

INSTITUTE for NUCLEAR THEORY

Determining the leading-order contact term induced by sterile neutrinos in neutrinoless double β decay

Chiral EFT: New Perspectives @ INT Mar 17 - 21, 2025

Sebastián Urrutia Quiroga <u>suq90@uw.edu</u>

Based on: V. Cirigliano, W. Dekens, **SUQ**, arXiv:2412.10497

ChEFT: New Perspectives

1

$0\nu\beta\beta$: from quarks to nuclei using EFT

Tree-level exchange of Majorana neutrinos

Chiral symmetry also allows a contact term

Checking $nn \rightarrow ppe^-e^-$

- Some diagrams are divergent! Here μ_{γ} is the renormalization scale in $\overline{\mathrm{MS}}$
- New interaction is needed at **LO** to get physical amplitudes:

$$\mathcal{L}_{CT} = 2G_F^2 V_{ud}^2 m_{\beta\beta} g_{\nu}^{NN} \bar{p}n \bar{p}n \bar{e}_L C \bar{e}_L^T$$

$$V_{\Delta L=2} = V_{\nu} + V_{\nu,CT} = \underbrace{\stackrel{n}{\nu_e} \stackrel{e^-}{p}}_{n} \underbrace{\stackrel{n}{\rho}}_{e^-} \underbrace{\stackrel{p}{\rho}}_{e^-}$$

$$(irigliano et al. '18, '19$$

$$\mathcal{L}_{CT} = 2G_F^2 V_{ud}^2 m_{\beta\beta} g_{\nu}^{NN} \bar{p}n \bar{p}n \bar{e}_L C \bar{e}_L^T$$

$$(irigliano et al. '18, '19$$

$$\mathcal{L}_{CT} = 2G_F^2 V_{ud}^2 m_{\beta\beta} g_{\nu}^{NN} \bar{p}n \bar{p}n \bar{e}_L C \bar{e}_L^T$$

$$(irigliano et al. '18, '19$$

$$\mathcal{L}_{CT} = 2G_F^2 V_{ud}^2 m_{\beta\beta} g_{\nu}^{NN} \bar{p}n \bar{p}n \bar{e}_L C \bar{e}_L^T$$

$$(irigliano et al. '18, '19$$

$$\mathcal{L}_{CT} = 2G_F^2 V_{ud}^2 m_{\beta\beta} g_{\nu}^{NN} \bar{p}n \bar{p}n \bar{e}_L C \bar{e}_L^T$$

$$(irigliano et al. '18, '19)$$

$$(irigliano et al. '18, '19)$$

$$(irigliano et al. '18, '19)$$

Challenge: determining g_{ν}^{NN}

Analytical Approach Cirigliano et al. '20, '21; Cirigliano, Dekens, SUQ, '24

- Analogy to the Cottingham approach for pion/nucleon mass differences
- $\Delta L = 2$ amplitudes controlled by neutrinoless effective action:

$$\langle e_1^- e_2^- pp \,|\, S_{\text{eff}}^{\Delta L=2} \,|\, nn \rangle = (2\pi)^4 \,\delta^{(4)}(p_f - p_i) \Big(4G_F^2 V_{ud}^2 \,\bar{u}_L(p_1) u_L^c(p_2) \Big) \times \sum_{i=1}^{3+n} U_{ei}^2 \,m_i \,\mathcal{A}_\nu(m_i) \Big| \,\delta^{(4)}(p_f - p_i) \Big(4G_F^2 V_{ud}^2 \,\bar{u}_L(p_1) u_L^c(p_2) \Big) \Big) \times \sum_{i=1}^{3+n} U_{ei}^2 \,m_i \,\mathcal{A}_\nu(m_i) \Big| \,\delta^{(4)}(p_f - p_i) \Big(4G_F^2 V_{ud}^2 \,\bar{u}_L(p_1) u_L^c(p_2) \Big) \Big) \Big| \,\delta^{(4)}(p_f - p_i) \Big(4G_F^2 V_{ud}^2 \,\bar{u}_L(p_1) u_L^c(p_2) \Big) \Big| \,\delta^{(4)}(p_f - p_i) \Big(4G_F^2 V_{ud}^2 \,\bar{u}_L(p_1) u_L^c(p_2) \Big) \Big| \,\delta^{(4)}(p_f - p_i) \Big(4G_F^2 V_{ud}^2 \,\bar{u}_L(p_1) u_L^c(p_2) \Big) \Big| \,\delta^{(4)}(p_f - p_i) \Big(4G_F^2 V_{ud}^2 \,\bar{u}_L(p_1) u_L^c(p_2) \Big) \Big| \,\delta^{(4)}(p_f - p_i) \Big(4G_F^2 V_{ud}^2 \,\bar{u}_L(p_1) u_L^c(p_2) \Big) \Big| \,\delta^{(4)}(p_f - p_i) \Big(4G_F^2 V_{ud}^2 \,\bar{u}_L(p_1) u_L^c(p_2) \Big) \Big| \,\delta^{(4)}(p_f - p_i) \Big(4G_F^2 V_{ud}^2 \,\bar{u}_L(p_1) u_L^c(p_2) \Big) \Big| \,\delta^{(4)}(p_f - p_i) \Big(4G_F^2 V_{ud}^2 \,\bar{u}_L(p_1) u_L^c(p_2) \Big) \Big| \,\delta^{(4)}(p_f - p_i) \Big(4G_F^2 V_{ud}^2 \,\bar{u}_L(p_1) u_L^c(p_2) \Big) \Big| \,\delta^{(4)}(p_f - p_i) \Big(4G_F^2 V_{ud}^2 \,\bar{u}_L(p_1) u_L^c(p_2) \Big) \Big| \,\delta^{(4)}(p_f - p_i) \Big(4G_F^2 V_{ud}^2 \,\bar{u}_L(p_1) u_L^c(p_2) \Big) \Big| \,\delta^{(4)}(p_f - p_i) \Big(4G_F^2 V_{ud}^2 \,\bar{u}_L(p_1) u_L^c(p_2) \Big) \Big| \,\delta^{(4)}(p_f - p_i) \Big(4G_F^2 V_{ud}^2 \,\bar{u}_L(p_1) u_L^c(p_2) \Big) \Big| \,\delta^{(4)}(p_f - p_i) \Big| \,\delta^{(4)}(p_i) \Big|$$

$$\mathscr{A}_{\nu}(m_i) \propto \int \frac{d^4k}{(2\pi)^4} \frac{g_{\mu\nu}}{k^2 - m_i^2 + i\epsilon} \int d^4x \ e^{ik \cdot x} \langle pp \,|\, T\{J^{\mu}_W(x) J^{\nu}_W(0)\} \,|\, nn \rangle$$

✓ For a generic Majorana neutrino (active or sterile) with mass $m_i ≤ Λ_\chi$

✓ Results valid for limit $m_i \rightarrow 0$

W. Cottingham '63;

H. Harari '66

Challenge: determining g_{ν}^{NN}

Analytical Approach Cirigliano et al. '20, '21; Cirigliano, Dekens, SUQ, '24

- Analogy to the Cottingham approach for pion/nucleon mass differences
- Matching at the amplitude level:

- Estimation of $\mathscr{A}_{\nu}^{\text{full}}$ by modeling integrand:
 - The region $|\mathbf{k}| \ll \Lambda_{\gamma}$ is determined by χEFT
 - The region $|\mathbf{k}| \gg \mathcal{O}(GeV)$ matches the OPE
 - The intermediate region is modeled using
 - Form factors
 - Off-shell effects from NN intermediate states

- Challenges of the $\mathscr{A}_{\nu}^{\chi \text{EFT}}$ calculation:
 - The behavior of $g_{\nu}^{NN}(m_i)$ is expected to be corrected by terms of $\mathcal{O}(m_i/\Lambda_{\chi})$ that we do not control

W. Cottingham '63;

H. Harari '66

Modeling $\mathscr{A}_{\nu}^{\mathrm{full}}$

• High momentum region: For $|\mathbf{k}| > \Lambda$ (scale at which the OPE becomes reliable),

Ρ

$$a_{>}(|\mathbf{k}|, m_{i}) = \frac{4\alpha_{s}}{\pi} \bar{g}_{1}^{NN} F_{\pi}^{2} \frac{2|\mathbf{k}| + \omega_{k}}{\omega_{k}|\mathbf{k}|(\omega_{k} + |\mathbf{k}|)^{2}}$$

• $\omega_k \equiv \sqrt{\mathbf{k}^2 + m_i^2}$

• $\bar{g}_1^{NN} \sim \mathcal{O}(1)$ is proportional to the $nn \rightarrow pp$ matrix element of the local operator $\bar{u}_L \gamma^\mu d_L \bar{u}_L \gamma_\mu d_L$

• Small and intermediate momentum region: For $|\mathbf{k}| < \Lambda$, we use the χEFT representation

$$a_{<}(|\mathbf{k}|, m_{i}) = -8g_{\text{full}}(\mathbf{k}^{2})\frac{\mathbf{k}^{2}}{\mathbf{k}^{2} + m_{i}^{2}}\text{Re}I_{C}^{<}(|\mathbf{k}|)$$

$$g_{\text{full}}(\mathbf{k}^{2}) \equiv g_{V}^{2}(\mathbf{k}^{2}) + 2g_{A}^{2}(\mathbf{k}^{2}) + \frac{\mathbf{k}^{2}g_{M}^{2}(\mathbf{k}^{2})}{2m_{N}^{2}}$$

$$I_{C}^{<}(|\mathbf{k}|) \equiv \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f_{S}(\mathbf{p}', \mathbf{q} + \mathbf{k}) \frac{1}{\mathbf{p}^{2} - (\mathbf{q} + \mathbf{k})^{2} + i\epsilon} \frac{1}{\mathbf{p}^{2} - \mathbf{q}^{2} + i\epsilon} f_{S}(\mathbf{q}, \mathbf{p})$$

$$\sum_{k=1}^{n} \frac{1}{2} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f_{S}(\mathbf{p}', \mathbf{q} + \mathbf{k}) \frac{1}{\mathbf{p}^{2} - (\mathbf{q} + \mathbf{k})^{2} + i\epsilon} \frac{1}{\mathbf{p}^{2} - \mathbf{q}^{2} + i\epsilon} f_{S}(\mathbf{q}, \mathbf{p})$$

dependence of the short-range (not mediated by pions) 1S_0 scattering amplitude

6

n

Modeling $\mathscr{A}_{\nu}^{\text{full}}$: IR behavior

Introduce an auxiliary scale λ ($|\mathbf{p}|_{ext} \ll \lambda \lesssim m_{\pi}$) to isolate the external momenta dependence

$$\overline{\mathscr{A}}_{<}^{\text{full}}(m_{i}) = \left(\int_{0}^{\lambda} + \int_{\lambda}^{\Lambda}\right) d\left|\mathbf{k}\right| a_{<}(\left|\mathbf{k}\right|, m_{i})$$

Region $\lambda < |\mathbf{k}| < \Lambda$: - We introduce the ratio $r(|\mathbf{k}|) \equiv \frac{\operatorname{Re} I_C^{<}(|\mathbf{k}|)}{\operatorname{Re} I_C(|\mathbf{k}|)}$, where $\operatorname{Re} I_C(|\mathbf{k}|) \equiv \frac{\theta(|\mathbf{k}| - |\mathbf{p}|_{ext})}{8|\mathbf{k}|}$

Modeling $\mathscr{A}_{\nu}^{\text{full}}$: IR behavior

Introduce an auxiliary scale λ ($|\mathbf{p}|_{ext} \ll \lambda \lesssim m_{\pi}$) to isolate the external momenta dependence

$$\overline{\mathscr{A}}_{<}^{\text{full}}(m_{i}) = \left(\int_{0}^{\lambda} + \int_{\lambda}^{\Lambda}\right) d\left|\mathbf{k}\right| a_{<}(\left|\mathbf{k}\right|, m_{i})$$

- Region $|\mathbf{k}| < \lambda$:
 - We can safely neglect the dipole effects in the form factors $\rightarrow g_{\text{full}}(\mathbf{k}^2) \approx g_{\text{full}}(0) = (1 + 2g_A^2)$
 - We can use the χ EFT NLO expansion for Re $I_C^{<}(|\mathbf{k}|)$, appropriate for $|\mathbf{k}| \leq \lambda$

$$\int_{0}^{\lambda} d\|\mathbf{k}\| a_{<}(\|\mathbf{k}\|, m_{i}) = \frac{(1+2g_{A}^{2})}{2} \left[2d\lambda - 2dm_{i} \tan^{-1}\left(\frac{\lambda}{m_{i}}\right) + \log\left(\frac{m_{i}^{2} + \|\mathbf{p}\|_{\text{ext}}^{2}}{m_{i}^{2} + \lambda^{2}}\right) \right]$$

$$= \sum_{i=1}^{n} \frac{m_{i}}{2} - \frac{m_{i}^{2}}{\lambda} + \mathcal{O}(m_{i}^{4}) \quad \text{m}_{i} \ll \lambda$$

8

Chiral EFT amplitude $\mathscr{A}_{\nu}^{\chi \text{EFT}}$: LO

• As argued before, the χ EFT amplitude is divergent, requiring the introduction of a counter-term:

$$\overline{\mathscr{A}}_{\nu}^{\chi \text{EFT}}(m_i) = \overline{\mathscr{A}}_{\nu}^{\text{sing}}(\mu_{\chi}, m_i) + 2\,\overline{g}_{\nu}^{NN}(m_i)$$

$$g_X \equiv \left(\frac{m_N}{4\pi}C(\mu_\chi)\right)^2 \,\bar{g}_X$$

 $C(\mu_{\chi})$: leading non-derivative NN coupling in the ${}^{1}S_{0}$ channel

• At leading order, the singular amplitude takes the form:

$$\overline{\mathscr{A}}_{\nu}^{\operatorname{sing}}(\mu_{\chi}, m_{i})\Big|_{\operatorname{LO}} = -\frac{(1+2g_{A}^{2})}{2} \left[1 + \log\left(\frac{\mu_{\chi}^{2}}{m_{i}^{2} + |\mathbf{p}|_{\operatorname{ext}}^{2}}\right)\right]$$

Same |p|_{ext} dependence as \$\vec{A}_{\nu}^{full}\$, so \$g_{\nu}^{NN}\$ is external-momenta independent
 Doesn't give the correct \$m_i\$ dependence:
 \$\vec{g}_{\nu}^{NN}(m_i)\$ = \$\sum_{n=0}^{\sum_{n=0}^{NN(2n)}} \$\vec{g}_{\nu}^{2n}\$
 Linear term in \$m_i\$ mismatched

• The correct dependence on m_i arises at NLO:

$$\overline{\mathscr{A}}_{\nu}^{\text{sing}}(\mu_{\chi}, m_{i})\Big|_{\text{NLO}} = -\frac{(1+2g_{A}^{2})}{2} \left[1 + \log\left(\frac{\mu_{\chi}^{2}}{m_{i}^{2} + |\mathbf{p}|_{\text{ext}}^{2}}\right) + d\pi m_{i}\right]$$

Matching condition — Results

Imposing the matching condition at the amplitude level, one gets:

$$\bar{g}_{\nu}^{NN}(m_i) = \frac{1}{2} \left[\int_0^{\lambda} d\|\mathbf{k}\| a_{<}(\|\mathbf{k}\|, m_i) + \int_{\lambda}^{\Lambda} d\|\mathbf{k}\| a_{<}(\|\mathbf{k}\|, m_i) + \int_{\Lambda}^{\infty} d\|\mathbf{k}\| a_{>}(\|\mathbf{k}\|, m_i) - \overline{\mathscr{A}}_{\nu}^{\mathrm{sing}}(\mu_{\chi}, m_i) \right]$$

Since the small- m_i behavior is phenomenologically interesting, we provide the explicit first few terms for the expansion in the IR limit of $m_i \ll \lambda < \Lambda$:

$$\bar{g}_{\nu}^{NN}(m_i; \mu_{\chi} = m_{\pi}) = 1.377 + \left(\frac{12.062}{\text{GeV}^2}\right)m_i^2 + \left(\frac{-16.735}{\text{GeV}^4}\right)m_i^4$$

Example: A minimal ν_R scenario

• Add *n* singlets, ν_R , to the SM:

• After EWSB,

$$\mathscr{L}_{\text{mass}} = \frac{1}{2} \bar{N}^c M_{\nu} N \qquad \qquad N = \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix} \qquad \qquad M_{\nu} = \begin{pmatrix} 0 & \frac{\nu}{\sqrt{2}} Y_D \\ \frac{\nu}{\sqrt{2}} Y_D & M_R^{\dagger} \end{pmatrix} \qquad \qquad \nu_{\text{mass}} = U N_{\text{flavor}}$$

• $0\nu\beta\beta$ contributions:

`Usual' contributions:

- Similar to $m_{\beta\beta}$ case
 - → NMEs and LECs are now m_i dependent

New: `Ultrasoft' neutrinos:

• See the nucleus as a whole, have momenta $q^0 \sim |\vec{q}| \sim k_F^2/m_N \sim Q$ Cirigliano et al., '17; Castillo et al.,'23, '24

Example: Minimalistic minimal scenario (3 + 1)

- Add just **one** sterile neutrino to the SM
 - ➡ Assume a simple mass matrix

 $M_{\nu} = \begin{pmatrix} 0 & 0 & 0 & M_D \\ 0 & 0 & 0 & M_D \\ 0 & 0 & 0 & M_D \\ M_D & M_D & M_D & M_R \end{pmatrix}$

Summary

- Combining EFTs and the Cottingham-like matching strategy successfully determined the mass dependence of the short-range $nn \rightarrow pp$ effective couplings
 - ✓ Generalizing the previous massless results
 - $\checkmark~$ Subtleties in the matching analysis from the IR
 - ✓ Explicit expansion in powers of m_i

- Impact in $0\nu\beta\beta$ predictions from sterile neutrino models: ν SM
 - ✓ Significant modifications by including $g_{\nu}^{NN}(m_i)$

INSTITUTE for NUCLEAR THEORY

Determining the leading-order contact term induced by sterile neutrinos in neutrinoless double β decay

Chiral EFT: New Perspectives @ INT Mar 17 - 21, 2025

Sebastián Urrutia Quiroga <u>suq90@uw.edu</u>

Based on: V. Cirigliano, W. Dekens, **SUQ**, arXiv:2412.10497