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About me
• I am a PhD student at Virginia Tech

oMy primary field is HPC
oI have no background in Physics, much less QP, HEP, NP

• My work is primarily developing a performant theory 
module
ofitpack_cpp – Low latency, differentiable theory* module, 

currently in production
oGPU version of this theory

• I have also played around with
oA PDF level experimental module
oUsing generative models for parameterization of distributions



Disclaimer

• I have no background in Physics.
• I present a lot of "napkin math."
oDoing exhaustive runs for everything would empty our 

supercomputing allocation.
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VT-Argonne Computational Experiments
("Stats-2")

• PDF-Event Loss
• 5,000 experimental events for p and n targets
• Computational Run on Virginia Tech Computing Clusters:

oNodes: 2 
▪ Tinkercliffs@VT CPU: AMD 7702x2 (128 Cores)
▪ Infer@VT GPU:  Nvidia V100

oBootstraps:  2,560

oTheory: fitpack_cpp - Low latency, differentiable theory* 
module, currently in production



Profiling & Projecting Performance 
of IDIS with 1-D QCFs in Mellin Space
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HPC Computational Resources

CPU Node GPU Node



HPC Computational Resources
•We can execute 128 different ensembles per node 

for a CPU oriented implementation.
• If we assume we have 6 GPUs per node like DOE 

ORNL's Summit supercomputer, we can find the 
best count for number of ensembles per GPU.



Parallel Efficiency of Stats-2 (C++ CPU)

Number of Threads Parallel Speedup

16 16

32 33.28

64 56.96

128 99.84



Parallel Efficiency of Stats-2 (Pytorch Vectorized GPU)

Using 7 threads per 
GPU gives 2.75X 
speedup



•Even with overhead due to process-level 
parallelization, we still effectively perform 100 units 
of work on CPUs.
•Multi-GPU Nodes perform 6 units of work per GPU, 

but 4.16X faster

HPC Computational Resources



•Even with overhead due to process-level 
parallelization, we still effectively perform 100 units 
of work on CPUs.
•Multi-GPU Nodes perform 6 units of work per GPU, 

but 4.16X faster

CPU version is 4 times faster than 
PyTorch Vectorized GPU

HPC Computational Resources



The Memory Cost of Vectorization
10K evalutations

Library Total Memory Used Total Number of allocations

Numpy 122.559KB 53

Numpy Vectorized 748.081MB 82

Pytorch 1.323MB 78

Pytorch Vectorized 893.541MB 307



The Memory Cost of Vectorization
10K evalutations

Library Total Memory Used Total Number of allocations

Numpy 122.559KB 53

Numpy Vectorized 748.081MB 82

Pytorch 1.323MB 78

Pytorch Vectorized 893.541MB 307

6000 times more memory
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Projected Execution times
Version Speedup for 

cross-section 
calculation

Execution time
(Hours)

Numpy 1.00 257.09
Numpy 

vectorized*(~ 
Pytorch CPU)

7.39 36.13

C++ CPU 
(fitpack_cpp)

15.83 17.70

PyTorch Vectorized 
(GPU)

24.49 11.99

CUDA GPU 
(fitpack_cpp)

897.50 5.25
~3.3x faster than CPU

Not as high as 
expected speedup?



Speedup of GPU Theory

We need experiments 50X 
the current size before we 
can fully utilize the GPU 
with a single rank



Speedup of GPU fitpack

We can either run 
multiple ranks per 
GPU like we did for 
Pytorch GPU



Speedup of GPU fitpack

But the more 
scalable solution is 
to increase the 
parallel efficiency



So what goes into the Salad?



Memory Hierarchy



Memory Hierarchy

Caches are everywhere!



Compute Hierarchy (CPU)



Compute Hierarchy (GPU)



Compute Hierarchy (GPU)

X 144



Machine Balance



Memory Hierarchy



Parallel and Distributed Computing



Overheads of Parallelism (Some...)

• Communication overhead

• Synchronization overhead

• Load balancing overhead

• Decomposition overhead



Overheads of Parallelism
Communication Overhead



Overheads of Parallelism
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Overheads of Parallelism
Load balancing Overhead



Overheads of Parallelism
Decomposition overhead



Conclusion
• Our goal should be to reduce the time to solution

o Look at not just computational efficiency of 1 worker, but of all of them 
working together.

• We need to ensure that we are comparing APPLES to APPLES!
• Parallel computing is not free, we need to be cognizant of the 

many overheads of parallelization
oPoor parallelization may even degrade performance
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