The HPC Balancing Act

About me

* | am a PhD student at Virginia Tech
oMy primary field is HPC
ol have no background in Physics, much less QP, HEP, NP

* My work is primarily developing a performant theory
module

ofitpack_cpp — Low latency, differentiable theory* module,
currently in production running results for the Argonne Paper

oGPU version of theory

* | have also played around with
oA PDF level experimental module
oUsing generative models for parameterization of distributions

The HPC Balancing Act

Adaptability

The HPC Balancing Act

Adaptabili
P ty Panacea is intentionally

small

The HPC Balancing Act

Adaptability

The HPC Balancing Act

Adaptability

The HPC Balancing Act

Adaptability

The HPC Balancing Act

Adaptability

S
o

[-
o

>

cod
- -
<
c £ <
o S 9
L O O
el i omm ofud
> 0 >
.’.S a B

i

2
- - ~ o o
——

Qe arer - -~
T T T

i, Lo £

- =

}

.

-

-
s &
-

The Battle of the Languages

Pytorch isn't Magic

| see this get thrown around a lot

"We are using Pytorch because we want [Something] to
be differentiable”

Pytorch isn't Magic

Pytorch(i Sﬂ(ﬂ z)

n=1

Pytorch isn't Magic

Pytorch isn't Magic

20

(2
Pytorch(Z sin(n :1:))

n2

n=1

Pytorch isn't Magic

* A derivative of a function at a point exists or doesn't

Pytorch isn't Magic

* A derivative of a function at a point exists or
doesn't

* Alibrary can't change that
oA library can make it simpler to find out the derivative

Pytorch isn't Magic

* A derivative of a function at a point exists or
doesn't

* Alibrary can't change that
oA library can make it simpler to find out the derivative

* We can also reformulate our problem so that we
can extract derivatives for values of interest e.g.
DistroSA, Normalizing Flows

Pytorch isn't Magic

* A derivative of a function at a point exists or
doesn't

* Alibrary can't change that
oA library can make it simpler to find out the derivative

* We can also reformulate our problem so that we
can extract derivatives for values of interest e.g.
DistroSA, Normalizing Flows

oPytorch/Tensorflow cannot automatically do this for us
(to my knowledge)

The Battle of the Languages (Contd)

*| keep seeing calls for us to choose a side

oQOur project has components that would benefit
from ML/DL libraries, and other that wouldn't

The Battle of the Languages (Contd)

* | keep seeing calls for us to choose a side
* But!!

ST
s-r‘

: Tensorflow
Scipy

Pytorch

The Battle of the Languages (Contd)

* | keep seeing calls for us to choose a side
* But!!

Languages Languages Languages
] H L1 Il

Python 54 C++ 37.8 Python 57.4 C 15.8 C++ '_ Python 26.3

Cuda - C 1.6 Fortran 13.3 C++ 8.2 ® MLIR 5.9 ® starlark 4.

Objective-C++ 1.2 CMake 0.7 @ Cython 45 Meson 0.5 | HT:"- 2ol Go 1.2
® Other 1.5% @ Other 0.3% ® Other 2.8%

-
Pytorch Tensorflow

Scipy

The Battle of the Languages (Contd)

*| keep seeing calls for us to choose a side

oOur project has components that would benefit from ML/DL,
and other that wouldn't

* But most of these libraries rely on high
performance languages for their performance-
critical components

oSpecifically Matrix multiplication!

How much faster is matrix multiplication?

— Just 2X

A100 A100 A100 A100
40GB PCle | 80GB PCle | 40GB SXM 80GB SXM
FP&64 .7 TFLOPS
FP&64 Tensor 19.5 TFLOPS
Core
FP32 19.5 TFLOPS
Tensor Float 156 TFLOPS | 312 TFLOPS*
32 (TF32)
BFLOAT14 312 TFLOPS | 624 TFLOPS*

Tensor Core

FP146 Tensor
Core

INT8 Tensor
Core

312 TFLOPS | 624 TFLOPS*

624 TOPS | 1248 TOPS*

Faster

How much faster is matrix multiplication?

A100 A100 A100 A100

40GB PCle | 80GB PCle @40GBSXM 80GB SXM
FP&4 9.7 TFLOPS
FP&4 Tensor 19.5 TFLOPS “ — Just2X
Core Faster
FP32 19.5 TFLOPS
Tensor Float 156 TFLOPS | 312 TFLOPS*
32 [TF32)
BFLOAT16 312 TFLOPS | 624 TFLOPS* AMD 7702 is 2 TFLOPS
Tensor Core
FP16 Tensor 312 TFLOPS | 624 TFLOPS*
Core
INT8 Tensor 624 TOPS | 1248 TOPS*

Core

Traditional Data types

Format of Floating points

|[EEE /754
64bit = double, double precision
[|
1 11bit 52bit

32bit = float, single precision

i
1 8bit 23bit N
i . - S' ‘f‘ d
16bit = half, half precision
U fessssmem—"

1 Sbhit 10bit

Machine Epsilon

Itis the smallest positive floating-point number that, when added to
1.0, yields a result different from 1.0.

Traditional Data types

Format of Floating points

1.11e-16
64bit = double, double precision
Il)
1 11bit 52bit
5.96e-08
32bit = float, single precision
1 8hit 23bit
16bit = half, half precision —4.88e-04
R ——

1 5bit 10bit

Tensor Data Types

Sign Range Precision
o | vors S

TF3i1 Range

roson o 2) [A

TF1I Precision

- 4.88e-04

FP16

T

The Battle of the Languages (Contd)

*| keep seeing calls for us to choose a side

oOur project has components that would benefit from ML/DL,
and other that wouldn't

* But most of these libraries rely on high
performance languages for their performance-
critical components

oSpecifically Matrix multiplication!

So why don't we ?

Python/Julla
Smpy/ Numpy
Pytorc orch/Tensorflow

Interop

__init__.py:37(logpdf) stats 1 idis_cpp.py:123(norm)

stats_1_idis cpp py:90(xsec) _quadpack _py py 644(dblquad)
stats 1 idis_cpp. py 108{ge1 diff xsec) quadpackjy py 929(nquad)

q uadpack_py. py: 1 215(integrate)

_quadpack_py.py:559(_quad)

0.778
stats 1 _idis _cpp.py:140(_ wrapper) ‘
0
stats 1 idis cpp.py:108(get diff xsec -II

Interop

__init__.py:37(logpdf)

stats_1 idis_cpp.py:90(xsec)

stats 1 idis_cpp.py:123(norm)

_quadpack_py.py:644(dblquad)

164 s 0778 s
stats 1 idis_cpp.py:108(get diff xsec) _quadpack_py.py:929(nquad)
0.778 s

Fitpack _cpp is a C++ library with a Python wrapper
thatis currently running in production

_quadpack_py.py:1215(integrate)

_quadpack_py.py:559(_quad)
0778 s

stats 1 _idis _cpp.py:140(_ wrapper)
0773 s

tats 1 idis cpp.py:108(get diff xsec)

Interop

__init__.py:37(logpdf)

stats_1 idis_cpp.py:90(xsec)

stats 1 idis_cpp.py:123(norm)

_quadpack_py.py:644(dblquad)

164 s 0778 s
stats 1 idis_cpp.py:108(get diff xsec) _quadpack_py.py:929(nquad)
0.778 s

Fitpack _cpp is a C++ library with a Python wrapper
thatis currently running in production
Fitpack_cpp can also produce gradients using AD

_quadpack_py.py:1215(integrate)

_quadpack_py.py:559(_quad)
0778 s

stats 1 _idis _cpp.py:140(_ wrapper)
0773 s

tats 1 idis cpp.py:108(get diff xsec)

The Workflow shouldn't be a set of
Black Boxes

Scientist Me

| developed this component in theory.
We need itto be fast

The Workflow shouldn't be a set of
Black Boxes

Scientist Me

| developed this component in theory. But | can't parallelize this!
We need itto be fast

Execution Time

0.8

0.7

0.6 1

0.5 1

0.4

The Workflow shouldn't be a set of

Black Boxes

| I | I
2 3) a8
Number of Threads

!
16

!
32

!
64

Performance of fitpack_cpp plateaus with
number of threads

Design choices made due to insufficient
information
Large amount of work required to fix this

Theory shouldn't be a Black-Box

* Theory has a lot of moving pieces
* Algorithmic design choices should be made in collaboration

Theory shouldn't be a Black-Box

* Theory has a lot of moving pieces

* Algorithmic design choices should be made in collaboration
o We want to avoid performance plateaus

Theory shouldn't be a Black-Box

* Theory has a lot of moving pieces

* Algorithmic design choices should be made in collaboration
o We want to avoid performance plateaus

o For example, we should be thinking of not evaluation the cross-section at
one point, but 1 million.

Conclusion

* We need to find a middle ground, where we can all collaborate.
o When designing algorithms, working together can help make choices that will
reduce the work needed in the future to overcome issues.
o Choice of language can be done based on quantitative metrics like % of total
time executed, simplicity
*We need to collaborate so that we design scalable algorithms for this problem.
o HPC should not be an afterthought

	Slide 1: The HPC Balancing Act
	Slide 2: About me
	Slide 3: The HPC Balancing Act
	Slide 4: The HPC Balancing Act
	Slide 5: The HPC Balancing Act
	Slide 6: The HPC Balancing Act
	Slide 7: The HPC Balancing Act
	Slide 8: The HPC Balancing Act
	Slide 9: The Battle of the Languages
	Slide 10
	Slide 11: Pytorch isn't Magic
	Slide 12: Pytorch isn't Magic
	Slide 13: Pytorch isn't Magic
	Slide 14: Pytorch isn't Magic
	Slide 15: Pytorch isn't Magic
	Slide 16: Pytorch isn't Magic
	Slide 17: Pytorch isn't Magic
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: How much faster is matrix multiplication?
	Slide 23: How much faster is matrix multiplication?
	Slide 24: Traditional Data types
	Slide 25: Machine Epsilon
	Slide 26: Traditional Data types
	Slide 27: Tensor Data Types
	Slide 28
	Slide 29
	Slide 30: Interop
	Slide 31: Interop
	Slide 32: Interop
	Slide 33: The Workflow shouldn't be a set of Black Boxes
	Slide 34
	Slide 35
	Slide 36: Theory shouldn't be a Black-Box
	Slide 37: Theory shouldn't be a Black-Box
	Slide 38: Theory shouldn't be a Black-Box
	Slide 39: Conclusion

