n9eI8HuRSsVKk4QFJ8+1E0kxYiO06AdoYGjHFrCuBb2r5T3mWYcbWZZG4I/f/IiqZ7l/ULeuy3kilezODLkiByTU+KTc1IkN6RMKoSTEXkmr+TNeXJenHfnYzq65Mx2DsgfOJ8/gnaVrQ==</latexit>

ERE n = 2

<latexit sha1_base64="E2z4GrlGpDjvRgcZ22odR6UjaO8=">AAAAAHicbVDLSgNBEJyNrxhfUQ8evAwGwVPYDQG9CEEJeIxiHpCEMDvpJENmZ5eZXjEsufgrXjwo4tXP8ObfOHkcNLGahqKqm5kuP5LCoOt+O6mV1bX1jfRmZmt7Z3cvu39QM2GsOVR5KEPd8JkBKRRUUaCERqSBBb6Euj+8nvj1B9BGhOoeRxG0A9ZXoic4Qyt1skcthEc0OJKQlO/KY9qypS4LnWzOzbtT0GXizUmOzFHpZL9a3ZDHASjkkhnT9NwI2wnTKLiEcaYVG4gYH7I+NC1VLADTTqYHjOmpVbq0F2rbCulU/b2RsMCYUeDbyYDhwCx6E/E/rxlj76KdCBXFCIrPHurFkmJIJ2nQrtDAUY4sYVwL+1fKB0wzjjazjA3BWzx5mdQKea+Yd2+LudLVPI40OSYn5Ix45JyUyA2pkCrhZEyeySt5c56cF+fd+ZiNppz5ziH5A+fzB4V+la8=</latexit>

ERE n = 4

<latexit sha1_base64="Wj1nzsXspFeQUf3xx052MhkB9xo=">AAAAAHicbVDLSgNBEJz1GeNr1YMHL4NB8BR2JaAXISgBj1HMA5IQZiedZMjs7DLTK4YlF3/FiwdFvPoZ3vwbJ4+DJlbTUFR1M9MVxFIY9LxvZ2l5ZXVtPbOR3dza3tl19/arJko0hwqPZKTrATMghYIKCpRQjzWwMJBQCwbXY7/2ANqISN3jMIZWyHpKdAVnaKW2e9hEeESDQwlp6a40ok1b6rLQdnNe3puALhJ/RnJkhnLb/Wp2Ip6EoJBLZkzD92JspUyj4BJG2WZiIGZ8wHrQsFSxEEwrnRwwoidW6dBupG0rpBP190bKQmOGYWAnQ4Z9M++Nxf+8RoLdi1YqVJwgKD59qJtIihEdp0E7QgNHObSEcS3sXynvM8042syyNgR//uRFUj3L+4W8d1vIFa9mcWTIETkmp8Qn56RIbkiZVAgnI/JMXsmb8+S8OO/Ox3R0yZntHJA/cD5/AIiGlbE=</latexit>

0 100 200 300 400

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

M
k F 4⇡

V
(k

F
,k

F
)

<latexit sha1_base64="GCGbNF/lZJecir8TIGdxZ2MYsOw=">AAAAAHicbVDLSsNAFL2pr1pfUZciDBahgpRECrosCuJGqGAf0IQymU7aoZMHMxOhhKzc+CtuXCji1m9w5984bbPQ1gMXzpxzL3fu8WLOpLKsb6OwtLyyulZcL21sbm3vmLt7LRklgtAmiXgkOh6WlLOQNhVTnHZiQXHgcdr2RlcTv/1AhWRReK/GMXUDPAiZzwhWWuqZh44vMElv0ah3naU1J2YZalX041TXSc8sW1VrCrRI7JyUIUejZ345/YgkAQ0V4VjKrm3Fyk2xUIxwmpWcRNIYkxEe0K6mIQ6odNPpGRk61kof+ZHQFSo0VX9PpDiQchx4ujPAaijnvYn4n9dNlH/hpiyME0VDMlvkJxypCE0yQX0mKFF8rAkmgum/IjLEOhelkyvpEOz5kxdJ66xq16rWXa1cv8zjKMIBHEEFbDiHOtxAA5pA4BGe4RXejCfjxXg3PmatBSOf2Yc/MD5/AEOll7E=</latexit>

kF (MeV )

<latexit sha1_base64="KW9oSMjF5L3mX6es8gTuMlXEzME=">AAAAAHicbVDLSgNBEJyNrxhfUU/iZTAI8RJ2JaDHoCBehAjmAdkQZiedZMjsg5leMSzBi7/ixYMiXv0Kb/6Nk2QPmljQUFR1093lRVJotO1vK7O0vLK6ll3PbWxube/kd/fqOowVhxoPZaiaHtMgRQA1FCihGSlgvieh4Q0vJ37jHpQWYXCHowjaPusHoic4QyN18gfDzpVLXUqLLsIDahxJSG6gPj7p5At2yZ6CLhInJQWSotrJf7ndkMc+BMgl07rl2BG2E6ZQcAnjnBtriBgfsj60DA2YD7qdTF8Y02OjdGkvVKYCpFP190TCfK1Hvmc6fYYDPe9NxP+8Voy983YigihGCPhsUS+WFEM6yYN2hQKOcmQI40qYWykfMMU4mtRyJgRn/uVFUj8tOeWSfVsuVC7SOLLkkByRInHIGamQa1IlNcLJI3kmr+TNerJerHfrY9aasdKZffIH1ucP2eKWcw==</latexit>

FIG. 2. The on-shell singlet np potential evaluated at kF in units of MkF /(4⇡) to O(k0) (solid line), O(k2)
(dashed line), and O(k4) (dotted line) in the ERE.

C. Resummed ERE

In order to go beyond EFT(⇡/), the pion should be included as a fundamental degree of freedom;
i.e. chiral EFT potentials should be used, including three-body force effects. Here, the new singu-
larities due to a physical, propagating pion will be modeled by simple poles so as to maintain the
rational form for the S-matrix and its correspondence with simple potentials which facilitate the
gap calculation. For obvious reasons, these potentials and their associated rational S-matrices will
be referred to as resummed ERE (rERE) models.

1. rERE Model 1

Consider the following phase shift:
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This phase shift incorporates the zero at k⇤ = 353 MeV and is plotted in Fig. 3. It is a special case
of the rational S-matrix of Eq. (3) with three poles (n = 3) and � = ⇡. One readily finds
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where

�1 = 212.19 MeV , �2 = 618.74 MeV , �3 = �7.93 MeV . (17)

It is again straightforward to find the separable potential which gives this rational S-matrix:
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FIG. 3. The 1S0 np phase shift in rERE model 1 (dashed line) and in rERE model 2 (dotted line). The
cyan polygons are the Nijmegen phase shift analysis (PWA93) [36].

This potential is no longer regular but is conveniently renormalized using dimensional regularization
with MS. One finds

c0
MS��! � 4⇡

M

⇣
e(3)
1

⌘�1

. (19)

The S-matrix and its partner potential are designed to account for the transition of the force from
attraction to repulsion. This is clearly exhibited by the on-shell potential. However, in the gap
calculation, the off-shell potential is relevant and one must be vigilant that no new singularities are
introduced in the loop integrations. Note that, due to the invariance of the S-matrix with respect
to permutations of the singularities, there is a phase-equivalent potential
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It is a useful feature of rational S-matrices that the permutation symmetry of the pole positions
allows simple identification of phase-equivalent potentials. The effective expansion parameters of
Eqs. (18) and (20) are plotted in Fig. 4.

2. rERE Model 2

It is straightforward to design models with additional freedom. Consider the following phase shift:
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This phase shift is plotted in Fig. 3. It is a special case of the rational S-matrix of Eq. (3) with
four poles (n = 4) and � = 0. One readily finds
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FIG. 2. The on-shell singlet np potential evaluated at kF in units of MkF /(4⇡) to O(k0) (solid line), O(k2)
(dashed line), and O(k4) (dotted line) in the ERE.

C. Resummed ERE

In order to go beyond EFT(⇡/), the pion should be included as a fundamental degree of freedom;
i.e. chiral EFT potentials should be used, including three-body force effects. Here, the new singu-
larities due to a physical, propagating pion will be modeled by simple poles so as to maintain the
rational form for the S-matrix and its correspondence with simple potentials which facilitate the
gap calculation. For obvious reasons, these potentials and their associated rational S-matrices will
be referred to as resummed ERE (rERE) models.

1. rERE Model 1

Consider the following phase shift:

k cot �(k) = �1

a
+

1

2
rk2

k2⇤
k2⇤ � k2

. (15)

This phase shift incorporates the zero at k⇤ = 353 MeV and is plotted in Fig. 3. It is a special case
of the rational S-matrix of Eq. (3) with three poles (n = 3) and � = ⇡. One readily finds
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where

�1 = 212.19 MeV , �2 = 618.74 MeV , �3 = �7.93 MeV . (17)

It is again straightforward to find the separable potential which gives this rational S-matrix:
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FIG. 2. The on-shell singlet np potential evaluated at kF in units of MkF /(4⇡) to O(k0) (solid line), O(k2)
(dashed line), and O(k4) (dotted line) in the ERE.

C. Resummed ERE

In order to go beyond EFT(⇡/), the pion should be included as a fundamental degree of freedom;
i.e. chiral EFT potentials should be used, including three-body force effects. Here, the new singu-
larities due to a physical, propagating pion will be modeled by simple poles so as to maintain the
rational form for the S-matrix and its correspondence with simple potentials which facilitate the
gap calculation. For obvious reasons, these potentials and their associated rational S-matrices will
be referred to as resummed ERE (rERE) models.

1. rERE Model 1

Consider the following phase shift:
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This phase shift incorporates the zero at k⇤ = 353 MeV and is plotted in Fig. 3. It is a special case
of the rational S-matrix of Eq. (3) with three poles (n = 3) and � = ⇡. One readily finds
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where

�1 = 212.19 MeV , �2 = 618.74 MeV , �3 = �7.93 MeV . (17)

It is again straightforward to find the separable potential which gives this rational S-matrix:
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FIG. 3. The 1S0 np phase shift in rERE model 1 (dashed line) and in rERE model 2 (dotted line). The
cyan polygons are the Nijmegen phase shift analysis (PWA93) [36].

This potential is no longer regular but is conveniently renormalized using dimensional regularization
with MS. One finds
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The S-matrix and its partner potential are designed to account for the transition of the force from
attraction to repulsion. This is clearly exhibited by the on-shell potential. However, in the gap
calculation, the off-shell potential is relevant and one must be vigilant that no new singularities are
introduced in the loop integrations. Note that, due to the invariance of the S-matrix with respect
to permutations of the singularities, there is a phase-equivalent potential
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It is a useful feature of rational S-matrices that the permutation symmetry of the pole positions
allows simple identification of phase-equivalent potentials. The effective expansion parameters of
Eqs. (18) and (20) are plotted in Fig. 4.

2. rERE Model 2

It is straightforward to design models with additional freedom. Consider the following phase shift:
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This phase shift is plotted in Fig. 3. It is a special case of the rational S-matrix of Eq. (3) with
four poles (n = 4) and � = 0. One readily finds
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FIG. 3. The 1S0 np phase shift in rERE model 1 (dashed line) and in rERE model 2 (dotted line). The
cyan polygons are the Nijmegen phase shift analysis (PWA93) [36].

This potential is no longer regular but is conveniently renormalized using dimensional regularization
with MS. One finds
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The S-matrix and its partner potential are designed to account for the transition of the force from
attraction to repulsion. This is clearly exhibited by the on-shell potential. However, in the gap
calculation, the off-shell potential is relevant and one must be vigilant that no new singularities are
introduced in the loop integrations. Note that, due to the invariance of the S-matrix with respect
to permutations of the singularities, there is a phase-equivalent potential
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It is a useful feature of rational S-matrices that the permutation symmetry of the pole positions
allows simple identification of phase-equivalent potentials. The effective expansion parameters of
Eqs. (18) and (20) are plotted in Fig. 4.

2. rERE Model 2

It is straightforward to design models with additional freedom. Consider the following phase shift:
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This phase shift is plotted in Fig. 3. It is a special case of the rational S-matrix of Eq. (3) with
four poles (n = 4) and � = 0. One readily finds
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FIG. 2. The on-shell singlet np potential evaluated at kF in units of MkF /(4⇡) to O(k0) (solid line), O(k2)
(dashed line), and O(k4) (dotted line) in the ERE.

C. Resummed ERE

In order to go beyond EFT(⇡/), the pion should be included as a fundamental degree of freedom;
i.e. chiral EFT potentials should be used, including three-body force effects. Here, the new singu-
larities due to a physical, propagating pion will be modeled by simple poles so as to maintain the
rational form for the S-matrix and its correspondence with simple potentials which facilitate the
gap calculation. For obvious reasons, these potentials and their associated rational S-matrices will
be referred to as resummed ERE (rERE) models.

1. rERE Model 1

Consider the following phase shift:
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This phase shift incorporates the zero at k⇤ = 353 MeV and is plotted in Fig. 3. It is a special case
of the rational S-matrix of Eq. (3) with three poles (n = 3) and � = ⇡. One readily finds
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where

�1 = 212.19 MeV , �2 = 618.74 MeV , �3 = �7.93 MeV . (17)

It is again straightforward to find the separable potential which gives this rational S-matrix:
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FIG. 2. The on-shell singlet np potential evaluated at kF in units of MkF /(4⇡) to O(k0) (solid line), O(k2)
(dashed line), and O(k4) (dotted line) in the ERE.

C. Resummed ERE

In order to go beyond EFT(⇡/), the pion should be included as a fundamental degree of freedom;
i.e. chiral EFT potentials should be used, including three-body force effects. Here, the new singu-
larities due to a physical, propagating pion will be modeled by simple poles so as to maintain the
rational form for the S-matrix and its correspondence with simple potentials which facilitate the
gap calculation. For obvious reasons, these potentials and their associated rational S-matrices will
be referred to as resummed ERE (rERE) models.

1. rERE Model 1

Consider the following phase shift:

k cot �(k) = �1

a
+

1

2
rk2

k2⇤
k2⇤ � k2

. (15)

This phase shift incorporates the zero at k⇤ = 353 MeV and is plotted in Fig. 3. It is a special case
of the rational S-matrix of Eq. (3) with three poles (n = 3) and � = ⇡. One readily finds
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3

, r = 2
(e(3)
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� e(3)
3

)

(e(3)
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)2
, k2⇤ = e(3)

2
, (16)

where

�1 = 212.19 MeV , �2 = 618.74 MeV , �3 = �7.93 MeV . (17)

It is again straightforward to find the separable potential which gives this rational S-matrix:
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FIG. 3. The 1S0 np phase shift in rERE model 1 (dashed line) and in rERE model 2 (dotted line). The
cyan polygons are the Nijmegen phase shift analysis (PWA93) [36].

This potential is no longer regular but is conveniently renormalized using dimensional regularization
with MS. One finds

c0
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M

⇣
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. (19)

The S-matrix and its partner potential are designed to account for the transition of the force from
attraction to repulsion. This is clearly exhibited by the on-shell potential. However, in the gap
calculation, the off-shell potential is relevant and one must be vigilant that no new singularities are
introduced in the loop integrations. Note that, due to the invariance of the S-matrix with respect
to permutations of the singularities, there is a phase-equivalent potential
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It is a useful feature of rational S-matrices that the permutation symmetry of the pole positions
allows simple identification of phase-equivalent potentials. The effective expansion parameters of
Eqs. (18) and (20) are plotted in Fig. 4.

2. rERE Model 2

It is straightforward to design models with additional freedom. Consider the following phase shift:
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This phase shift is plotted in Fig. 3. It is a special case of the rational S-matrix of Eq. (3) with
four poles (n = 4) and � = 0. One readily finds
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FIG. 4. The on-shell singlet np potential evaluated at kF in units of MkF /(4⇡) for rERE model 1 (dashed
line) and in rERE model 2 (dotted line). Both phase equivalent potentials for rERE model 1 are shown.

Note that this case is distinct from the ERE in that there are no constraints; indeed, the ERE at
O(k4) is recovered as e(4)

1
! 0 (and thus k⇤ ! 1), as expected. The poles are

�1 = 37.04+425.89iMeV , �2 = 37.04�425.89iMeV , �3 = 168.76 MeV , �4 = �7.93 MeV .
(23)

The corresponding potential is
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This potential is regular. Note that as the poles of the potential are complex-conjugate pairs,
the potential is Hermitian and there is no phase equivalent potential. The effective expansion
parameter of Eq. (24) is plotted in Fig. 4. It may seem odd that in the region where one expects a
superfluid gap, the potential appears to be repulsive. However, when the interaction is momentum
dependent, it is the “integrated” potential which must be attractive, and this is indeed the case
with this potential, which becomes deeply attractive at momenta beyond the phase-shift zero, and
then returns asymptotically to zero as it must to ensure regularity. Of course, from the point of
view of EFT it is disturbing that low-density superfluidity arises from high-density attraction.

III. SUPERFLUID GAP

A. LO

1. Model 1

Due to the separability of the potential, we can sum together all of the singular p-p bubble
analytically to obtain the LO vertex function

�(k,k0; 2E) =
�V (k, k0)

1 + g⇧pp(E)
(25)
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FIG. 4. The on-shell singlet np potential evaluated at kF in units of MkF /(4⇡) for rERE model 1 (dashed
line) and in rERE model 2 (dotted line). Both phase equivalent potentials for rERE model 1 are shown.

Note that this case is distinct from the ERE in that there are no constraints; indeed, the ERE at
O(k4) is recovered as e(4)

1
! 0 (and thus k⇤ ! 1), as expected. The poles are

�1 = 37.04+425.89iMeV , �2 = 37.04�425.89iMeV , �3 = 168.76 MeV , �4 = �7.93 MeV .
(23)

The corresponding potential is
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This potential is regular. Note that as the poles of the potential are complex-conjugate pairs,
the potential is Hermitian and there is no phase equivalent potential. The effective expansion
parameter of Eq. (24) is plotted in Fig. 4. It may seem odd that in the region where one expects a
superfluid gap, the potential appears to be repulsive. However, when the interaction is momentum
dependent, it is the “integrated” potential which must be attractive, and this is indeed the case
with this potential, which becomes deeply attractive at momenta beyond the phase-shift zero, and
then returns asymptotically to zero as it must to ensure regularity. Of course, from the point of
view of EFT it is disturbing that low-density superfluidity arises from high-density attraction.

III. SUPERFLUID GAP

A. LO

1. Model 1

Due to the separability of the potential, we can sum together all of the singular p-p bubble
analytically to obtain the LO vertex function

�(k,k0; 2E) =
�V (k, k0)

1 + g⇧pp(E)
(25)
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FIG. 3. The 1S0 np phase shift in rERE model 1 (dashed line) and in rERE model 2 (dotted line). The
cyan polygons are the Nijmegen phase shift analysis (PWA93) [36].

This potential is no longer regular but is conveniently renormalized using dimensional regularization
with MS. One finds

c0
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M
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. (19)

The S-matrix and its partner potential are designed to account for the transition of the force from
attraction to repulsion. This is clearly exhibited by the on-shell potential. However, in the gap
calculation, the off-shell potential is relevant and one must be vigilant that no new singularities are
introduced in the loop integrations. Note that, due to the invariance of the S-matrix with respect
to permutations of the singularities, there is a phase-equivalent potential
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It is a useful feature of rational S-matrices that the permutation symmetry of the pole positions
allows simple identification of phase-equivalent potentials. The effective expansion parameters of
Eqs. (18) and (20) are plotted in Fig. 4.

2. rERE Model 2

It is straightforward to design models with additional freedom. Consider the following phase shift:
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This phase shift is plotted in Fig. 3. It is a special case of the rational S-matrix of Eq. (3) with
four poles (n = 4) and � = 0. One readily finds
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FIG. 4. The on-shell singlet np potential evaluated at kF in units of MkF /(4⇡) for rERE model 1 (dashed
line) and in rERE model 2 (dotted line). Both phase equivalent potentials for rERE model 1 are shown.

Note that this case is distinct from the ERE in that there are no constraints; indeed, the ERE at
O(k4) is recovered as e(4)

1
! 0 (and thus k⇤ ! 1), as expected. The poles are

�1 = 37.04+425.89iMeV , �2 = 37.04�425.89iMeV , �3 = 168.76 MeV , �4 = �7.93 MeV .
(23)
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This potential is regular. Note that as the poles of the potential are complex-conjugate pairs,
the potential is Hermitian and there is no phase equivalent potential. The effective expansion
parameter of Eq. (24) is plotted in Fig. 4. It may seem odd that in the region where one expects a
superfluid gap, the potential appears to be repulsive. However, when the interaction is momentum
dependent, it is the “integrated” potential which must be attractive, and this is indeed the case
with this potential, which becomes deeply attractive at momenta beyond the phase-shift zero, and
then returns asymptotically to zero as it must to ensure regularity. Of course, from the point of
view of EFT it is disturbing that low-density superfluidity arises from high-density attraction.

III. SUPERFLUID GAP

A. LO

1. Model 1

Due to the separability of the potential, we can sum together all of the singular p-p bubble
analytically to obtain the LO vertex function

�(k,k0; 2E) =
�V (k, k0)

1 + g⇧pp(E)
(25)

phase equivalent 
potentials!



LO (BCS)

<latexit sha1_base64="9pNjXN2x/KaCTXCXnDRghtFctns=">AAAAAHicbVDLSsNAFJ34rPXRqEs3g0Wom5JIQZel3bgQrGgf0IQymU7aoTOTMDMRauiXuHGhiFs/xZ1/46TNQlsPXDiccy/33hPEjCrtON/W2vrG5tZ2Yae4u7d/ULIPjzoqSiQmbRyxSPYCpAijgrQ11Yz0YkkQDxjpBpNm5ncfiVQ0Eg96GhOfo5GgIcVIG2lglzzJ05tbD1YazfvzWXFgl52qMwdcJW5OyiBHa2B/ecMIJ5wIjRlSqu86sfZTJDXFjMyKXqJIjPAEjUjfUIE4UX46P3wGz4wyhGEkTQkN5+rviRRxpaY8MJ0c6bFa9jLxP6+f6PDKT6mIE00EXiwKEwZ1BLMU4JBKgjWbGoKwpOZWiMdIIqxNVlkI7vLLq6RzUXVrVeeuVq438jgK4AScggpwwSWog2vQAm2AQQKewSt4s56sF+vd+li0rln5zDH4A+vzB5/5kcE=</latexit>

NLO

<latexit sha1_base64="f+pn0KkhR5dmbf0Ky4W72KKa9gQ=">AAAAAHicbVBNSwMxEJ2tX7V+VT16CRbBU9mVgh6LXjyIVrAf0i4lm2bb0CS7JFmhLP0VXjwo4tWf481/Y7bdg7Y+GHi8N8PMvCDmTBvX/XYKK6tr6xvFzdLW9s7uXnn/oKWjRBHaJBGPVCfAmnImadMww2knVhSLgNN2ML7K/PYTVZpF8sFMYuoLPJQsZAQbKz32lEhvb+6mpX654lbdGdAy8XJSgRyNfvmrN4hIIqg0hGOtu54bGz/FyjDC6bTUSzSNMRnjIe1aKrGg2k9nB0/RiVUGKIyULWnQTP09kWKh9UQEtlNgM9KLXib+53UTE174KZNxYqgk80VhwpGJUPY9GjBFieETSzBRzN6KyAgrTIzNKAvBW3x5mbTOql6t6t7XKvXLPI4iHMExnIIH51CHa2hAEwgIeIZXeHOU8+K8Ox/z1oKTzxzCHzifPyzLj/0=</latexit>

kF (MeV)

<latexit sha1_base64="jGxif8NeAi6j+dMfL7xdgUNzHPk=">AAAAAHicbVBNS8NAEJ3Ur1o/GvXoZbEI9VISKeixKIgXoYL9gCaEzXbbLt1swu5GqKG/xIsHRbz6U7z5b9y2OWjrg4HHezPMzAsTzpR2nG+rsLa+sblV3C7t7O7tl+2Dw7aKU0loi8Q8lt0QK8qZoC3NNKfdRFIchZx2wvH1zO88UqlYLB70JKF+hIeCDRjB2kiBXR4HNx6qejLK7mh7ehbYFafmzIFWiZuTCuRoBvaX149JGlGhCcdK9Vwn0X6GpWaE02nJSxVNMBnjIe0ZKnBElZ/ND5+iU6P00SCWpoRGc/X3RIYjpSZRaDojrEdq2ZuJ/3m9VA8u/YyJJNVUkMWiQcqRjtEsBdRnkhLNJ4ZgIpm5FZERlphok1XJhOAuv7xK2uc1t15z7uuVxlUeRxGO4QSq4MIFNOAWmtACAik8wyu8WU/Wi/VufSxaC1Y+cwR/YH3+AIpAklw=</latexit>

�
(M

eV
)

<latexit sha1_base64="vt5h6Wa+4oV4+sNyYkvds/GWu5I=">AAAAAHicbVBNS8NAEN3Ur1q/Yj16WSxCvZRECnos6sGLUMF+QBPKZjttl242YXcjlpC/4sWDIl79I978N27bHLT1wcDjvRlm5gUxZ0o7zrdVWFvf2Nwqbpd2dvf2D+zDcltFiaTQohGPZDcgCjgT0NJMc+jGEkgYcOgEk+uZ33kEqVgkHvQ0Bj8kI8GGjBJtpL5d9m6Aa+LhqifD9A7a2Vnfrjg1Zw68StycVFCOZt/+8gYRTUIQmnKiVM91Yu2nRGpGOWQlL1EQEzohI+gZKkgIyk/nt2f41CgDPIykKaHxXP09kZJQqWkYmM6Q6LFa9mbif14v0cNLP2UiTjQIulg0TDjWEZ4FgQdMAtV8agihkplbMR0TSag2cZVMCO7yy6ukfV5z6zXnvl5pXOVxFNExOkFV5KIL1EC3qIlaiKIn9Ixe0ZuVWS/Wu/WxaC1Y+cwR+gPr8wfiQ5Ow</latexit>
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QMC (AFDMC)

<latexit sha1_base64="yRm6SlJr6uCpKvTg0cJEuaHhYo4=">AAAAAHicbVDLSgMxFM34rPU11qWbYBHqpsxIQZfVirgptGAf0BlKJs20oUlmSDJiGforblwo4tYfceffmLaz0NYDFw7n3Mu99wQxo0o7zre1tr6xubWd28nv7u0fHNpHhbaKEolJC0cskt0AKcKoIC1NNSPdWBLEA0Y6wbg28zuPRCoaiQc9iYnP0VDQkGKkjdS3C6knOWzWax4sXd/d1mvn075ddMrOHHCVuBkpggyNvv3lDSKccCI0ZkipnuvE2k+R1BQzMs17iSIxwmM0JD1DBeJE+en89ik8M8oAhpE0JTScq78nUsSVmvDAdHKkR2rZm4n/eb1Eh1d+SkWcaCLwYlGYMKgjOAsCDqgkWLOJIQhLam6FeIQkwtrElTchuMsvr5L2RdmtlJ1mpVi9yeLIgRNwCkrABZegCu5BA7QABk/gGbyCN2tqvVjv1seidc3KZo7BH1ifP254kr4=</latexit>

ERE n = 2

<latexit sha1_base64="E2z4GrlGpDjvRgcZ22odR6UjaO8=">AAAAAHicbVDLSgNBEJyNrxhfUQ8evAwGwVPYDQG9CEEJeIxiHpCEMDvpJENmZ5eZXjEsufgrXjwo4tXP8ObfOHkcNLGahqKqm5kuP5LCoOt+O6mV1bX1jfRmZmt7Z3cvu39QM2GsOVR5KEPd8JkBKRRUUaCERqSBBb6Euj+8nvj1B9BGhOoeRxG0A9ZXoic4Qyt1skcthEc0OJKQlO/KY9qypS4LnWzOzbtT0GXizUmOzFHpZL9a3ZDHASjkkhnT9NwI2wnTKLiEcaYVG4gYH7I+NC1VLADTTqYHjOmpVbq0F2rbCulU/b2RsMCYUeDbyYDhwCx6E/E/rxlj76KdCBXFCIrPHurFkmJIJ2nQrtDAUY4sYVwL+1fKB0wzjjazjA3BWzx5mdQKea+Yd2+LudLVPI40OSYn5Ix45JyUyA2pkCrhZEyeySt5c56cF+fd+ZiNppz5ziH5A+fzB4V+la8=</latexit>

rERE model 1

<latexit sha1_base64="t3Sz0p/VS0jLl2hvCqQbo1uIjzw=">AAAAAHicbVDLSgNBEJyNrxhfUW96GQyCp7ArAQUvQQl4jGIekA1hdtJJhsw+mOkVwxLw4q948aCIV3/Cm3/jJNmDJhY0FFXddHd5kRQabfvbyiwtr6yuZddzG5tb2zv53b26DmPFocZDGaqmxzRIEUANBUpoRgqY70loeMOrid+4B6VFGNzhKIK2z/qB6AnO0Eid/IGq3FZc6iI8oMaRhMQPuyDdC2fcyRfsoj0FXSROSgokRbWT/3K7IY99CJBLpnXLsSNsJ0yh4BLGOTfWEDE+ZH1oGRowH3Q7mf4wpsdG6dJeqEwFSKfq74mE+VqPfM90+gwHet6biP95rRh75+1EBFGMEPDZol4sKYZ0EgjtCgUc5cgQxpUwt1I+YIpxNLHlTAjO/MuLpH5adEpF+6ZUKF+mcWTJITkiJ8QhZ6RMrkmV1Agnj+SZvJI368l6sd6tj1lrxkpn9skfWJ8/zS2Xnw==</latexit>



LO (BCS)

<latexit sha1_base64="9pNjXN2x/KaCTXCXnDRghtFctns=">AAAAAHicbVDLSsNAFJ34rPXRqEs3g0Wom5JIQZel3bgQrGgf0IQymU7aoTOTMDMRauiXuHGhiFs/xZ1/46TNQlsPXDiccy/33hPEjCrtON/W2vrG5tZ2Yae4u7d/ULIPjzoqSiQmbRyxSPYCpAijgrQ11Yz0YkkQDxjpBpNm5ncfiVQ0Eg96GhOfo5GgIcVIG2lglzzJ05tbD1YazfvzWXFgl52qMwdcJW5OyiBHa2B/ecMIJ5wIjRlSqu86sfZTJDXFjMyKXqJIjPAEjUjfUIE4UX46P3wGz4wyhGEkTQkN5+rviRRxpaY8MJ0c6bFa9jLxP6+f6PDKT6mIE00EXiwKEwZ1BLMU4JBKgjWbGoKwpOZWiMdIIqxNVlkI7vLLq6RzUXVrVeeuVq438jgK4AScggpwwSWog2vQAm2AQQKewSt4s56sF+vd+li0rln5zDH4A+vzB5/5kcE=</latexit>

NLO

<latexit sha1_base64="f+pn0KkhR5dmbf0Ky4W72KKa9gQ=">AAAAAHicbVBNSwMxEJ2tX7V+VT16CRbBU9mVgh6LXjyIVrAf0i4lm2bb0CS7JFmhLP0VXjwo4tWf481/Y7bdg7Y+GHi8N8PMvCDmTBvX/XYKK6tr6xvFzdLW9s7uXnn/oKWjRBHaJBGPVCfAmnImadMww2knVhSLgNN2ML7K/PYTVZpF8sFMYuoLPJQsZAQbKz32lEhvb+6mpX654lbdGdAy8XJSgRyNfvmrN4hIIqg0hGOtu54bGz/FyjDC6bTUSzSNMRnjIe1aKrGg2k9nB0/RiVUGKIyULWnQTP09kWKh9UQEtlNgM9KLXib+53UTE174KZNxYqgk80VhwpGJUPY9GjBFieETSzBRzN6KyAgrTIzNKAvBW3x5mbTOql6t6t7XKvXLPI4iHMExnIIH51CHa2hAEwgIeIZXeHOU8+K8Ox/z1oKTzxzCHzifPyzLj/0=</latexit>

kF (MeV)

<latexit sha1_base64="jGxif8NeAi6j+dMfL7xdgUNzHPk=">AAAAAHicbVBNS8NAEJ3Ur1o/GvXoZbEI9VISKeixKIgXoYL9gCaEzXbbLt1swu5GqKG/xIsHRbz6U7z5b9y2OWjrg4HHezPMzAsTzpR2nG+rsLa+sblV3C7t7O7tl+2Dw7aKU0loi8Q8lt0QK8qZoC3NNKfdRFIchZx2wvH1zO88UqlYLB70JKF+hIeCDRjB2kiBXR4HNx6qejLK7mh7ehbYFafmzIFWiZuTCuRoBvaX149JGlGhCcdK9Vwn0X6GpWaE02nJSxVNMBnjIe0ZKnBElZ/ND5+iU6P00SCWpoRGc/X3RIYjpSZRaDojrEdq2ZuJ/3m9VA8u/YyJJNVUkMWiQcqRjtEsBdRnkhLNJ4ZgIpm5FZERlphok1XJhOAuv7xK2uc1t15z7uuVxlUeRxGO4QSq4MIFNOAWmtACAik8wyu8WU/Wi/VufSxaC1Y+cwR/YH3+AIpAklw=</latexit>
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eV
)

<latexit sha1_base64="vt5h6Wa+4oV4+sNyYkvds/GWu5I=">AAAAAHicbVBNS8NAEN3Ur1q/Yj16WSxCvZRECnos6sGLUMF+QBPKZjttl242YXcjlpC/4sWDIl79I978N27bHLT1wcDjvRlm5gUxZ0o7zrdVWFvf2Nwqbpd2dvf2D+zDcltFiaTQohGPZDcgCjgT0NJMc+jGEkgYcOgEk+uZ33kEqVgkHvQ0Bj8kI8GGjBJtpL5d9m6Aa+LhqifD9A7a2Vnfrjg1Zw68StycVFCOZt/+8gYRTUIQmnKiVM91Yu2nRGpGOWQlL1EQEzohI+gZKkgIyk/nt2f41CgDPIykKaHxXP09kZJQqWkYmM6Q6LFa9mbif14v0cNLP2UiTjQIulg0TDjWEZ4FgQdMAtV8agihkplbMR0TSag2cZVMCO7yy6ukfV5z6zXnvl5pXOVxFNExOkFV5KIL1EC3qIlaiKIn9Ixe0ZuVWS/Wu/WxaC1Y+cwR+gPr8wfiQ5Ow</latexit>
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QMC (AFDMC)

<latexit sha1_base64="yRm6SlJr6uCpKvTg0cJEuaHhYo4=">AAAAAHicbVDLSgMxFM34rPU11qWbYBHqpsxIQZfVirgptGAf0BlKJs20oUlmSDJiGforblwo4tYfceffmLaz0NYDFw7n3Mu99wQxo0o7zre1tr6xubWd28nv7u0fHNpHhbaKEolJC0cskt0AKcKoIC1NNSPdWBLEA0Y6wbg28zuPRCoaiQc9iYnP0VDQkGKkjdS3C6knOWzWax4sXd/d1mvn075ddMrOHHCVuBkpggyNvv3lDSKccCI0ZkipnuvE2k+R1BQzMs17iSIxwmM0JD1DBeJE+en89ik8M8oAhpE0JTScq78nUsSVmvDAdHKkR2rZm4n/eb1Eh1d+SkWcaCLwYlGYMKgjOAsCDqgkWLOJIQhLam6FeIQkwtrElTchuMsvr5L2RdmtlJ1mpVi9yeLIgRNwCkrABZegCu5BA7QABk/gGbyCN2tqvVjv1seidc3KZo7BH1ifP254kr4=</latexit>

ERE n = 2

<latexit sha1_base64="E2z4GrlGpDjvRgcZ22odR6UjaO8=">AAAAAHicbVDLSgNBEJyNrxhfUQ8evAwGwVPYDQG9CEEJeIxiHpCEMDvpJENmZ5eZXjEsufgrXjwo4tXP8ObfOHkcNLGahqKqm5kuP5LCoOt+O6mV1bX1jfRmZmt7Z3cvu39QM2GsOVR5KEPd8JkBKRRUUaCERqSBBb6Euj+8nvj1B9BGhOoeRxG0A9ZXoic4Qyt1skcthEc0OJKQlO/KY9qypS4LnWzOzbtT0GXizUmOzFHpZL9a3ZDHASjkkhnT9NwI2wnTKLiEcaYVG4gYH7I+NC1VLADTTqYHjOmpVbq0F2rbCulU/b2RsMCYUeDbyYDhwCx6E/E/rxlj76KdCBXFCIrPHurFkmJIJ2nQrtDAUY4sYVwL+1fKB0wzjjazjA3BWzx5mdQKea+Yd2+LudLVPI40OSYn5Ix45JyUyA2pkCrhZEyeySt5c56cF+fd+ZiNppz5ziH5A+fzB4V+la8=</latexit>

rERE model 1

<latexit sha1_base64="t3Sz0p/VS0jLl2hvCqQbo1uIjzw=">AAAAAHicbVDLSgNBEJyNrxhfUW96GQyCp7ArAQUvQQl4jGIekA1hdtJJhsw+mOkVwxLw4q948aCIV3/Cm3/jJNmDJhY0FFXddHd5kRQabfvbyiwtr6yuZddzG5tb2zv53b26DmPFocZDGaqmxzRIEUANBUpoRgqY70loeMOrid+4B6VFGNzhKIK2z/qB6AnO0Eid/IGq3FZc6iI8oMaRhMQPuyDdC2fcyRfsoj0FXSROSgokRbWT/3K7IY99CJBLpnXLsSNsJ0yh4BLGOTfWEDE+ZH1oGRowH3Q7mf4wpsdG6dJeqEwFSKfq74mE+VqPfM90+gwHet6biP95rRh75+1EBFGMEPDZol4sKYZ0EgjtCgUc5cgQxpUwt1I+YIpxNLHlTAjO/MuLpH5adEpF+6ZUKF+mcWTJITkiJ8QhZ6RMrkmV1Agnj+SZvJI368l6sd6tj1lrxkpn9skfWJ8/zS2Xnw==</latexit>

fake!
LO



LO (BCS)

<latexit sha1_base64="9pNjXN2x/KaCTXCXnDRghtFctns=">AAAAAHicbVDLSsNAFJ34rPXRqEs3g0Wom5JIQZel3bgQrGgf0IQymU7aoTOTMDMRauiXuHGhiFs/xZ1/46TNQlsPXDiccy/33hPEjCrtON/W2vrG5tZ2Yae4u7d/ULIPjzoqSiQmbRyxSPYCpAijgrQ11Yz0YkkQDxjpBpNm5ncfiVQ0Eg96GhOfo5GgIcVIG2lglzzJ05tbD1YazfvzWXFgl52qMwdcJW5OyiBHa2B/ecMIJ5wIjRlSqu86sfZTJDXFjMyKXqJIjPAEjUjfUIE4UX46P3wGz4wyhGEkTQkN5+rviRRxpaY8MJ0c6bFa9jLxP6+f6PDKT6mIE00EXiwKEwZ1BLMU4JBKgjWbGoKwpOZWiMdIIqxNVlkI7vLLq6RzUXVrVeeuVq438jgK4AScggpwwSWog2vQAm2AQQKewSt4s56sF+vd+li0rln5zDH4A+vzB5/5kcE=</latexit>

NLO

<latexit sha1_base64="f+pn0KkhR5dmbf0Ky4W72KKa9gQ=">AAAAAHicbVBNSwMxEJ2tX7V+VT16CRbBU9mVgh6LXjyIVrAf0i4lm2bb0CS7JFmhLP0VXjwo4tWf481/Y7bdg7Y+GHi8N8PMvCDmTBvX/XYKK6tr6xvFzdLW9s7uXnn/oKWjRBHaJBGPVCfAmnImadMww2knVhSLgNN2ML7K/PYTVZpF8sFMYuoLPJQsZAQbKz32lEhvb+6mpX654lbdGdAy8XJSgRyNfvmrN4hIIqg0hGOtu54bGz/FyjDC6bTUSzSNMRnjIe1aKrGg2k9nB0/RiVUGKIyULWnQTP09kWKh9UQEtlNgM9KLXib+53UTE174KZNxYqgk80VhwpGJUPY9GjBFieETSzBRzN6KyAgrTIzNKAvBW3x5mbTOql6t6t7XKvXLPI4iHMExnIIH51CHa2hAEwgIeIZXeHOU8+K8Ox/z1oKTzxzCHzifPyzLj/0=</latexit>

kF (MeV)

<latexit sha1_base64="jGxif8NeAi6j+dMfL7xdgUNzHPk=">AAAAAHicbVBNS8NAEJ3Ur1o/GvXoZbEI9VISKeixKIgXoYL9gCaEzXbbLt1swu5GqKG/xIsHRbz6U7z5b9y2OWjrg4HHezPMzAsTzpR2nG+rsLa+sblV3C7t7O7tl+2Dw7aKU0loi8Q8lt0QK8qZoC3NNKfdRFIchZx2wvH1zO88UqlYLB70JKF+hIeCDRjB2kiBXR4HNx6qejLK7mh7ehbYFafmzIFWiZuTCuRoBvaX149JGlGhCcdK9Vwn0X6GpWaE02nJSxVNMBnjIe0ZKnBElZ/ND5+iU6P00SCWpoRGc/X3RIYjpSZRaDojrEdq2ZuJ/3m9VA8u/YyJJNVUkMWiQcqRjtEsBdRnkhLNJ4ZgIpm5FZERlphok1XJhOAuv7xK2uc1t15z7uuVxlUeRxGO4QSq4MIFNOAWmtACAik8wyu8WU/Wi/VufSxaC1Y+cwR/YH3+AIpAklw=</latexit>
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eV
)

<latexit sha1_base64="vt5h6Wa+4oV4+sNyYkvds/GWu5I=">AAAAAHicbVBNS8NAEN3Ur1q/Yj16WSxCvZRECnos6sGLUMF+QBPKZjttl242YXcjlpC/4sWDIl79I978N27bHLT1wcDjvRlm5gUxZ0o7zrdVWFvf2Nwqbpd2dvf2D+zDcltFiaTQohGPZDcgCjgT0NJMc+jGEkgYcOgEk+uZ33kEqVgkHvQ0Bj8kI8GGjBJtpL5d9m6Aa+LhqifD9A7a2Vnfrjg1Zw68StycVFCOZt/+8gYRTUIQmnKiVM91Yu2nRGpGOWQlL1EQEzohI+gZKkgIyk/nt2f41CgDPIykKaHxXP09kZJQqWkYmM6Q6LFa9mbif14v0cNLP2UiTjQIulg0TDjWEZ4FgQdMAtV8agihkplbMR0TSag2cZVMCO7yy6ukfV5z6zXnvl5pXOVxFNExOkFV5KIL1EC3qIlaiKIn9Ixe0ZuVWS/Wu/WxaC1Y+cwR+gPr8wfiQ5Ow</latexit>
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QMC (AFDMC)

<latexit sha1_base64="yRm6SlJr6uCpKvTg0cJEuaHhYo4=">AAAAAHicbVDLSgMxFM34rPU11qWbYBHqpsxIQZfVirgptGAf0BlKJs20oUlmSDJiGforblwo4tYfceffmLaz0NYDFw7n3Mu99wQxo0o7zre1tr6xubWd28nv7u0fHNpHhbaKEolJC0cskt0AKcKoIC1NNSPdWBLEA0Y6wbg28zuPRCoaiQc9iYnP0VDQkGKkjdS3C6knOWzWax4sXd/d1mvn075ddMrOHHCVuBkpggyNvv3lDSKccCI0ZkipnuvE2k+R1BQzMs17iSIxwmM0JD1DBeJE+en89ik8M8oAhpE0JTScq78nUsSVmvDAdHKkR2rZm4n/eb1Eh1d+SkWcaCLwYlGYMKgjOAsCDqgkWLOJIQhLam6FeIQkwtrElTchuMsvr5L2RdmtlJ1mpVi9yeLIgRNwCkrABZegCu5BA7QABk/gGbyCN2tqvVjv1seidc3KZo7BH1ifP254kr4=</latexit>

ERE n = 2
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Self-energy corrections
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FIG. 8. New diagrams contributing to the vertex function for the NNLO determination of the gap.

The pole in energy is now at E = µF + i�
2
. Inserting this gives
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in agreement with Eq. (30). Therefore, the gap gets its “units" from !kF , not µF , and to NNLO it
is consistent to ignore effects coming from µF � !kF 6= 0 as has been done in the main text.

It is instructive to consider the more general case of a propagator with the dispersion relation
left arbitrary,

G(k0,k) =
✓(k � kF )

k0 � "(k) + i✏
+
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k0 � "(k)� i✏
. (B5)

Relevant to the “units" of the gap is the in-medium part of ⇧pp(E),
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where vF = d
dk"(k)

��
kF

is the velocity of quasi-particles at the Fermi surface. The third line has
been evaluated at the pole E = "(kF ) + i�/2. This shows that the “units" of the gap come from
vFkF , and are therefore unaffected by a constant energy shift to "(k), i.e. by the chemical potential
µF .

Appendix C: Details of the NNLO Calculation

The diagrams that contribute to the NNLO gap are shown in Fig. 6. For completeness, the new
diagrams at this order are explicitly given in Fig. 8. It is straightforward to evaluate diagram 3a):



Summary

✦ A systematic power counting for computing the superfluid gap 
has been developed. This method applies to free-space 
interactions that are weak in units of the Fermi momentum.  

✦ Corrections to the Gor’kov,Melik-Barkhudarov effect in the case 
of a momentum-independent contact interaction have been 
computed and are found to further suppress the gap. 

✦ The LO gap in the pionless effective field theory has been 
computed. There is tension with QMC simulations. NLO is 
coming soon.


