Nuclear Physics at $m_{\pi} = 82$ MeV

Sanjay Reddy, Institute for Nuclear Theory, University of Washington, Seattle.

INSTITUTE for NUCLEAR THEORY

INT workshop on Chiral EFT: New Perspectives, Seattle, 18/03/25

Network for Neutrinos, Nuclear Astrophysics,

Nuclear Physics at $m_{\pi} = 82$ MeV

Sanjay Reddy, Institute for Nuclear Theory, University of Washington, Seattle.

- Why should we care?
- reliable estimates?
- condensation in neutron stars.
- Conclusions.

NSTITUTE for NUCLEAR THEORY

INT workshop on Chiral EFT: New Perspectives, Seattle, 18/03/25

m_{π} dependence of interactions in ChiEFT - can we make

 m_{π} dependence of the neutron matter EOS and axion

Network for Neutrinos, **Nuclear Astrophysics**

Nuclear Physics at $m_{\pi} = 82$ **MeV** and Axion Condensation

Sanjay Reddy, Institute for Nuclear Theory, University of Washington, Seattle.

- Why should we care?
- reliable estimates?
- condensation in neutron stars.
- Conclusions.

NSTITUTE for NUCLEAR THEORY

ightarrow

INT workshop on Chiral EFT: New Perspectives, Seattle, 18/03/25

m_{π} dependence of interactions in ChiEFT - can we make

 m_{π} dependence of the neutron matter EOS and axion

Network for Neutrinos, **Nuclear Astrophysics**

Collaborators

Mia Kumamoto Grad. Student U of Washington

Christian Drischler Asst. Professor Ohio U

Maria Dawid Grad. Student U of Washington

Masha Baryakthar Asst. Professor U of Washington

Junwu Huang Research Faculty Perimeter Inst.

Wouter Dekens Junior Fellow U of Washington

Vincenzo Cirigliano Senior Fellow U of Washington

A Simple Lagrangian with Marvelous Emergent Complexity at Low-Energy: $\mathscr{L} = \sum_{f} \bar{\psi}_{\alpha f} \left(i \gamma^{\mu} (\delta_{\alpha \beta} \partial_{\mu} - g (T_a G^a_{\mu})_{\alpha \beta}) + m_f \right) \psi_{\beta f} - \frac{1}{4} G^a_{\mu \nu} G^{\mu \nu}_a$

QCD

A Simple Lagrangian with Marvelous Emergent Complexity at Low-Energy: $\mathscr{L} = \sum_{\alpha} \bar{\psi}_{\alpha f} \left(i \gamma^{\mu} (\delta_{\alpha \beta} \partial_{\mu} - g (T_a G^a_{\mu})_{\alpha \beta}) + m_f \right) \psi_{\beta f} - \frac{1}{\Lambda} G^a_{\mu \nu} G^{\mu \nu}_a$

Running Coupling

QCD

A Simple Lagrangian with Marvelous Emergent Complexity at Low-Energy: $\mathscr{L} = \sum \bar{\psi}_{\alpha f} \left(i \gamma^{\mu} (\delta_{\alpha \beta} \partial_{\mu} - g (T_a G^a_{\mu})_{\alpha \beta}) + m_f \right) \psi_{\beta f} - \frac{1}{\Lambda} G^a_{\mu \nu} G^{\mu \nu}_a$

Running Coupling

$\begin{pmatrix} m_u \approx 2.5 \text{ MeV} & 0 \\ 0 & m_d \approx 5 \text{ MeV} \end{pmatrix}$ 0

QCD

Quark Mass Matrix

0 0 0 $m_s \approx 100 \text{ MeV}$

A Simple Lagrangian with Marvelous Emergent Complexity at Low-Energy: $\mathscr{L} = \sum_{f} \bar{\psi}_{\alpha f} \left(i \gamma^{\mu} (\delta_{\alpha \beta} \partial_{\mu} - g \ (T_{a} G^{a}_{\mu})_{\alpha \beta}) + m_{f} \right) \psi_{\beta f} - \frac{1}{4} G^{a}_{\mu \nu} G^{\mu \nu}_{a} + \theta \ \frac{g^{2}}{32\pi^{2}} G^{a}_{\mu \nu} \tilde{G}^{\mu \nu}_{a}$

Running Coupling

Quark Mass Matrix $(m_u \approx 2.5 \text{ MeV} \quad 0 \quad 0$ $0 \quad m_d \approx 5 \text{ MeV} \quad 0$ $0 \quad m_d \approx 5 \text{ MeV} \quad 0$ $0 \quad 0 \quad m_s \approx 100 \text{ MeV}$

QCD

θ -QCD

- Source of CP violation
- Induces neutron EDM: $d_n \approx 3 \times 10^{-16} \ \theta \ {\rm cm}$
- Experimental bound: $d_n \lesssim 10^{-26} \text{ e cm}$ or $\theta \lesssim 10^{-10}$

To explain $\theta < 10^{-10}$, θ was promoted to a dynamical quantity - a new field that relaxes to zero to minimize the free energy:

The axion is a pseudo-scalar particle that arises as a Goldstone boson from the breaking of a new U(1) symmetry introduced by Pecci and Quinn.

R. Peccei and H. R. Quinn (1977), S. Weinberg (1978), F. Wilczek (1978)

θ and Axions

 $\theta = \frac{a}{f_a} \qquad \text{Axion field}$ $\theta = \frac{a}{f_a} \qquad \text{A new high energy scale}$

Axion Mass and Energy

The axion coupling to gluons can be elimanted by a transformation of the quark mas matrix M_a

$$M_q \to M_q \exp\left(i\frac{a}{f_a} Q_a\right)$$
 where $Q_a = \frac{M_q^{-1}}{\operatorname{Tr} M_q^{-1}} = \frac{1}{m_u + m_d} \begin{pmatrix} m_d & & \\ & m_u & \\ & & 0 \end{pmatrix} + \mathcal{O}[m_u/m_s, m_d/m_s]$

This leads to an axion mass which can be calculated from Chiral Perturbation Theory

$$m_a^2 = \frac{f_{\pi}^2}{f_a^2} \left(\frac{m_u m_d}{(m_u + m_d)^2} \right) m_{\pi}^2$$

And a corresponding contribution to the energy density or an axion potential

$$V\left(\theta = \frac{a}{f_a}\right) = f_{\pi}^2 m_{\pi}^2 \left[1 - \sqrt{1 - \frac{4m_u m_d}{(m_u + m_d)^2} \sin^2\left[\frac{\theta}{2}\right]}\right] = \frac{1}{2} f_a^2 m_a^2 \theta^2 + \cdots$$

Which is minimized at $\theta = 0$.

 $\begin{pmatrix} m_u & 0 \\ 0 & m_d \end{pmatrix}$

At $\theta = \pi$

At $\theta = \pi$

 $\begin{pmatrix} m_u & 0 \\ 0 & m_d \end{pmatrix} \longrightarrow \begin{pmatrix} -m_u & 0 \\ 0 & m_d \end{pmatrix}$

Energy cost associated with the axion field:

At $\theta = \pi$

 $\begin{pmatrix} m_u & 0 \\ 0 & m_d \end{pmatrix} \longrightarrow \begin{pmatrix} -m_u & 0 \\ 0 & m_d \end{pmatrix}$

 $V(\theta = \pi) = f_{\pi}^2 m_{\pi}^2 \qquad 1 - \sqrt{1 - \frac{4m_u m_d}{(m_u + m_d)^2}} \qquad \simeq \frac{2}{3} f_{\pi}^2 m_{\pi}^2$

Energy cost associated with the axion field:

$$\frac{m_{\pi}^2(\theta=\pi)}{m_{\pi}^2(\theta=0)} = \frac{m_d - m_u}{m_d + m_u} \approx \frac{1}{3}$$

At $\theta = \pi$

 $\begin{pmatrix} m_u & 0 \\ 0 & m_d \end{pmatrix} \longrightarrow \begin{pmatrix} -m_u & 0 \\ 0 & m_d \end{pmatrix}$

 $V(\theta = \pi) = f_{\pi}^2 m_{\pi}^2 \qquad 1 - \sqrt{1 - \frac{4m_u m_d}{(m_u + m_d)^2}} \qquad \simeq \frac{2}{3} f_{\pi}^2 m_{\pi}^2$

$m_{\pi}(\theta = \pi) \simeq 82 \text{ MeV}$

How do (light) quark masses affect low-energy nuclear physics?

J. C. Berengut, E. Epelbaum, V. V. Flambaum, C. Hanhart, U.-G. Meißner, J. Nebreda, and J. R. Pela'ez (2013), J. Donoghue (2006), Beane and Savage (2003),

$$K_{m_{\pi}} = \frac{m_q}{m_{\pi}} \frac{\delta m_{\pi}}{\delta m_q} \simeq 0.5$$

$$K_{m_n} = \frac{m_q}{m_n} \frac{\delta m_n}{\delta m_q} \approx \frac{m_\pi^2}{m_n} \frac{\delta m_n}{\delta m_\pi^2} \simeq 0.05$$

How do (light) quark masses affect low-energy nuclear physics?

Masses of heavier vector mesons are relatively insensitive to the quark mass.

J. C. Berengut, E. Epelbaum, V. V. Flambaum, C. Hanhart, U.-G. Meißner, J. Nebreda, and J. R. Pela'ez (2013), J. Donoghue (2006), Beane and Savage (2003),

$$K_{m_{\pi}} = \frac{m_q}{m_{\pi}} \frac{\delta m_{\pi}}{\delta m_q} \simeq 0.5$$

$$K_{m_n} = \frac{m_q}{m_n} \frac{\delta m_n}{\delta m_q} \approx \frac{m_\pi^2}{m_n} \frac{\delta m_n}{\delta m_\pi^2} \simeq 0.05$$

$$K_{m_{\rho}} = \frac{m_q}{m_{\rho}} \frac{\delta m_{\rho}}{\delta m_q} \simeq 0.05$$

How do (light) quark masses affect low-energy nuclear physics?

Masses of heavier vector mesons are relatively insensitive to the quark mass.

Mass of the scalar sigma meson

J. C. Berengut, E. Epelbaum, V. V. Flambaum, C. Hanhart, U.-G. Meißner, J. Nebreda, and J. R. Pela'ez (2013), J. Donoghue (2006), Beane and Savage (2003),

$$K_{m_{\pi}} = \frac{m_q}{m_{\pi}} \frac{\delta m_{\pi}}{\delta m_q} \simeq 0.5$$

$$K_{m_n} = \frac{m_q}{m_n} \frac{\delta m_n}{\delta m_q} \approx \frac{m_\pi^2}{m_n} \frac{\delta m_n}{\delta m_\pi^2} \simeq 0.05$$

$$K_{m_{\rho}} = \frac{m_q}{m_{\rho}} \frac{\delta m_{\rho}}{\delta m_q} \simeq 0.05$$

$$K_{m_{\sigma}} = \frac{m_q}{m_{\sigma}} \frac{\delta m_{\sigma}}{\delta m_q} \simeq 0.1$$

Hadrons at $\theta \neq 0$

Because $M_q \rightarrow M_q \exp(2i\theta Q_a)$ the pion mass decreases with θ :

$$m_{\pi}^{2}(\theta) = m_{\pi}^{2}(\theta = 0) \sqrt{1 - \frac{4m_{u}m_{d}}{(m_{u} + m_{d})^{2}}} \sin^{2}\left[\frac{\theta}{2}\right]$$

$$\frac{m_{\pi}^2(\theta=\pi)}{m_{\pi}^2(\theta=0)} = \frac{m_d - m_u}{m_d + m_u} \approx \frac{1}{3}$$

The resulting decrease in the nucleon mass

$$m_n(\theta) = m_0 + \sigma_{\pi n} \frac{m_\pi^2(\theta)}{m_\pi^2(\theta = 0)}$$

The decrease in the nucleon mass

favors a first-order transition to a ground state with $\theta = \pi$

Neglecting nuclear interactions the energy gain per nucleon is

$$\Delta E \simeq \sigma_{\pi n} \left(1 - \frac{m_{\pi}^2(\theta = \pi)}{m_{\pi}^2(\theta = 0)} \right) \simeq \frac{2}{3} \sigma_{\pi n}$$

The energy cost (due to axion potential) per nucleon is

$$\Delta E = \frac{V(\theta = \pi)}{n_B} \simeq \frac{2}{3} \frac{f_\pi^2 m_\pi^2}{n_B}$$

Condensation occurs when $\sigma_{\pi N} n_B > f_{\pi}^2 m_{\pi}^2$

For
$$\sigma_{\pi n} = 50 \text{ MeV}$$

A. Hook and J. Huang (2018)

R. Balkin, J. Serra, K. Springmann, and A. Weiler, (2020)

$$n_B^c \simeq 2.6 n_{\rm sat}$$

R. Kumamoto, J. Huang, C. Drischler, M. Baryakthar, and S. Redd (2024)

Interactions

Does the energy per particle in nuclear systems increase or decrease with m_{π} ?

If $\Delta E_{\text{int}} = E_{\text{int}}(m_{\pi} = 82 \text{ MeV}) - E_{\text{int}}(m_{B}^{c} < 2.6 n_{\text{sat}})$

If $\Delta E_{int} = E_{int}(m_{\pi} = 82 \text{ MeV}) - E_{int}(m_{\pi}^{phys}) < 0$ condensation is expected at

Interactions

Does the energy per particle in nuclear systems increase or decrease with m_{π} ?

If $\Delta E_{\text{int}} = E_{\text{int}}(m_{\pi} = 82 \text{ MeV}) - E_{\text{int}}(m_{B}^{c} < 2.6 n_{\text{sat}})$

Can χ EFT predict the sign of $\Delta E_{int}(n_B \simeq n_{sat})$?

If $\Delta E_{int} = E_{int}(m_{\pi} = 82 \text{ MeV}) - E_{int}(m_{\pi}^{phys}) < 0$ condensation is expected at

How do quark masses affect nuclear interactions at low-energy?

Short answer: We do not really know.

• We can implement changing quark mass into pionexchanges, but effects at short distances are not well understood.

J. C. Berengut, E. Epelbaum, V. V. Flambaum, C. Hanhart, U.-G. Meißner, J. Nebreda, and J. R. Pela'ez (2013), E. Epelbaum and J. Gegelia (2013), J. Donoghue (2006), E. Epelbaum, U.-G. Meißner, W. Glo"ckle (2003), Beane and Savage (2003), Bulgac, Miller, Strikman (1997).

How do quark masses affect nuclear interactions at low-energy?

Short answer: We do not really know.

- We can implement changing quark mass into pionexchanges, but effects at short distances are not well understood.
- Models with "reasonable" assumptions suggest that the deuteron binding energy increases with decreasing pion mass.

J. C. Berengut, E. Epelbaum, V. V. Flambaum, C. Hanhart, U.-G. Meißner, J. Nebreda, and J. R. Pela'ez (2013), E. Epelbaum and J. Gegelia (2013), J. Donoghue (2006), E. Epelbaum, U.-G. Meißner, W. Glo"ckle (2003), Beane and Savage (2003), Bulgac, Miller, Strikman (1997).

How do quark masses affect nuclear interactions at low-energy?

Short answer: We do not really know.

- We can implement changing quark mass into pionexchanges, but effects at short distances are not well understood.
- Models with "reasonable" assumptions suggest that the deuteron binding energy increases with decreasing pion mass.

Effect of quark mass (pion mass) on the scattering length:

$$K_{a_s} = \frac{m_q}{a_s} \frac{\delta a_s}{\delta m_q} \simeq 2.4 \pm 3 \qquad \text{J. C. Berengut, E. Epelbaum, e}$$
$$\simeq 5 \pm 5 \qquad \text{Beane and Savage (2003)}$$

 $\simeq 2.3 \pm 1.9$ E. Epelbaum, U.-G. Meißner, W. Glo⁻⁻ckle (2003)

J. C. Berengut, E. Epelbaum, V. V. Flambaum, C. Hanhart, U.-G. Meißner, J. Nebreda, and J. R. Pela'ez (2013), E. Epelbaum and J. Gegelia (2013), J. Donoghue (2006), E. Epelbaum, U.-G. Meißner, W. Glo"ckle (2003), Beane and Savage (2003), Bulgac, Miller, Strikman (1997).

t al. (2013)

 $V_{\rm LO}(q) = C_0 + D_2 m_{\pi}^2 +$

Renormalization requires D_2 :

Kaplan, Savage, Wise (1998)

To obtain a scattering amplitude that is independent of cut-off Λ requires:

╋

$$\Lambda \frac{d}{d\Lambda} \left(\frac{D_2}{C_0^2} \right)_{\text{KSW}} = \frac{g_A^2 m_N^2}{64\pi^2 f_\pi^2}$$

$$\frac{g_A^2}{4f_\pi^2} \frac{\sigma_1 \cdot \mathbf{q} \ \sigma_2 \cdot \mathbf{q}}{\mathbf{q}^2 + m_\pi^2} \ \tau_1 \cdot \tau_2$$

$$\frac{|D_2|}{C_0^2} \approx \frac{g_A^2 m_N^2}{64\pi^2 f_\pi^2} \simeq \frac{1}{4}$$

 $V_{\rm LO}(q) = C_0 + D_2 m_{\pi}^2 + C_0 + D_2 m_{\pi}^2$

Renormalization requires D_2 :

Kaplan, Savage, Wise (1998)

To obtain a scattering amplitude that is independent of cut-off Λ requires:

$$\Lambda \frac{d}{d\Lambda} \left(\frac{D_2}{C_0^2} \right)_{\text{KSW}} = \frac{g_A^2 m_N^2}{64\pi^2 f_\pi^2}$$

Analysis of 2-nucleon scattering in Lattice QCD for different values m_{π} could, in principle, determine D_2 but systematics are too large at this time.

$$\frac{g_A^2}{4f_\pi^2} \frac{\sigma_1 \cdot \mathbf{q} \ \sigma_2 \cdot \mathbf{q}}{\mathbf{q}^2 + m_\pi^2} \ \tau_1 \cdot \tau_2$$

 $V_{\rm LO}(q) = C_0 + D_2 m_\pi^2 + C_0 + D_2 m_\pi^2$

Renormalization requires D_2 :

Kaplan, Savage, Wise (1998)

To obtain a scattering amplitude that is independent of cut-off Λ requires:

$$\Lambda \frac{d}{d\Lambda} \left(\frac{D_2}{C_0^2} \right)_{\text{KSW}} = \frac{g_A^2 m_N^2}{64\pi^2 f_\pi^2}$$

Analysis of 2-nucleon scattering in Lattice QCD for different values m_{π} could, in principle, determine D_2 but systematics are too large at this time. Beane, Bedaque, Detmold, Savage (NPLQCD), Walker-Loud (Cal-Lat), Aoki, Hatsuda, Ishii (HAL QCD Collaboration),

$$\frac{g_A^2}{4f_\pi^2} \frac{\sigma_1 \cdot \mathbf{q} \ \sigma_2 \cdot \mathbf{q}}{\mathbf{q}^2 + m_\pi^2} \ \tau_1 \cdot \tau_2$$

RG suggests: $|D_2| \simeq \frac{C_0^2}{4} \approx \frac{1}{5f_\pi^4}$

Variation over a smaller range:

$$-\frac{1}{5} < \eta = \frac{D_2 m_\pi^2}{C_0^2} < \frac{1}{5}$$

has a significant impact on s-wave observables.

D₂ can be important.

S.R. Beane, M.J. Savage / Nuclear Physics A 717 (2003) 91–103

J. C. Berengut, E. Epelbaum, V. V. Flambaum, C. Hanhart, U.-G. Meißner, J. Nebreda, and J. R. Pela'ez (2013)

J. C. Berengut, E. Epelbaum, V. V. Flambaum, C. Hanhart, U.-G. Meißner, J. Nebreda, and J. R. Pela'ez (2013)

$BE_{2H}(m_{\pi} = 82 \text{ MeV}) \simeq 3.4 \pm 0.7 \text{ MeV}$

$\overline{BE_{4}}_{\text{He}}(m_{\pi} = 82 \text{ MeV}) \simeq 38 \pm 7 \text{ MeV}$

J. C. Berengut, E. Epelbaum, V. V. Flambaum, C. Hanhart, U.-G. Meißner, J. Nebreda, and J. R. Pela'ez (2013)

Extrapolation to symmetric nucler matter at saturation density (?):

$$\frac{E(m_{\pi} = 82 \text{ MeV})}{A} = \frac{E(m_{\pi})}{A}$$

$BE_{4He}(m_{\pi} = 82 \text{ MeV}) \simeq 38 \pm 7 \text{ MeV}$

 $\frac{(2^{hys})}{2} - (3 \pm 1.5) \text{ MeV}$

J. C. Berengut, E. Epelbaum, V. V. Flambaum, C. Hanhart, U.-G. Meißner, J. Nebreda, and J. R. Pela'ez (2013)

Extrapolation to symmetric nucler matter at saturation density (?):

$$\frac{E(m_{\pi} = 82 \text{ MeV})}{A} = \frac{E(m_{\pi}^{p})}{A}$$

A modest increase in the binding of nuclear matter at $\theta = \pi$!

$BE_{4He}(m_{\pi} = 82 \text{ MeV}) \simeq 38 \pm 7 \text{ MeV}$

 $\frac{(2^{hys})}{2} - (3 \pm 1.5) \text{ MeV}$

Can interactions favor $\theta = \pi$ in neutron matter ?

ChiEFT at N²LO, with simple assumptions about short-distance forces.

$$m_n = m_0 + \sigma_{\pi n} \frac{m_\pi^2}{(m_\pi^2)_{\text{phys}}}$$

$$g_A = \text{constant and } f_\pi = f_0 \left(1 + l_4 \frac{m_\pi^2}{(4\pi f_0)^2} \right)$$

- $-0.1 < \eta = \frac{\tilde{D}_2 m_\pi^2}{\tilde{C}_{1S_0}} < 0.1$ Variation of D_2 in the range
- Cut-off variation is significant .. suggesting missing short-distance pion mass dependent corrections.

$$\Delta E_{\rm int} = E_{\rm int}(m_{\pi}) - E_{\rm int}(m_{\pi}^{\rm phys})$$

M. Kumamoto, J. Huang, C. Drischler, M. Baryakhtar, S. Reddy (2024)

Can interactions favor $\theta = \pi$ in neutron matter ?

ChiEFT at N²LO, with simple assumptions about short-distance forces.

$$m_n = m_0 + \sigma_{\pi n} \frac{m_\pi^2}{(m_\pi^2)_{\text{phys}}}$$

$$g_A = \text{constant and } f_\pi = f_0 \left(1 + l_4 \frac{m_\pi^2}{(4\pi f_0)^2} \right)$$

- $-0.1 < \eta = \frac{\tilde{D}_2 m_\pi^2}{\tilde{C}_{1S_0}} < 0.1$ Variation of D_2 in the range •
- Cut-off variation is significant .. suggesting missing short-distance pion mass dependent corrections.

$$\Delta E_{\text{int}} = E_{\text{int}}(m_{\pi}) - E_{\text{int}}(m_{\pi}^{\text{phys}})$$

M. Kumamoto, J. Huang, C. Drischler, M. Baryakhtar, S. Reddy (2024)

 n_B/n_{sat}

 n_B/n_{sat}

Neutron Stars with an Axion Condensate: Pi in the Sky?

Axion Condensed Neutron Star Models

Condensation is realized in simpler mean field models of neutron-rich matter. Even a small increase in attraction at $\theta = \pi$ would favor axion condensation at

$$n_B^c \lesssim 2 n_{\rm sat}$$

Mia Kumamoto

Neutron Matter

M. Kumamoto, J. Huang, C. Drischler, M. Baryakhtar, S. Reddy (2024)

Conclusions

- Understanding the quark or pion mass dependence of nuclear forces is important to address the possibility of axion condensation in neutron stars.
- If nuclear interactions favor axion condensation and we can identify robust neutron star observables, we can rule in or rule out the QCD axion at any reasonable value of f_a !
- Studying the RG invariance of ChiEFT as a function of pion mass might help isolate new operators. (Ref. talk by Wouter Dekens).