Recent updates from JAM

Nobuo Sato

INT workshop, Jun 10 2024

Updates on gluon helicity PDF

 $\Delta f = f_{\rightarrow} - f_{\leftarrow}$

Helicity distribution

Zhou, NS, Melnitchouk '22 Karpie, Whitehill, Melnitchouk, Monahan, Orginos, Qiu, Richards, NS, Zafeiropoulos '23 Hunt-Smith, Cocuzza, Melnitchouk, NS, Thomas, White '24

How well do we know the gluon polarization in the proton?

Y. Zhou, N. Sato, and W. Melnitchouk (Jefferson Lab Angular Momentum (JAM) Collaboration) Phys. Rev. D **105**, 074022 – Published 25 April 2022

 $|\Delta g| < g$ PDF positivity constraint

- Sign of gluon-hpdf is not uniquely determined by existing experimental data (DIS W² > 10 GeV²)
- PDF positivity constraints + data strongly disfavors negative g-hpdf
- Negative g-hpdf violates significantly pdf positivity constraint
- PDF positivity is not a strict requirement in QCD

$$egin{aligned} A^{ ext{jet}}_{LL}(p_T,y) &\propto & a_{gg}[\Delta g\otimes\Delta g]+\sum_q a_{qg}[\Delta q\otimes\Delta g] \ &+ & \sum_{q,q'}a_{qq'}[\Delta q\otimes\Delta q'] \ + \ \mathcal{O}(lpha_s), \end{aligned}$$

g-hpdf enters quadratically, and different subchannels contribute with different signs and strengths

Measurement of charged pion double spin asymmetries at midrapidity in longitudinally polarized p+p collisions at \sqrt{s} = 510 GeV

PHENIX Collaboration • U.A. Acharya (Georgia State U.) et al. (Apr 6, 2020) Published in: *Phys.Rev.D* 102 (2020) 3, 032001 • e-Print: 2004.02681 [hep-ex] Charged-pion cross sections and double-helicity asymmetries in polarized p+p collisions at $\sqrt{s} \texttt{=} \texttt{200 GeV}$

PHENIX Collaboration • A. Adare (Colorado U.) et al. (Sep 5, 2014)

Published in: Phys.Rev.D 91 (2015) 3, 032001 · e-Print: 1409.1907 [hep-ex]

- PHENIX collaboration stated that the gluon spin contribution is positive
- The two solutions for g-hpdf found by JAM describe the data equally well

Measurement of Direct-Photon Cross Section and Double-Helicity Asymmetry at $\sqrt{s}=510~{\rm GeV}$ in $\vec{p}+\vec{p}$ Collisions

PHENIX Collaboration • U. Acharya (Georgia State U., Atlanta) et al. (Feb 16, 2022) e-Print: 2202.08158 [hep-ex]

- \bullet PHENIX collaboration stated that negative g-hpdf is disfavored by more than 2.8 σ
- However, only last 3 high-pT A_LL points are well described in pQCD (see denominator of A_LL)

Gluon helicity from global analysis of experimental data and lattice QCD loffe time distributions

J. Karpie, R. M. Whitehill, W. Melnitchouk, C. Monahan, K. Orginos, J.-W. Qiu, D. G. Richards, N. Sato, and S. Zafeiropoulos (Jefferson Lab Angular Momentum and HadStruc Collaborations) Phys. Rev. D **109**, 036031 – Published 27 February 2024

Toward the determination of the gluon helicity distribution in the nucleon from lattice quantum chromodynamics

HadStruc Collaboration • Colin Egerer (Jefferson Lab) et al. (Jul 18, 2022) Published in: *Phys.Rev.D* 106 (2022) 9, 094511 • e-Print: 2207.08733 [hep-lat]

$$\widetilde{M}^{\mu\nu;lphaeta}(p,z) = \langle p|F^{\mu
u}(0)W(0;z)\widetilde{F}^{lphaeta}(z)|p\rangle$$

$$\widetilde{\mathfrak{M}}(\nu, z^2) = \frac{\widetilde{M}_{00}(p, z)/p_0 p_3 Z_L(z_3/a)}{M_{00}(p = 0, z)/m^2}$$

$$\widetilde{\mathfrak{M}}(
u,z^2)\langle x_g
angle_{\mu^2} = \widetilde{\mathcal{I}}_p(
u,\mu^2) - rac{lpha_s N_c}{2\pi} \int_0^1 \mathrm{d} u \, \widetilde{\mathcal{I}}_p(u
u,\mu^2) \Big\{ \ln \left(z^2 \mu^2 rac{e^{2\gamma_E}}{4}
ight)
onumber \\ \left(\left[rac{2u^2}{\overline{u}} + 4u \overline{u}
ight]_+ - \left(rac{1}{2} + rac{4}{3} rac{\langle x_S
angle_{\mu^2}}{\langle x_g
angle_{\mu^2}}
ight) \delta(\overline{u})
ight)
onumber \\ + 4 \Big[rac{u + \ln(1-u)}{\overline{u}} \Big]_+ - \left(rac{1}{\overline{u}} - \overline{u} \right)_+ - rac{1}{2} \delta(\overline{u}) + 2 \overline{u} u \Big\} \\ - rac{lpha_s C_F}{2\pi} \int_0^1 \mathrm{d} u \, \widetilde{\mathcal{I}}_S(u
u,\mu^2) \Big\{ \ln \left(z^2 \mu^2 rac{e^{2\gamma_E}}{4}
ight) \widetilde{\mathcal{B}}_{gq}(u) + 2 \overline{u} u \Big\} + \mathcal{O}(\Lambda_{\mathrm{QCD}}^2 z^2) \,,$$
 $\widetilde{\mathcal{I}}_p(
u) = rac{i}{2} \int_{-1}^1 \mathrm{d} x \, e^{-ix
u} \, x \, \Delta g(x) \,.$

- Good description of global data after inclusion of LQCD for both solutions for g-hpdf
- On the basis of χ^2 , LQCD cannot discriminate fully the sign of g-hpdf

$$\chi^{2} = (\boldsymbol{d} - \boldsymbol{t})^{T} \boldsymbol{\Sigma}^{-1} (\boldsymbol{d} - \boldsymbol{t})$$
$$= (\boldsymbol{d} - \boldsymbol{t})^{T} \boldsymbol{U} \boldsymbol{D}^{-1} \boldsymbol{U}^{T} (\boldsymbol{d} - \boldsymbol{t})$$
$$= \sum_{i} \operatorname{res}_{i}^{*2}.$$

- PCA projections of residuals reveal strong correlations between LQCD data points
- The correlations prevent determination of g-hpdf sign

- LQCD distorts significantly the negative g-hpdf at higher x > 0.3
- Note that both solutions violate pdf positivity bounds for x > 0.3
- Before inclusion of LQCD data, singlet-hpdf were stable for both solutions
- Inclusion of LQCD data forces the quark singlet-hpdf to become negative at x > 0.4 for the negative g-hpdf

On the resolution of the sign of gluon polarization in the proton

N. T. Hunt-Smith,¹ C. Cocuzza,² W. Melnitchouk,³ N. Sato,³ A. W. Thomas,¹ and M. J. White¹

 ¹CSSM and ARC Centre of Excellence for Dark Matter Particle Physics, Department of Physics, University of Adelaide, Adelaide 5005, Australia
 ²Department of Physics, William and Mary, Williamsburg, Virginia 23185, USA
 ³Jefferson Lab, Newport News, Virginia 23606, USA

JAM Collaboration

(Dated: March 14, 2024)

Higgs production at RHIC and the positivity of the gluon helicity distribution Daniel de Florian^a, Stefano Forte^b, Werner Vogelsang^c

- Higgs A_LL is directly sensitive to g-hpdf squared at LO
- Calculations of A_LL(H) with negative g-hpdf can lead to unphysical results (using non-LQCD based analysis)

$$A_{LL}^{\mathrm{H}}(au) = rac{[\Delta g \otimes \Delta g]}{[g \otimes g]} + \mathcal{O}(lpha_s),$$

Can Higgs A_LL fully discriminate negative g-hpdf?

Negative g-hpdf with LQCD constraints still admits a physical Higgs A_LL

	$\chi^2_{ m red}(\Delta g>0)$		$\chi^2_{ m red}(\Delta g < 0)$			$oldsymbol{N}$	
Reaction	baseline	+ LQCD	+ high-x DIS	baseline	+ LQCD	+ high-x DIS	
Polarized							
Inclusive DIS	0.95	0.96	1.21	0.98	1.12	1.25	1735^{*}
SIDIS	0.85	0.84	1.08	0.84	0.96	1.11	231
Inclusive jets	0.84	0.89	0.90	0.88	1.10	1.44	83
Inclusive W^{\pm}/Z	0.60	0.60	0.99	0.83	0.84	1.32	18
Total	0.89	0.90	1.18	0.92	1.06	1.24	2067
Unpolarized							
Inclusive DIS	1.17	1.17	1.17	1.18	1.18	1.19	3908
SIDIS	0.99	0.99	1.04	0.99	0.99	1.02	1490
Inclusive jets	1.28	1.28	1.30	1.29	1.29	1.30	198
Drell-Yan	1.21	1.21	1.21	1.24	1.24	1.24	205
Inclusive W^{\pm}/Z	1.01	1.01	1.01	1.03	1.03	1.04	153
Total	1.14	1.14	1.14	1.15	1.15	1.15	$\boldsymbol{5954}$
SIA	0.86	0.86	0.89	0.90	0.90	0.92	564
LQCD		0.57	0.58		1.18	3.92	48
Total	1.08	1.10	1.13	1.10	1.12	1.17	8633

1370 additional data points for pol DIS (+ high-x DIS)

- With inclusion of high-x DIS DSAs, LQCD data strongly disfavor negative g-hpdf solution
- Combined DSA from jet and high-x DIS with LQCD allows us to discriminate the sign of g-hpdf for the first time!

Summary

- For the first time, we were able to discriminate the sign of g-hpdf using data-driven approach
- Constraints from LQCD along with DSAs from jets and DIS at large-x were crucial to achieve the resolution of g-hpdf sign
- Inclusion of LQCD is becoming increasingly important in global analysis
- Experimental constraints at large x on gluon hpdf are still scarce, and more data needed to reach precision similar to unpolarized gluon density (EIC - small x, JLab12/22 - high x)

Transversity from Dihadron Transverse-Spin Observables

Pitonyak, Cocuzza, Metz, Prokudin, NS, `24 (PRL) Cocuzza, Metz, Pitonyak, Prokudin, NS, Seidl `24 (PRL) Cocuzza, Metz, Pitonyak, Prokudin, NS, Seidl `24 (PRD)

Motivations

Gamberg, Malda, Miller, Pitonyak, Prokudin, NS, 22 (PRD)

- TMD+CT3 pheno in tension with other analyzes (delta u)
- Radici, Bacchetta, and Benel, Courtoy, Ferro-Hernandez used collinear di-hadron observables to extract tensor charges
- New fresh look at collinear di-hadron pheno

Observable	Reactions	Non-Perturbative Function(s)	χ^2/npts	Exp. Refs.
$A_{UT}^{\sin(\phi_h - \phi_S)}$	$e + (p,d)^{\uparrow} \to e + (\pi^+,\pi^-,\pi^0) + X$	$f_{1T}^{\perp}(x,ec{k}_T^2)$	182.9/166 = 1.10	[22, 24, 27]
$A_{UT}^{\sin(\phi_h + \phi_S)}$	$e + (p, d)^{\uparrow} \to e + (\pi^+, \pi^-, \pi^0) + X$	$h_1(x,ec{k}_T^2), H_1^{\perp}(z,z^2ec{p}_T^2)$	181.0/166 = 1.09	[22, 24, 27]
* $A_{UT}^{\sin \phi_S}$	$e + p^{\uparrow} ightarrow e + (\pi^+, \pi^-, \pi^0) + X$	$h_1(x), \tilde{H}(z)$	18.6/36 = 0.52	[22, 24, 27]
$A_{UC/UL}$	$e^+ + e^- \rightarrow \pi^+\pi^-(UC,UL) + X$	$H_1^\perp(z,z^2\vec{p}_T^{2})$	154.9/176 = 0.88	[29–32]
$A_{T,\mu^+\mu^-}^{\sin\phi_S}$	$\pi^- \! + p^\uparrow \to \mu^+ \mu^- + X$	$f_{1T}^{\perp}(x,ec{k}_T^2)$	6.92/12 = 0.58	[34]
$A_N^{W/Z}$	$p^{\uparrow} + p ightarrow (W^+, W^-, Z) + X$	$f_{1T}^{\perp}(x,ec{k}_T^2)$	30.8/17 = 1.81	[35]
A_N^{π}	$p^\uparrow + p o (\pi^+,\pi^-,\pi^0) + X$	$h_1(x), F_{FT}(x,x) = rac{1}{\pi} f_{1T}^{\perp(1)}(x), H_1^{\perp(1)}(z), ilde{H}(z)$	70.4/60 = 1.17	[7, 9, 10, 13]
Lattice g_T		$h_1(x)$	1.82/1 = 1.82	[89]

Analysis setup

1				
Collaboration	References	Observable	Process	Nonperturbative function(s)
Belle	[64]	$d\sigma/dz dM_h$	$e^+e^- \rightarrow (\pi^+\pi^-)X$ $e^+e^- \rightarrow (\pi^+\pi^-)(\pi^+\pi^-)X$	D_1 D_1 H^{\triangleleft}
HERMES	[112]	A A_{UT}^{SIDIS}	$e p^{\uparrow} \rightarrow e'(\pi^+\pi^-)X$	$D_1, H_1^{\triangleleft}, h_1$
COMPASS STAR	[117] [97,121]	$A_{UT}^{ ext{SIDIS}} \ A_{UT}^{pp}$	$\mu\{p,D\}^{\uparrow} ightarrow \mu'(\pi^+\pi^-)X \ p^{\uparrow}p ightarrow (\pi^+\pi^-)X$	$egin{array}{lll} D_1,H_1^{\lhd},h_1\ D_1,H_1^{\lhd},h_1 \end{array}$
ETMC PNDME	[77] [71]	δu, δd δu, δd	LQCD LQCD	$egin{array}{c} h_1 \ h_1 \ h_1 \end{array}$
$\frac{\mathrm{d}\sigma}{\mathrm{d}z\mathrm{d}M_h} = \frac{4\pi\hbar}{2}$	$\frac{V_c \alpha_{\rm em}^2}{3s} \sum_q \bar{e}_q^2 D_1^q$	$(z, M_h),$		$h_1(x;\mu^2)$ Transversity (TPDF) $H^{\triangleleft}(z, M; u^2)$ Interference EE (IEE)
$A^{e^+e^-}(z,M_h,$	$ar{z},ar{M}_h) = rac{\sin i \pi}{(1 - i)}$	$\frac{n^2 \theta \sum_q e_q^2 H_1^{\triangleleft,q}(z)}{+\cos^2 \theta \sum_q e_q^2 D}$	$(\overline{x}, \overline{M}_h) H_1^{\sphericalangle, \overline{q}}(\overline{z}, \overline{M}_h) onumber \ H_1^{q}(\overline{z}, \overline{M}_h) D_1^{\overline{q}}(\overline{z}, \overline{M}_h)$	$M_1(z, M_h, \mu^2)$ Interference FF (IFF) $D_1(z, M_h; \mu^2)$ Dihadron FF (DiFFs)
$A_{UT}^{\mathrm{SIDIS}} = c(y)$	$\frac{\sum_{q} e_q^2 h_1^q(x) H}{\sum_{q} e_q^2 f_1^q(x) I}$	$D_1^{\sphericalangle,q}(z,M_h) onumber \ D_1^q(z,M_h)$	$2P_{hT}\sum_{i}\sum_{a,b,c,d}\int_{X_{i}}$	$\int_{a}^{1} dx_a \int_{x_b^{\min}}^{1} \frac{dx_b}{z} h_1^a(x_a) f_1^b(x_b) \frac{d\Delta \hat{\sigma}_{a^{\uparrow}b \to c^{\uparrow}d}}{d\hat{t}} H_1^{\triangleleft,c}(z, M_h).$
			$A_{UT}^{i} = \frac{1}{2P_{hT}\sum_{i}\sum_{a.b.c.d}\int_{x}}$	$\int_{a}^{1} dx_a \int_{x_b}^{1} \frac{dx_b}{z} f_1^a(x_a) f_1^b(x_b) \frac{d\hat{\sigma}_{ab\to cd}}{d\hat{t}} D_1^c(z, M_h)$

Same for $H_1^{\triangleleft}(z, M_h; \mu^2)$ with transversely polarized splitting kernels

Model assumptions in TPDF $h_1(x;\mu_0^2)$

• Traditional parametrization

$$h_1^i(x)=rac{N^i}{\mathcal{M}^i}x^{lpha^i}(1-x)^{eta^i}(1+\gamma^i\sqrt{x}+\delta^i x)$$

Reconstructed flavors

$$h_1^{u_v} \hspace{0.1in} h_1^{d_v} \hspace{0.1in} h_1^{ar{u}_v} \hspace{0.1in} h_1^{ar{d}_v}$$

- Flavor assumptions (due to lack of observables)
 - $h_1^{ar{u}} = -h_1^{ar{d}}$ Expectations from large Nc limit
- Impose Soffer bounds

$$|h_1^i(x;\mu)| \le \frac{1}{2} [f_1^i(x;\mu) + g_1^i(x;\mu)]$$

 Impose small-x constraints (Kovchegov, Sievert `19)

$$\alpha^{i} \xrightarrow{x \to 0} 1 - 2\sqrt{\frac{\alpha_{s}N_{c}}{2\pi}}$$
. = 0.170 ± 0.085
Added 50% conservative

uncertainties

Model assumptions in DiFFs $D_1^{\pi^+\pi^-/i}(z, M_h; \mu_0^2)$

• Mh grid based parametrization

$$D_1^i(z, \mathbf{M}_h^{i,j}) = \sum_{k=1,2,3} \frac{N_{jk}^i}{\mathcal{M}_{jk}^i} z^{\alpha_{jk}^i} (1-z)^{\beta_{jk}^i}$$

Reconstructed flavors

$$D_1^u$$
 D_1^s D_1^c D_1^b D_1^g

• Flavor assumptions

$$D_1^u = D_1^d = D_1^{\bar{u}} = D_1^{\bar{d}},$$

 $D_1^s = D_1^{\bar{s}}, \qquad D_1^c = D_1^{\bar{c}}, \qquad D_1^b = D_1^{\bar{b}},$

• Flavor separation using Pythia 6&8

$$rac{\sigma^{q=s,c,b}}{\sigma^{ ext{tot}}}$$
 \square

Generate Pythia data and assign uncertainties from various tunes

• Impose positivity

$$D_1^i(z,M_h;\mu)>0,$$

- Error bars on Pythia stemming from different tunes.
- Simulated Pythia data at different energies to constrain the gluon DiFF Q=10.58 -91.19 GeV

Model assumptions in IFFs $H_1^{\triangleleft,\pi^+\pi^-/i}(z,M_h;\mu_0^2)$

• Mh grid based parametrization

$$H_1^{\triangleleft, u}(z, \mathbf{M}_h^{u, j}) = \sum_{k=1,2} \frac{N_{jk}^u}{\mathcal{M}_{jk}^u} z^{\alpha_{jk}^u} (1-z)^{\beta_{jk}^u}$$

Reconstructed flavors

$$H_1^{\triangleleft, u}$$

• Flavor assumptions

$$\begin{split} H_1^{\triangleleft,u} &= -H_1^{\triangleleft,d} = -H_1^{\triangleleft,\bar{u}} = H_1^{\triangleleft,\bar{d}}, \\ H_1^{\triangleleft,s} &= H_1^{\triangleleft,\bar{s}} = H_1^{\triangleleft,c} = H_1^{\triangleleft,\bar{c}} = H_1^{\triangleleft,\bar{b}} = H_1^{\triangleleft,\bar{b}} = 0. \end{split}$$

Impose positivity bounds

$$|H_1^{\triangleleft,i}(z,M_h;\mu)| < D_1^i(z,M_h;\mu)$$

The results

				$\chi^2_{\rm red}$		0 < 0.8 < z < 0.85
				JAMDiFF		0.0 $\overline{1}$ $\overline{1}$ $\overline{1}$ $\overline{1}$
Experiment	Binning	$N_{\rm dat}$	(w/ LQCD)	(no LQCD)	(SIDIS only)	0.4 A dzd M_h
Belle (cross section) [64]	z, M_h	1094	1.01	1.01	1.01	
Belle (Artru-Collins) [112]	$z, M_h \ M_h, \overline{M}_h \ z, \overline{z}$	55 64 64	1.27 0.60 0.42	1.24 0.60 0.42	1.28 0.60 0.41	
HERMES [118]	$egin{array}{c} x_{ m bj} \ M_h \ z \end{array}$	4 4 4	1.77 0.41 1.20	1.70 0.42 1.17	1.67 0.47 1.13	M_h
COMPASS (<i>p</i>) [117]	${x_{ m bj} \over M_h} \ z$	9 10 7	1.98 0.92 0.77	0.65 0.94 0.60	0.59 0.93 0.63	-0.04 $A^{e^+e^-}$
COMPASS (D) [117]	${x_{ m bj} \over M_h} \ z$	9 10 7	1.37 0.45 0.50	1.42 0.37 0.46	1.22 0.38 0.46	-0.08 0.10 0.82 < z < 1.00
STAR [121] $\sqrt{s} = 200 \text{ GeV}$ R < 0.3	$M_{h}, \eta < 0 \ M_{h}, \eta > 0 \ P_{hT}, \eta < 0 \ P_{hT}, \eta > 0$	5 5 5	2.57 1.34 0.98 1.73	2.56 1.55 1.00 1.74	0.05	$-0.12 \underbrace{0.2}_{0.2} \underbrace{0.4}_{0.6} \underbrace{0.6}_{0.8} \underbrace{\overline{z}}_{\overline{z}}$
STAR [97] $\sqrt{s} = 500 \text{ GeV}$ R < 0.7	$egin{aligned} &\eta\ &M_h,\eta < 0\ &M_h,\eta > 0\ &P_{hT},\eta > 0\ &\eta \end{aligned}$	4 32 32 35 7	0.52 1.30 0.81 1.09 2.97	1.46 1.10 0.78 1.07 1.83	-0.05	A_{UT}^{SIDIS} $\downarrow \text{HERMES}$ $\downarrow \text{COMPASS } p$ $\downarrow \text{COMPASS } D$
ETMC δu [77] ETMC δd [77] PNDME δu [71] PNDME δd [71]	·	1 1 1 1	0.71 1.02 8.68 0.04		-0.15	$\boxed{10^{-2} 10^{-1} \boldsymbol{x_{bj}}}$
Total χ^2_{red} (N _{dat})			1.01 (1475)	0.98 (1471)	0.96 (1341)	

Reconstructed DiFFs

- More di-hadron pairs are produced at small z
- Clear reconstruction of the resonances
- DiFFs trend towards zero as we approach the physical threshold of 2mpi
- DiFFs goes to zero at large Mh as wide angle radiation is suppressed
- The gluon DiFF is not fully consistent with zero and more realistic than what was done in the past.

$$\langle M_h | z \rangle^i = \frac{\int \mathrm{d}M_h M_h D_1^i(z, M_h)}{\int \mathrm{d}M_h D_1^i(z, M_h)}$$

$$z = z_1 + z_2$$
$$M_h^2 = (P_{\pi^+} + P_{\pi^-})^2$$

- As expected, the invariant mass of the di-hadron pairs grows as z grows. Quark mass dependence becomes more important at large z
- At small z, large production of di-hadron pairs occurs, and quark masses does not influence the values of <Mh|z>
- Exception is the b-quark that due to its large mass generates larger Mh values

Reconstructed IFFs

- Magnitude of IFF is proportional to DiFFs
- Marginal impact by positivity constraints
- The sign is not determined by the experimental data.

Reconstructed TPDF

- Point-by-point in x constraints from data ends around x~0.3.
- Below x<0.3, the reconstructed transversity PDFs are consistent with Radici et al and TMD+CT3 (JAM3D) results.
- Beyond x>0.3, only the u quark PDF has non-vanishing signal with some differences wrt JAM3D*
- JAM3D* includes antiquarks and small x constraints

Reconstructed TPDF with LQCD

Reconstructed TPDF with LQCD

		JAMDIFF
Experiment	(w/ LQCD)	(no LQCD)
Belle (cross section) [64]	1.01	1.01
	1.27	1.24
Belle (Artru-Collins) [112]	0.60	0.60
	0.42	0.42
	1.77	1.70
HERMES [118]	0.41	0.42
	1.20	1.17
	1.98	0.65
COMPASS (p) [117]	0.92	0.94
	0.77	0.60
	1.37	1.42
COMPASS (D) [117]	0.45	0.37
	0.50	0.46
	2.57	2.56
STAR [121]	1.34	1.55
$\sqrt{s} = 200 \text{ GeV}$	0.98	1.00
R < 0.3	1.73	1.74
	0.52	1.46
	1.30	1.10
STAR [97]	0.81	0.78
$\sqrt{s} = 500 \text{ GeV}$	1.09	1.07
R < 0.7	2.97	1.83
ETMC δu [77]	0.71	
ETMC δd [77]	1.02	
PNDME δu [71]	8.68	
PNDME δd [71]	0.04	
Total χ^2_{red} (N _{dat})	1.01 (1475)	0.98 (1471)

 $\chi^2_{\rm red}$

Summary

- At present there is no significant tension between LQCD and experimental reconstruction of nucleon tensor charges
- Different reconstructions of tensor charges are mostly driven by large x data
- More high x data is needed to reach accurate reconstruction of TPDF above x>0.3
- Inclusion of LQCD calculations as priors are very informative/useful in QCD phenomenology
- The JAMDiFF results and JAM3D* results are very similar and one can perform a combined analysis (TMD+CT3 & DiFF) -> indicates possible universal nature of all SSAs and nucleon tensor charges

