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-QCD  θ
• Source of CP violation

dn ≈ 3 × 10−16 θ e cm
• Induces neutron EDM:

• Experimental bound: 

dn ≲ 10−26 e cm
or θ ≲ 10−10
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 and Axionsθ

To explain ,   was promoted to a dynamical quantity - a new field that 
relaxes to zero to minimize the free energy:    

θ < 10−10 θ

θ =
a
fa

Axion field

A new high energy scale 

ℒθ = θ
g2

32π2
Ga

μνG̃
μν
a

R. Peccei and H. R. Quinn (1977), S. Weinberg (1978), F. Wilczek (1978)

The axion is a pseudo-scalar particle that arises as a Goldstone boson from the breaking 
of a new U(1) symmetry introduced by Pecci and Quinn.  



The axion coupling to gluons can be elimanted by a transformation of the quark mas matrix  Mq

Axion Mass and Energy 

Mq → Mq exp (i
a
fa

Qa) Qa =
M−1

q

Tr M−1
q

=
1

mu + md

md
mu

0
+ 𝒪[mu/ms, md /ms]where

This leads to an axion mass which can be calculated from Chiral Perturbation Theory 

m2
a =

f2
π

f 2
a ( mumd

(mu + md)2 ) m2
π

And a corresponding contribution to the energy density or an axion potential 

V (θ =
a
fa ) = f2

πm2
π 1 − 1 −

4mumd

(mu + md)2
sin2 [ θ

2 ] =
1
2

f2
am2

aθ2 + ⋯

Which is minimized at θ = 0.
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1
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mπ(θ = π) ≃ 82 MeV
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Hadrons at  θ ≠ 0

m2
π(θ) = m2

π(θ = 0) 1 −
4mumd

(mu + md)2
sin2 [ θ

2 ]
the pion mass decreases with : θ

m2
π(θ = π)

m2
π(θ = 0)

=
md − mu

md + mu
≈

1
3

 mn(θ) = m0 + σπn
m2

π(θ)
m2

π(θ = 0)

The resulting decrease in the nucleon mass  

Mq → Mq exp (2iθ Qa)Because 

σπN = 50 MeV



 mn(θ) = m0 + σπn
m2

π(θ)
m2

π(θ = 0)
+ ⋯The decrease in the nucleon mass  

favors a first-order transition to a ground state with  θ = π

Neglecting nuclear interactions the energy gain per 
nucleon is

nc
B ≃ 2.6 nsat

Axion Condensation

σπNnB > f2
πm2

π

For σπn = 50 MeV

 ΔE ≃ σπn (1 −
m2

π(θ = π)
m2

π(θ = 0) ) ≃
2
3

σπn

The energy cost (due to axion potential) per nucleon is

 ΔE =
V(θ = π)

nB
≃

2
3

f2
πm2

π

nB

Condensation occurs when  

A. Hook and J. Huang (2018) R. Balkin, J. Serra, K. Springmann, and A. Weiler, (2020) R. Kumamoto, J. Huang, C. Drischler, M. Baryakthar, and S. Redd  (2024)
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Interactions 

If   condensation is expected at 
  

ΔEint = Eint(mπ = 82 MeV) − Eint(m
phys
π ) < 0

nc
B < 2.6 nsat

Can EFT predict the sign of ? χ ΔEint(nB ≃ nsat)

Does the energy per particle in nuclear systems increase or decrease with  ?mπ
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Short answer: We do not really know.  

• We can implement changing quark mass into pion-
exchanges, but effects at short distances are not well 
understood.    

Effect of quark mass (pion mass) on the scattering length:   

Kas
=

mq

as

δas

δmq
≃ 2.4 ± 3

≃ 5 ± 5

≃ 2.3 ± 1.9 E. Epelbaum, U.-G. Meißner, W. Glo ̈ckle (2003)

Beane and Savage (2003)

J. C. Berengut, E. Epelbaum, et al. (2013)

• Models with “reasonable” assumptions suggest that 
the deuteron binding energy increases with decreasing 
pion mass. 
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Beane, Bedaque, Detmold, Savage (NPLQCD), Walker-Loud (Cal-Lat), Aoki, Hatsuda, Ishii (HAL QCD Collaboration), ….  
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D2  can be important.  

|D2 | ≃
C2

0

4
≈

1
5f4

π

−
1
5

< η =
D2m2

π

C2
0

<
1
5

RG suggests: 

Variation over a smaller range: 

has a significant impact on s-wave 
observables.  
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A modest increase in the binding of nuclear matter at  !  θ = π

From resonance saturation and matching ChiEFT to the Bonn. potential model. 
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Axion Condensed Neutron Star Models 

M. Kumamoto, J. Huang, C. Drischler, M. Baryakhtar, S. Reddy (2024)  Mia Kumamoto

Condensation is realized in simpler mean field 
models of neutron-rich matter. Even a small 
increase in attraction at  would favor 
axion condensation at   

θ = π

nc
B ≲ 2 nsat
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~f
ew

 km
s

Neutron Matter

Kσ =
m2

π

mσ
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δm2
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= 0.08
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Conclusions

• Understanding the quark or pion mass dependence of nuclear forces is 
important to address the possibility of axion condensation in neutron stars.  


• If nuclear interactions favor axion condensation and we can identify robust 
neutron star observables, we can rule in or rule out the QCD axion — at any 
reasonable value of  ! 


• Studying the RG invariance of ChiEFT as a function of pion mass might help 
isolate new operators.  (Ref. talk by Wouter Dekens). 

fa


