CHARACTERIZING NEUTRON STARS WITH XG DETECTORS: FROM A# TO CE AND ET

INT-24-89W EOS MEASUREMENTS WITH NEXT-GENERATION GRAVITATIONAL-WAVE DETECTORS AUGUST 26-SEPTEMBER 6, 2024

> B. S. Sathyaprakash Pennsylvania State University

OVERVIEW

How well can we constrain neutron star radius from a population of events? How well can we constrain the presence of WIMP dark matter in neutron star

- R
- K cores?
- 2 decade+

Brief introduction to evolution of sensitivity of GW detectors over the next

THE NEXT DECADE AND BEYOND

Figure 3: Proposed O5 timeline, with O5 ending at the end of 2028.

LVK Obs. Scenarios 4

LIGO INDIA

Einstein Telescope

COSMIC

COSMIC EXPLORER

A# AND XG NETWORKS

- HLA: LIGO Hanford, Livingston and India in A# (or Voyager) configuration 2
- CE40LA: CE40 together with LIGO Livingston and LIGO India in A# configuration R
- CE4020ET: Two Cosmic Explorer detectors, one 40 km, another 20 km with ET For

Evans+, MPSAC White Paper, arXiv:2306.13745

Figure 1: The reach of the Cosmic Explorer 40 km observatory for compact binary mergers as a function of total

horizon to the boundary of the population CE40 Evans+, MPSAC White Paper, arXiv:2306.13745

 $\sqrt{2\pi}$

CONSTRUCTION OF STREET

A+

binary mass and redshift at various signal-to-noise ratio (SNR) thresholds. Cosmic Explorer will push the cosmic Explorer will push

EXCEPTIONAL EVENTS IN A# AND CE

etector noise introduces errors in measurement. Parameter ranges correspond to 90% credible bounds Acronyms: L1=LIGO Livingston, H1=LIGO Hanford; Gly=giga lightyear=9.46 x 10¹² km; Mpc=mega parsec=3.2 million lightyear, Gpc=10³ Mpc, fm=femtometer=10⁻¹⁵ m, Mo=1 solar mass=2 x 10³⁰ kg

likeh

Radio emissi detected.

gold, in the universe.

Observing both electromagnetic

and gravitational waves from the

waves travel at the same speed

event provides compelling

evidence that gravitational

as light.

GW190521 The most massive black hole collision

GW190814

The coalescence of a black-hole and a compact, unknown companion object

This event allowed the hum of higher harmonics to be measured in the signal.

These are even stronger in this signal than for GW190412, thanks to the greater asymmetry between the objects' masses These allow new tests of General Relativity. Everything continues to be consistent with Einstein's theory following

most likely a merger between a Neutron Star & Black Hole (NSBH

Most symmetric NSBH event so 1 more likely than prior GW NSBHs to have the neut ripped apart by the black hole

these tests.

ANNUAL DETECTIONS

WELL-LOCALIZED BNS SOURCES

HLA

HIGH FIDELITY EVENTS

ASTROPHYSICS OF ULTRA-RELATIVISTIC SOURCES

16

DENSE MATTER EQUATION OF STATE

CONSTRAINING NEUTRON STAR MASS-RADIUS RELATIONSHIP

17

Use Universal Relations to Resolve Individual Tidal Deformabilities

Huxford+ PRD 109 (2024) 10, 103035; Kashyap+ PRD 106 (2022) 12, 123001; Khadkikar+ in preparation

STRATEGY TO EVALUATE CAPABILITIES OF XG OBSERVATORIES

- Use Fisher matrix to evaluate the measurement capabilities of different networks
	- Bayesian inference is too expensive for the full population
- Consider a an observation period of 10 years to capture statistical variation in the number of events observed with high SNRs
	- This will provide uncertainties in number of events, etc., over a one year period
- Spot check Fisher calculations with Bayesian inference runs
	- Check the uncertainty in mass-radius measurements (and hence EoS) for about 100 events expected to be observed within z of 0.1 in one year
	- This was done to validate the large scale Fisher studies

INJECTIONS PERFORMED ALF2, APR3, APR4

RELATIVE PERFORMANCE OF NETWORKS

MEASUREMENT ACCURACY OF NS RADIUS

 R (km)

CHALLENGES

What are the appropriate priors for luminosity distance and

inclination angle?

Are waveform systematics under control and mismatches

uncertainties to be \sim two orders of magnitude better than

less than 1 part in 10,000?

• Require instrument amplitude and phase calibration where we are now.

CONSTRAIN PROPERTIES OF WIMP DARK MATTER Black Holes Have Zero Tidal Deformability

Singh+ PRD 107 (2023) 8, 083037

DARK MATTER INDUCED IMPLOSION OF NEUTRON STARS

Error bands are from the uncertainty in the observed local rate density, (GWTC-3 Populations paper). $130 \le R_0 \le 1700 \,\text{Gpc}^{-3} \text{yr}^{-1}$

Merger rate density for BBH is a function of the collapse time. Higher collapse time implies more BNS and vice verse.

$$
\dot{n}(z) = A \int_{t_d^{\text{min}}}^{t_d^{\text{max}}} \psi(z_f(z, t_d)) \mathcal{P}(t_d) dt_d
$$

$$
\dot{n}(z)_{\text{BNS}} = A \int_{t_d^{\text{min}}}^{t_c} \psi(z_f(z, t_d)) \mathcal{P}(t_d) dt_d
$$

$$
\dot{n}(z)_{\text{BBH}} = A \int_{t_c}^{t_d^{\text{max}}} \psi(z_f(z, t_d)) \mathcal{P}(t_d) dt_d
$$

Merger rate density Relative abundances

The total merger rate derived from integrating the merger rate densities over redshift is also a function of collapse time. Higher collapse time implies more number of BNS mergers and vice versa.

The merger rate within redshift z observed locally, at z=0.

$$
\dot{N} = \int_0^z \frac{\dot{n}(z)}{1 + z'} \frac{dV_c}{dz'} dz'
$$

Total merger rate Relative abundances

Population of interest Differentiating between BBH and BNS

BBH with component masses similar to NS masses \sim 1-2 M $_{\circ}$ How do we differentiate between these binary systems?

- Electromagnetic counterparts
- **Effective tidal deformability parameter,** Λ
	- Λ $\widetilde{\bigwedge}$ $_{\rm BBH}=0$
-
- The relative abundance of BNS to BBH depends on the collapse time of NS to BH.
	-

$$
- \tilde{\Lambda}_{BNS} > 0
$$

Measuring Λ $\boldsymbol{\widetilde{\lambda}}$ **Methods**

-
- BBH population with $m1$, $m2 \in [1M_{\odot}, 2M_{\odot}]$ upto a redshift of 10.

Component mass, m_1 and Tidal Parameters^a, Λ_1 ar Effective tidal parameter Right ascension, α Declination, δ Inclination, ι Polarization, ψ Redshift, z

• Fisher Matrix approach to estimate the errors on measured Λ using GWBench. $\widetilde{\bigwedge}$

$$
\begin{array}{lll}\n\text{d } m_2 & [1, 2] \, M_{\odot} \\
\text{nd } \Lambda_2 & 2.0 \\
\cdot, \, \tilde{\Lambda} & (6q^2 + q + 6) \Lambda_1 / (13q) \\
& [0, 2\pi) \\
& -\pi/2, \, \pi/2] \\
& [0, \, \pi] \\
& [0, 2\pi] \\
& [0, 10]\n\end{array}
$$

Detector Networks Measurement of $\tilde{\Lambda}$

- **A+** : LIGO-Hanford, LIGO-Livingston, Virgo, KAGRA and LIGO-Aundh at A+ sensitivity
- **Voyager**: The Voyager network consists of LIGO-Hanford, LIGO-Livingston and LIGO-Aundh at Voyager sensitivity, with Virgo and KAGRA at A+ sensitivities.
- **XG**: the XG network includes the Einstein Telescope, one Cosmic Explorer in the US, and another Cosmic Explorer in Australia

2202.11048

Measurement of Λ $\boldsymbol{\widetilde{\lambda}}$ **Detectability and differentiability**

Di fferentiability Measurement of $\tilde{\Lambda}$

At an assumed threshold of $\sigma_{\tilde{\Lambda}}^{90\%}$ = 100, fraction of events that can be con fidently classi fied as BBH At an assumed threshold of $\sigma_{\tilde{\Lambda}}^{90\%} = 100$,
fraction of events that can be confidently
classified as BBH
• A+ : 0.05%
• Voyager : 0.5%
• XG : 30%
XG can measure $\tilde{\Lambda}$ to an accuracy of ~200 for
>90% sources.
Onl

- $A+$: 0.05%
- Voyager : 0.5%
- XG : 30%

XG can measure $\tilde{\Lambda}$ to an accuracy of ~200 for >90% sources.

Observed Merger rate Including detestability and differentiability in total merger rate

z

 $\dot{ \dot{ \mathcal{I}}}$

 $\dot n(z')$

 dV_c

$$
= \frac{1}{N} \sum_{i=1}^{N} \Pi \left(\frac{\rho}{\rho_T} - 1 \, | \, z \right) \Pi \left(\frac{\sigma_{\tilde{\Lambda}_T}}{\sigma_{\tilde{\Lambda}}} - 1 \, | \, z \right)
$$

- Distribution of observed number of BBH merger computed for a fiducial collapse time, $t_c = 1 \text{Gyr}.$ $c = 1$ Gyr
- As expected, the number of observable events is multiple orders of magnitude higher for XG, with smaller relative errors.

Illustrative example Inference of collapse time

- Use interpolation to determine collapse time from observed $N_{\rm BBH}$.
- The larger fraction of systems that can be clearly identified as BBH helps in placing a tighter constraint on the collapse time.
- *This inference is DM model agnostic.*

Illustrative example Inference of collapse time

Limits on dark matter properties Constraints on mass, m_γ and scattering cross-section, σ_γ

- The larger fraction of systems that can be clearly identified as BBH helps in placing a tighter constraint on the collapse time —> tighter constraints on dark matter mass and scattering crosssection.
- Tighter limits for regions with higher ambient dark matter density.
- Competitive with LZ limits over the entire range of m_{γ} .

- Combination of measurements from GW observations with particle properties of DM, especially in the WIMP mass range, through the observation (or lack thereof) of a novel population of BBHs in the BNS mass range.
- XG detectors would definitely be able to observe such a population if it exists due to higher sensitivities and the accuracy in the measurement of the effective tidal deformability parameter.
- Constrain or rule out models of DM that allow for such a formation scenario for BBH with GW observations.
- Exciting science case for XG GW detectors!

To summarize

CHALLENGES

- Neutron stars are contaminated by dark matter particles but don't necessarily collapse to black holes.
	- Could bias the inference of nuclear EOS.
	- Distribution of tidal deformability will be unusual and inexplicable and this could be a hint of the contamination.
	- How do we infer DM properties if neutron stars are just contaminated and their EOS is simply modified?
- More theoretical and data analysis work is needed to resolve these issues.

