
An HPC Perspective
for Femtoscale Imaging of

Nuclei using Exascale Platforms

About me
• I am a PhD student at Virginia Tech

oMy primary field is HPC
oI have no background in Physics, much less QP, HEP, NP

• My work is primarily developing a performant theory
module
ofitpack_cpp – Low latency, differentiable theory* module,

currently in production
oGPU version of this theory

• I have also played around with
oA PDF level experimental module
oUsing generative models for parameterization of distributions

Disclaimer

• I have no background in Physics.
• I present a lot of "napkin math."
oDoing exhaustive runs for everything would empty our

supercomputing allocation.

An HPC Perspective
for Femtoscale Imaging of

Nuclei using Exascale Platforms

IDIS with 1-D QCFs in Mellin Space
("STATS-2")

K Bootstraps

Ensemble

Integrator

Experiment
Model

Log
Likelihood

Real
Experiment

al Data

a ⃗

Normalization
Factor

N

cross
section

n-dim
exp

cross

section

Theory

VT-Argonne Computational Experiments
("Stats-2")

• PDF-Event Loss
• 5,000 experimental events for p and n targets
• Computational Run on Virginia Tech Computing Clusters:

oNodes: 2
▪ Tinkercliffs@VT CPU: AMD 7702x2 (128 Cores)
▪ Infer@VT GPU: Nvidia V100

oBootstraps: 2,560

oTheory: fitpack_cpp - Low latency, differentiable theory*
module, currently in production

Profiling & Projecting Performance
of IDIS with 1-D QCFs in Mellin Space

Ensemble

Integrator

Experiment
Model

Log
Likelihood

Real
Experiment

al Data

a ⃗

Normalization
Factor

N

cross
section

n-dim
exp

cross

section

Theory

66.6% (Cross section for Loss)
24.4%

(Cross section for
Normalization)

8.8%
Other

Profiling & Projecting Performance
of IDIS with 1-D QCFs in Mellin Space

Ensemble

Integrator

Experiment
Model

Log
Likelihood

Real
Experiment

al Data

a ⃗

Normalization
Factor

N

cross
section

n-dim
exp

cross

section

Theory

66.6% (Cross section for Loss)
24.4%

(Cross section for
Normalization)

8.8%
Other

91.2% of
execution time
for Cross Section

Projected Execution times
Version Speedup for

cross-section
calculation

Execution time
(Hours)

Numpy 1.00 257.09
Numpy

vectorized*(~
Pytorch CPU)

7.39 36.13

Projected Execution times
Version Speedup for

cross-section
calculation

Execution time
(Hours)

Numpy 1.00 257.09
Numpy

vectorized*(~
Pytorch CPU)

7.39 36.13

Projected Execution times
Version Speedup for

cross-section
calculation

Execution time
(Hours)

Numpy 1.00 257.09
Numpy

vectorized*(~
Pytorch CPU)

7.39 36.13

C++ CPU
(fitpack_cpp)

Pytorch Vectorized
(GPU)

Projected Execution times
Version Speedup for

cross-section
calculation

Execution time
(Hours)

Numpy 1.00 257.09
Numpy

vectorized*(~
Pytorch CPU)

7.39 36.13

C++ CPU
(fitpack_cpp)

15.83

PyTorch Vectorized
(GPU)

24.49

Pytorch GPU
54% faster than
optimized CPU
version!!!

Projected Execution times
Version Speedup for

cross-section
calculation

Execution time
(Hours)

Numpy 1.00 257.09
Numpy

vectorized*(~
Pytorch CPU)

7.39 36.13

C++ CPU
(fitpack_cpp)

15.83 17.70

PyTorch Vectorized
(GPU)

24.49 11.99

Pytorch GPU
54% faster than
optimized CPU
version!!!

Projected Execution times
Version Speedup for

cross-section
calculation

Execution time
(Hours)

Numpy 1.00 257.09
Numpy

vectorized*(~
Pytorch CPU)

7.39 36.13

C++ CPU
(fitpack_cpp)

15.83 17.70

PyTorch Vectorized
(GPU)

24.49 11.99

Pytorch GPU
54% faster than
optimized CPU
version!!!

Projected Execution times
Version Speedup for

cross-section
calculation

Execution time
(Hours)

Numpy 1.00 257.09
Numpy

vectorized*(~
Pytorch CPU)

7.39 36.13

C++ CPU
(fitpack_cpp)

15.83 17.70

PyTorch Vectorized
(GPU)

24.49 11.99

HPC Computational Resources

CPU Node GPU Node

HPC Computational Resources
•We can execute 128 different ensembles per node

for a CPU oriented implementation.
• If we assume we have 6 GPUs per node like DOE

ORNL's Summit supercomputer, we can find the
best count for number of ensembles per GPU.

Parallel Efficiency of Stats-2 (C++ CPU)

Number of Threads Parallel Speedup

16 16

32 33.28

64 56.96

128 99.84

Parallel Efficiency of Stats-2 (Pytorch Vectorized GPU)

Using 7 threads per
GPU gives 2.75X
speedup

•Even with overhead due to process-level
parallelization, we still effectively perform 100 units
of work on CPUs.
•Multi-GPU Nodes perform 6 units of work per GPU,

but 4.16X faster

HPC Computational Resources

•Even with overhead due to process-level
parallelization, we still effectively perform 100 units
of work on CPUs.
•Multi-GPU Nodes perform 6 units of work per GPU,

but 4.16X faster

CPU version is 4 times faster than
PyTorch Vectorized GPU

HPC Computational Resources

The Memory Cost of Vectorization
10K evalutations

Library Total Memory Used Total Number of allocations

Numpy 122.559KB 53

Numpy Vectorized 748.081MB 82

Pytorch 1.323MB 78

Pytorch Vectorized 893.541MB 307

The Memory Cost of Vectorization
10K evalutations

Library Total Memory Used Total Number of allocations

Numpy 122.559KB 53

Numpy Vectorized 748.081MB 82

Pytorch 1.323MB 78

Pytorch Vectorized 893.541MB 307

6000 times more memory

Projected Execution times
Version Speedup for

cross-section
calculation

Execution time
(Hours)

Numpy 1.00 257.09
Numpy

vectorized*(~
Pytorch CPU)

7.39 36.13

C++ CPU
(fitpack_cpp)

15.83 17.70

PyTorch Vectorized
(GPU)

24.49 11.99 ~ 66.12 Hours

Projected Execution times
Version Speedup for

cross-section
calculation

Execution time
(Hours)

Numpy 1.00 257.09
Numpy

vectorized*(~
Pytorch CPU)

7.39 36.13

C++ CPU
(fitpack_cpp)

15.83 17.70

PyTorch Vectorized
(GPU)

24.49 11.99

CUDA GPU
(fitpack_cpp)

897.50 5.25
~3.3x faster than CPU

Not as high as
expected speedup?

Speedup of GPU Theory

We need experiments 50X
the current size before we
can fully utilize the GPU
with a single rank

Speedup of GPU fitpack

We can either run
multiple ranks per
GPU like we did for
Pytorch GPU

Speedup of GPU fitpack

But the more
scalable solution is
to increase the
parallel efficiency

So what goes into the Salad?

Memory Hierarchy

Memory Hierarchy

Caches are everywhere!

Compute Hierarchy (CPU)

Compute Hierarchy (GPU)

Compute Hierarchy (GPU)

X 144

Machine Balance

Memory Hierarchy

Parallel and Distributed Computing

Overheads of Parallelism (Some...)

• Communication overhead

• Synchronization overhead

• Load balancing overhead

• Decomposition overhead

Overheads of Parallelism
Communication Overhead

Overheads of Parallelism
Synchronization Overhead

Overheads of Parallelism
Load balancing Overhead

Overheads of Parallelism
Decomposition overhead

Conclusion
• Our goal should be to reduce the time to solution

o Look at not just computational efficiency of 1 worker, but of all of them
working together.

• We need to ensure that we are comparing APPLES to APPLES!
• Parallel computing is not free, we need to be cognizant of the

many overheads of parallelization
oPoor parallelization may even degrade performance

	Slide 1: An HPC Perspective for Femtoscale Imaging of Nuclei using Exascale Platforms
	Slide 2: About me
	Slide 3: Disclaimer
	Slide 4: An HPC Perspective for Femtoscale Imaging of Nuclei using Exascale Platforms
	Slide 5: IDIS with 1-D QCFs in Mellin Space ("STATS-2")
	Slide 6: VT-Argonne Computational Experiments ("Stats-2")
	Slide 7: Profiling & Projecting Performance of IDIS with 1-D QCFs in Mellin Space
	Slide 8: Profiling & Projecting Performance of IDIS with 1-D QCFs in Mellin Space
	Slide 9: Projected Execution times
	Slide 10: Projected Execution times
	Slide 11: Projected Execution times
	Slide 12: Projected Execution times
	Slide 13: Projected Execution times
	Slide 14: Projected Execution times
	Slide 15: Projected Execution times
	Slide 16: HPC Computational Resources
	Slide 17: HPC Computational Resources
	Slide 18
	Slide 19
	Slide 20: HPC Computational Resources
	Slide 21: HPC Computational Resources
	Slide 22: The Memory Cost of Vectorization 10K evalutations
	Slide 23: The Memory Cost of Vectorization 10K evalutations
	Slide 24: Projected Execution times
	Slide 25: Projected Execution times
	Slide 26: Speedup of GPU Theory
	Slide 27: Speedup of GPU fitpack
	Slide 28: Speedup of GPU fitpack
	Slide 29: So what goes into the Salad?
	Slide 30: Memory Hierarchy
	Slide 31: Memory Hierarchy
	Slide 32: Compute Hierarchy (CPU)
	Slide 33: Compute Hierarchy (GPU)
	Slide 34: Compute Hierarchy (GPU)
	Slide 35: Machine Balance
	Slide 36: Memory Hierarchy
	Slide 37: Parallel and Distributed Computing
	Slide 38: Overheads of Parallelism (Some...)
	Slide 39: Overheads of Parallelism Communication Overhead
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Conclusion

