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Motivations

Producing the observed baryon asymmetry in the universe requires interactions that
violate baryon number, B (as well as CP violation and deviation from thermal
equilibrium) (Sakharov, 1967).

Suggestion of n-n̄ transitions as a mechanism involved in generating baryon asymmetry
in the universe (Kuzmin, 1970).

Standard Model (SM) conserves B perturbatively. SU(2)L instantons produce
nonperturbative violation of B and lepton number, L, while conserving B − L (’t
Hooft, 1976). These SU(2)L instantons have a negligibly small effect at temperatures

T � vEW , but are important for T >∼ vEW (Kuzmin, Rubakov, Shaposhnikov, 1985).

Since (anti)quarks and (anti)leptons are placed in same representations in grand unified
theories (GUT’s), the violation of B and L is natural in these theories. Besides proton
decay, n - n̄ transitions can occur and may be the dominant manifestation of baryon
number violation (Glashow, 1980; Mohapatra and Marshak, 1980).

Some other early work: Chang+Chang, Kuo+Love, Cowsik+Nussinov, Rao+RS,...



A continuing question about B is whether it is just a global symmetry or whether it is
gauged. In the SM, B is a global symmetry, while in the left-right symmetric (LRS)
theory with gauge group (Mohapatra, Marshak, Senjanović, 1975...)

GLRS = SU(3)c ⊗ SU(2)L ⊗ SU(2)R ⊗U(1)B−L

B − L is gauged. Electric charge in SM: Qem = T3L + (Y/2); in LRS theory,

Qem = T3L + T3R +
B − L

2

Further embedding of SU(3)c ⊗U(1)B−L in SU(4) (Pati-Salam): gauge group
SU(4)⊗ SU(2)L ⊗ SU(2)R, and as SO(6)⊗ SO(4) in SO(10) GUT.

Lepton number L is a global symmetry in the original SM. Neutrino masses and lepton
mixing are confirmed physics beyond the SM; the most natural mechanism to explain
light neutrino masses is the seesaw mechanism, which involves a combination of Dirac

mass terms ν̄iLM
(D)
ij νj,R + h.c. and Majorana mass terms νTi,RCM

(R)
ij νj,R + h.c.;

the Majorana terms break L, as ∆L = 2 operators.

The occurrence of ∆L = 2 operators, possibly at a low-scale, in neutrino mass models
gives further motivation to explore the possibility that there might also be ∆B = 2



operators at scales well below a GUT scale. This is particularly natural in models with a
gauged U(1)B−L, containing Higgs with |B − L| = 2, whose vacuum expectation
values (VEVs) thus lead to both |∆L| = 2 and |∆B| = 2 processes.

These are good motivations for new experimental searches for n - n̄ transitions and
associated ∆B = −2 dinucleon decays as well as proton and bound neutron decay, as
manifestations of baryon number violation (BNV).

Plan for future n-n̄ search exp. at European Spallation Source, ESS Searches for n-n̄
transitions and associated ∆B = −2 dinucleon decays in deep underground detectors,
most recently, Super-K and SNO; future searches at Hyper-K and DUNE.

Also interest in n-n′ transitions with n′ in possible mirror universe [Lee, Yang (1956),
Kobzarev, Okun, Pomeranchuk (1966), Foot, Lew, Volkas (1991), Berezhiani,
Mohapatra, Dolgov (1996)...); connection with beam-bottle τn issue; connection with
dark matter; searches for n-n′ transitions, n→ n′→ n regeneration (Serebrov,
Berezhiani, Kamyshkov, Broussard, Barrow, Milstead, Young...); astrophysical
constraints on dark matter and n-n′: Goldman, Mohapatra, Nussinov, Zhang, Baym et
al., McKeen, Nelson, Reddy, Zhou, Pospelov, Raj, Berezhiani et al. Gardner et al.,
Thompson et al..).

Here we focus on n-n̄ transitions.



General Formalism for n - n̄ Transitions

n - n̄ Transitions in Field-Free Vacuum:

CPT: 〈n|Heff |n〉 = 〈n̄|Heff |n̄〉 = mn− iλn/2, where Heff denotes relevant
effective Hamiltonian and λ−1

n = τn = 0.88× 103 sec. Heff may also mediate
n↔ n̄ transitions: 〈n̄|Heff |n〉 ≡ δm. Consider the matrix in (n, n̄) basis:

M =

(
mn − iλn/2 δm

δm mn − iλn/2

)
DiagonalizingM yields mass eigenstates

|n±〉 =
1
√

2
(|n〉 ± |n̄〉)

with mass eigenvalues m± = (mn ± δm)− iλn/2.

So if start with pure |n〉 state at t = 0, then there is a finite probability P for it to be
an |n̄〉 at t 6= 0. Denote τnn̄ = 1/|δm|. Then

P (n(t) = n̄) = |〈n̄|n(t)〉|2 = [sin2(t/τnn̄)]e
−λnt



More generally, in the (n, n̄) basis, write

M =

(
M11 δm
δm M22

)
Diagonalization yields mass eigenstates |n1〉 and |n2〉:(

|n1〉
|n2〉

)
=

(
cos θ sin θ
− sin θ cos θ

)(
|n〉
|n̄〉

)
where

tan(2θ) =
2δm

∆M

and ∆M = M11 −M22. The energy eigenvalues are

E1,2 =
1

2

[
M11 +M22 ±

√
(∆M)2 + 4(δm)2

]



Let ∆E = E1 − E2 =
√

(∆M)2 + 4(δm)2; transition probability:

P (n(t)→ n̄) = |〈n̄|n(t)〉|2 = sin2(2θ) sin2[(∆E)t/2] e−λnt

=

[
(δm)2

(∆M/2)2 + (δm)2

]
sin2

[√
(∆M/2)2 + (δm)2 t

]
e−λnt

In realistic free-neutron experiment, |∆M | � |δm|, due to ambient magnetic field,
but the exp. achieves sensitivity to δm by arranging that [(1/2)∆E]t� 1, i.e.,

[(∆M/2)2 + (δm)2]1/2 t� 1 ,

then by Taylor-expanding the sine squared, the quantity (∆M/2)2 + (δm)2 cancels,
so in this case

P (n(t)→ n̄) ' [(δm)t]2 e−λnt = (t/τnn̄)
2 e−λnt



n - n̄ Transitions in a Magnetic Field ~B:

Even with magnetic shielding, the neutrons in a free-neutron exp. searching for n− n̄
transitions are subject to a nonzero external magnetic field ~B due to the earth. The n
and n̄ interact with ~B via magnetic moment ~µ = µ~σ, µn = −µn̄ = κµN , where
κ = −1.91, µN = e/(2mN) = 3.15× 10−14 MeV/Tesla, so

M =

(
mn − ~µn · ~B − iλn/2 δm

δm mn + ~µn · ~B − iλn/2

)
So ∆M = M11 −M22 = −2~µn · ~B and diagonalization yields mass eigenstates
|n1〉, |n2〉, with energy eigenvalues

E1,2 = mn ±
√

(~µn · ~B)2 + (δm)2 − iλn/2

ILL experiment reduced | ~B| = B to ∼ 10−4 G = 10−8 T, so

|µn|B = (6.03× 10−22 MeV)

(
B

10−8 T

)
Now |δm| <∼ 10−30 from Super-K, so |δm| � |µn|B, and



∆E = 2

√
(~µn · ~B)2 + (δm)2 ' 2|~µn · ~B|

Experimentally, arrange that n’s propagate a time t such that [(1/2)∆E]t� 1, i.e,

|~µn · ~B|t = 0.92

(
B

10−8 T

)(
t

1 sec

)
� 1 and t� τn

Then the exp. is sensitive to δm

P (n(t)→ n̄) ' [(δm) t]2 = (t/τnn̄)
2

Denoting the total number of neutrons measured as Nn, the resultant total number of
n̄’s produced in an exp. is

Nn̄ = P (n(t)→ n̄) Nn

Here, Nn = φTrun where φ = is the neutron flux and Trun = the exp. running time.

The sensitivity of exp. depends in part on the product

Nn

(
t

τnn̄

)2

= φTrun

(
t

τnn̄

)2



so, with adequate magnetic shielding, want to maximize t, subject to condition
|~µn · ~B|t� 1

Most sensitive reactor n - n̄ exp. done with ILL High Flux Reactor (HFR) at Grenoble
(Baldo-Ceolin, Fidecaro,.., 1985-1994; M. Baldo-Ceolin et al., Z. Phys. C63, 409
(1994))) with neutrons cooled to liquid D2 temp., kinetic energy E ' 2× 10−3 eV,
typical velocity v ' 700 m/s, L ' 80 m, t ' 0.1 sec., φ ∼ 1.25× 1011 n/s, so
φt2 = 1.5× 109 n · s; set limit

τnn̄ ≥ 0.86× 108 sec (90 % CL)

i.e., |δm| = ~/τnn̄ = (6.58× 10−22 MeV · s)/τnn̄ ≤ 0.77× 10−29 MeV.

In general, |δm| = (0.658× 10−29 MeV)(108 s/τnn̄).



n - n̄ Transitions in Matter: For n - n̄ transitions involving a neutron bound in a
nucleus, consider

M =

(
mn,eff. δm
δm mn̄,eff.

)
mn,eff = mn + Vn , mn̄,eff. = mn + Vn̄

where the nuclear potential Vn is real, Vn = VnR, but Vn̄ has an imaginary part
representing the n̄N annihilation: Vn̄ = Vn̄R − iVn̄I with
VnR, Vn̄R, Vn̄I ∼ O(100) MeV (Dover, Gal, Richard; Friedman; recently work by
Barrow, Golubeva, Richard.. Oosterhof, de Vries, van Kolck et al.; Haidenbauer,
Meissner; Syritsyn, Wagman, et al.; talks by van Kolck (EFT), Wagman (LQCD) ).

Mixing is thus strongly suppressed; tan(2θ) is determined by

2δm

|mn,eff. −mn̄,eff.|
=

2δm√
(VnR − Vn̄R)2 + V 2

n̄I

� 1

Using the reactor exp. bound on |δm|, this gives |θ| <∼ 10−31. This suppression in
mixing is compensated by the large number of nucleons in a nucleon decay detector,
∼ 1033 n’s in Super-K.



Eigenvalues:

m1,2 =
1

2

[
mn,eff. +mn̄,eff. ±

√
(mn,eff. −mn̄,eff.)2 + 4(δm)2

]
Expanding m1 for the mostly n mass eigenstate |n1〉 ' |n〉,

m1 ' mn + Vn − i
(δm)2 Vn̄I

(VnR − Vn̄R)2 + V 2
n̄I

Imaginary part leads to matter instability, mainly via n̄n, n̄p→ π’s, with rate

Γm.i. =
1

τm.i.
=

2(δm)2|Vn̄I|
(VnR − Vn̄R)2 + V 2

n̄I

So τm.i. ∝ (δm)−2 = τ 2
nn̄.

Writing τm.i. = Rτ 2
nn̄, one has R ∼ O(100) MeV, dependent on nucleus.

With ~ = 6.6× 10−22 MeV-sec, equiv. R ∼ 1023 sec−1.



Searches for matter instability due to n-n̄ transitions with large nucleon decay
detectors are complementary to searches with free neutrons at reactors or spallation
sources. Searches for matter instability due to n-n̄ transitions were performed most
recently by Soudan, Super-K, and SNO experiments.

Generic signature is a multipion final state resulting from the annihilation of the n̄ with
a neighboring neutron or proton.

A lower bound on τm.i. yields a lower bound on τnn̄ via τnn̄ = (τm.i./R)1/2. Current
best bound is from Super-Kamiokande, τm.i. > 3.6× 1032 yrs, giving

τnn̄ > 4.7× 108 sec (90 % CL) - Linyan Wan talk

[K. Abe,.. L. Wan,.. et al., Phys. Rev. D 103, 012008 (2021)] and thus

|δm| =
1

τnn̄
< 1.4× 10−30 MeV

The future n− n̄ search experiment at ESS should significantly improve this limit or
see a signal (Womersley talk).



n - n̄ Transitions in an Extra-Dimensional Model

We discuss a model in which proton decay can easily be suppressed well below
experimental limits while n-n̄ transitions can occur at level comparable to existing
limits (work with Nussinov and Girmohanta, op. cit. )

Consider a model with a d = 4 + n dimensional spacetime, with n extra spatial
dimensions. Denote usual spacetime coords. as xν, ν = 0, 1, 2, 3 and consider n
extra compact coordinates, yλ with 0 ≤ yλ ≤ L, i.e., size of extra dimension(s) is L.
Each SM fermion f has the form

Ψf(x, y) = ψf(x)χf(y)

with strong localization at a point yf in the extra dimensions, with a Gaussian profile of
half-width σ ≡ 1/µ� L:

χf(y) = Ae−µ
2‖y−yf‖2 = Ae−‖η−ηf‖

2

where ‖yf‖ = (
∑n

λ=1 y
2
f,λ)

1/2, A is a normalization constant, and we define a
convenient dimensionless variable ηf = µyf .

Such models are of interest because they can provide a mechanism for a generational
hierarchy in fermion masses and quark mixing.



We use a low-energy effective field theory (EFT) approach with an ultraviolet cutoff
M∗, where M∗ > µ for self-consistency. Only the lowest mode in the Kaluza-Klein
(KK) mode decompositions of each Ψ field will be needed here; effects of higher modes
are considered in our papers.

Starting from the Lagrangian in the d-dimensional spacetime, one obtains the resultant
low-energy EFT in 4D by integrating over the extra n dimension(s). For canonical
normalization of the 4D fermion kinetic term,

A =
(2

π

)n/4
µn/2

The localization is achieved by coupling to auxiliary “localizer” scalar fields with kink
form for n = 1, and similarly for higher n (Arkani-Hamed + Schmaltz;
Mirabelli+Schmaltz; Grossman+Perez); Higgs fields are taken flat in extra dims. As in
these refs., a full UV completion is not specified.

Define ΛL ≡ 1/L; take ΛL ∼ 102 TeV, σ ≡ 1/µ ∼ L/30; this gives adequate
separation of fermions while fitting in interval [0, L], consistent with precision
electroweak data, collider bounds, flavor-changing neutral current constraints.
Corresponding compactification length: L = 2× 10−19 cm.

With ΛL = 102 TeV, this yields µ ∼ 3× 103 TeV.



This extra-dimensional model (ED) is quite different from ED models with low quantum
gravity scales (Arkani-Hamed, Dimopoulos, Dvali; Dienes, Dudas, Gherghetta), as is
clear from the fact that, e.g., for n = 2 and quantum gravity scale of 30 TeV, the
ADD-DDG models have a compactification size ∼ 3× 10−4 cm., much larger than
the scale L ' 2× 10−19 cm in the ED model that we use.



Given the localization of fermion wavefunctions on scale σ � L, in the integration
over the extra dimensions, can extend

∫ L
0 →

∫∞
−∞ to good approximation.

Integrals over extra dimensions have the general form (with
∫
dnη =

∫∞
−∞ d

nη)

∫
dnη exp

[
−

m∑
i=1

ai‖η − ηfi‖
2
]

=

[
π∑m
i=1 ai

]n/2
exp

[
−
∑m

j,k=1; j<k ajak‖ηfj − ηfk‖2∑m
s=1 as

]

For example, for m = 3,

∫
dnη exp

[
−
(
a1‖η − ηf1‖

2 + a2‖η − ηf2‖
2 + a3‖η − ηf3‖

2
)]

=

=

[
π

a1 + a2 + a3

]n/2
exp

[−(a1a2‖ηf1 − ηf2‖2 + a2a3‖ηf2 − ηf3‖2 + a3a1‖ηf3 − ηf1‖2
)

a1 + a2 + a3

]

If only one fermion involved in integrand, then no exponential suppression:

∫
dnη exp

[
− a1‖η − ηf1‖

2
]

=

[
π

a1

]n/2



A Yukawa interaction in the d-dimensional space with coefficients of order unity and
moderate separation of localized fermion wavefunction centers yields a strong hierarchy
in the low-energy 4D Yukawa interaction,

∫
dny χ̄(yfL)χ(yfR) ∼

∫
dnη e−‖η−ηfL‖

2
e−‖η−ηfR‖

2
∼ e−(1/2)‖ηfL−ηfR‖

2

Resultant fermion masses mf :

mf ' h(f) v
√

2
exp

[
−

1

2
‖ηfL − ηfR‖

2
]
,

where v/
√

2 is SM Higgs VEV. With h(f) ' 1, produce fermion generational
hierarchy via different separation distances ‖ηfL − ηfR‖ for different generations.

Leading nucleon decay operators are of the form qqq`. Hence, one can suppress
nucleon decay well below experimental limits by arranging that the wavefunction centers
of the u and d quarks are separated far from those of the leptons.

Key point: this does not suppress n - n̄ transitions because the n-n̄ transition
operators do not involve leptons.



For example, one nucleon decay operator is (with ` = e, µ)

O(Nd)
1 = εαβγ[u

α T
R CdβR][uγ TR C`R]

where α, β, γ are SU(3)c color indices.

The product of y-dependent fermion wavefunctions in this operator is

A4 exp
[
−
{

2‖η − ηuR‖
2 + ‖η − ηdR‖

2 + ‖η − η`R‖
2
}]

The integral over y yields

I
(Nd)
1 = b4 exp

[
−

1

4

{
2‖ηuR − ηdR‖

2 + 2‖ηuR − η`R‖
2 + ‖ηdR − η`R‖

2
}]

where b4 = (µ/
√
π)n.

One can guarantee that this is sufficiently small by taking the distances between
wavefunction centers ‖ηuR − η`R‖ and/or ‖ηdR − η`R‖2 sufficiently large.

Similarly for other nucleon decay operators.



At the quark level n→ n̄ is (udd)→ (ucdcdc). This is mediated by 6-quark
operators O(nn̄)

r ∼ uddudd.

In d = 4 dims., effective Lagrangian for the n− n̄ transition is

L(nn̄)
eff (x) =

∑
r

c(nn̄)
r O(nn̄)

r (x) + h.c.

Correspondingly, in d = 4 + n dimensions,

L(nn̄)
eff,4+n(x, y) =

∑
r

κ(nn̄)
r O(nn̄)

r (x, y) + h.c.

where the O(nn̄)
r (x) and O(nn̄)

r (x, y) are 6-quark operators in d = 4 and
d = 4 + n dims.

In d-dimensional spacetime the dimension of a fermion field ψ in mass units is
dim(ψ) = (d− 1)/2, so dim(O(nn̄)

r ) = 6dψ = 3(d− 1) and

dim(κr) = d− dim(O(nn̄)
r ) = 3− 2d = 3− 2(4 + n) = −(5 + 2n)



So the coefficients κr have the form

κ(nn̄)
r =

κ̄(nn̄)
r

M5+2n
nn̄

where κ̄(nn̄)
r are dimensionless and Mnn̄ is the effective mass characterizing the physics

responsible for the n-n̄ transition. We can set κ̄(nn̄)
r = 1 for the dominant O(nn̄)

r in
defining Mnn̄.

Integration of fermion wavefunctions in the O(nn̄)
r (x, y) over y yield the coeffs. c(nn̄)

r

in terms of κ(nn̄)
r



Operators O(nn̄)
r must be color singlets and, for Mnn̄ larger than the electroweak

symmetry breaking scale, also SU(2)L ×U(1)Y -singlets. Relevant operators in SM
EFT (C = iγ2γ0; CT = −C)

O(nn̄)
1 = (Ts)αβγδρσ[uαTR CuβR][dγTR Cd

δ
R][dρTR Cd

σ
R]

O(nn̄)
2 = (Ts)αβγδρσ[uαTR CdβR][uγTR Cd

δ
R][dρTR Cd

σ
R]

O(nn̄)
3 = (Ta)αβγδρσεij[Q

iαT
L CQjβ

L ][uγTR Cd
δ
R][dρTR Cd

σ
R]

O(nn̄)
4 = (Ta)αβγδρσεijεkm[QiαT

L CQjβ
L ][QkγT

L CQmδ
L ][dρTR Cd

σ
R]

where QL =
(u
d

)
L

, i, j.. are SU(2)L indices, and color tensors are

(Ts)αβγδρσ = εραγεσβδ + εσαγερβδ + ερβγεσαδ + εσβγεραδ

(Ta)αβγδρσ = εραβεσγδ + εσαβεργδ

(Ts)αβγδρσ is symmetric in the indices (αβ), (γδ), (ρσ).

(Ta)αβγδρσ is antisymmetric in (αβ) and (γδ) and symmetric in (ρσ).



SU / 3)
a

color contractions

✗ A 8 8 A r

(B) tpispr z } 3 3 3 3

÷ ÷

⇒
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3 3 3 3 3 3

TIE ?
6-

Figure 1:



The integrals of these operators over y comprise three classes: operators O
(nn̄)
1 and

O
(nn̄)
2 yield the integral

I
(nn̄)
r12 = b6 exp

[
−

4

3
‖ηuR − ηdR‖

2

]

O
(nn̄)
3 yields the integral

I
(nn̄)
r3 = b6 exp

[
−

1

6

{
2‖ηQL − ηuR‖

2 + 6‖ηQL − ηdR‖
2 + 3‖ηuR − ηdR‖

2
}]

O
(nn̄)
4 yields the integral

I
(nn̄)
r4 = b6 exp

[
−

4

3
‖ηQL − ηdR‖

2

]
where b6 = (2 · 3−1/2 π−1µ2)n.

The coeffs. c(nn̄)
r = κ̄(nn̄)

r /(Mnn̄)
5 times these I(nn̄)

r integrals.



Consider, e.g., case n = 2: one can fit data on quark masses, mixing with

‖ηQL − ηuR‖ = 4.75, ‖ηQL − ηdR‖ ' 4.60

‖ηuR − ηdR‖ ' 7

We find that the |c(nn̄)
r | for r = 1, 2, 3 are� |c(nn̄)

4 |, and hence we focus on c
(nn̄)
4 :

To leading order (neglecting small CKM mixings), ‖ηQL − ηdR‖ is determined by md

via relation (with Higgs vev v = 246 GeV)

md = hd
v
√

2

with
hd = hd,0 exp[−(1/2)‖ηQL − ηdR‖

2]

where hd,0 is the Yukawa coupling in (4 + n)-dims. so that

exp
[
−(1/2)‖ηQL − ηdR‖

2
]

=
21/2md

hd,0v

With hd,0 ∼ 1



δm ' c(nn̄)
4 〈n̄|O(nn̄)

4 |n〉 '
(

4µ4

3π2M9
nn̄

)(
21/2md

v

)8/3

〈n̄|O(nn̄)
4 |n〉

Requiring that τnn̄ = 1/|δm| agree with the lower limit from Super-K,
τnn̄ > 4.7× 108 sec. yields the lower bound on the mass scale of n− n̄ transitions:

Mnn̄ > (51 TeV)
( τnn̄

4.7× 108 sec

)1/9 ( µ

3× 103 TeV

)4/9
(|〈n̄|O(nn̄)

4 |n〉|
Λ6
QCD

)1/9

where ΛQCD = 0.25 GeV. This bound is not very sensitive to the precise size of

〈n̄|O(nn̄)
4 |n〉 because of the 1/9 power in the exponent.

O(nn̄)
4 = −Q3 in notation of lattice QCD calculation (Rinaldi, Syritsyn, Wagman,

Buchoff, Schroeder, Wasem, 2019), with LQCD matrix element
|〈n̄|Q3|n〉| ' 5× 10−4 GeV6 = 2Λ6

QCD; substituting this yields factor

21/9 = 1.08 so lower bound is (1.08)51 TeV = 55 TeV.



Hence, for relevant values of Mnn̄ in this model, n− n̄ transitions could occur at
levels that are close to the current limit.

This model also illustrates how baryon number violation can occur via n− n̄
transitions with strongly suppressed proton decay.

With SM fermion wavefunction centers chosen to suppress BNV nucleon decays
adequately in this model, an interesting question is what are the predictions for other
∆B = −1 nucleon and ∆B = −2 dinucleon decays, including

• (i) the ∆L = −3 nucleon decays p→ `+ν̄ν̄′ and n→ ν̄ν̄′ν̄′′

• (ii) the ∆L = 1 nucleon decays p→ `+νν′ and n→ ν̄ν′ν′′

• (iii) the ∆L = −2 dinucleon decays
pp→ (e+e+, µ+µ+, e+µ+, e+τ+, or µ+τ+), np→ `+ν̄, and nn→ ν̄ν̄′,
where `+ = e+, µ+, or τ+;

• (iv) the ∆L = 2 dineutron decays nn→ νν′.

The decays of type (i) and (ii) are mediated by 6-fermion operators, while the decays of
type (iii) and (iv) are mediated by 8-fermion operators. In S. Girmohanta and RS, PRD
101, 015017 (2020) we show that the predictions of the model are in accord with
experimental constraints.



n-n̄ Transitions in an Extra-Dimensional Model with
GLRS Gauge Group

We have also studied n-n̄ transitions in an extra-dimensional model with the gauge
group GLRS = SU(3)c ⊗ SU(2)L ⊗ SU(2)R ⊗U(1)B−L

in Girmohanta + RS, PRD 101, 095012 (2020).

This model provides a useful contrast to the previous study because in the SM the n-n̄
transitions do not break the SM gauge symmetry, while in the LRS model, they occur
via the breaking of the U(1)B−L gauge symmetry.

Recall field content of LRS model (Mohapatra, Pati, Senjanović, 1975...) for fermions
(first gen.):

QL =

(
u

d

)
L

: (3, 2, 1)1/3,L , QR =

(
u

d

)
R

: (3, 1, 2)1/3,R

LL =

(
νe

e

)
L

: (1, 2, 1)−1,L , LR =

(
νe

e

)
R

: (1, 1, 2)−1,R ,



Higgs sector:

Φ : (1, 2, 2)0 : Φ =

(
φ0

1 φ+
1

φ−2 φ0
2

)
.

∆L : (1, 3, 1)2, ∆R : (1, 1, 3)2

∆L,R =

(
∆+
L,R/
√

2 ∆++
L,R

∆0
L,R −∆+

L,R/
√

2

)
,

Minimization of Higgs potential yields VEVs

〈Φ〉0 =
1
√

2

(
κ1 0
0 κ2e

iθΦ

)
,

〈∆L〉0 =
1
√

2

(
0 0

vLe
iθ∆ 0

)
〈∆R〉0 =

1
√

2

(
0 0
vR 0

)
.



At highest scale, vR breaks SU(2)R ⊗U(1)B−L→ U(1)Y with
|∆(B−L)| = 2. This naturally yields n− n̄ transitions and connects them with the
Majorana neutrino mass generation. So in this model,

Mnn̄ = vR

At electroweak level, κ, κ′ break SU(2)L⊗U(1)Y → U(1)em. Take vL� κ, κ′

to preserve ρ = 1 where ρ = m2
W/(m

2
Z cos2 θW ).

As in the SM EFT, nucleon decay can be suppressed well below experimental limits by
separating the wavefunction centers of the quarks from those of the leptons.

Since the adjoint rep. of SU(2) is the rank-2 symmetric tensor, can write ∆L as (∆L)ij

and ∆R as (∆R)i
′j′, where i, j are SU(2)L indices and i′, j′ are SU(2)R indices.



O(nn̄)
r operators:

O
(nn̄)
1 = (Ts)αβγδρσ (εi′k′εj′m′ + εj′k′εi′m′)(εp′r′εq′s′ + εq′r′εp′s′)×

× [Qi′αT
R CQj′β

R ][Qk′γT
R CQm′δ

R ][Qp′ρT
R CQq′σ

R ] (∆†R)r
′s′

O
(nn̄)
2 = (Ta)αβγδρσ εi′j′εk′m′ (εp′r′εq′s′ + εq′r′εp′s′)×

× [Qi′αT
R CQj′β

R ][Qk′γT
R CQm′δ

R ][Qp′ρT
R CQq′σ

R ] (∆†R)r
′s′

O
(nn̄)
3 = (Ta)αβγδρσ εijεk′m′ (εp′r′εq′s′+εq′r′εp′s′) [QiαT

L CQjβ
L ][Qk′γT

R CQm′δ
R ][Qp′ρT

R CQq′σ
R ] (∆†R)r

′s′

O
(nn̄)
4 = (Ta)αβγδρσ εijεkm (εp′r′εq′s′+εq′r′εp′s′) [QiαT

L CQjβ
L ][QkγT

L CQmδ
L ][Qp′ρT

R CQq′σ
R ] (∆†R)r

′s′

O
(nn̄)
5 = (Ts)αβγδρσ(εikεjm + εjkεim)(εp′r′εq′s′ + εq′r′εp′s′)×

× [QiαT
L CQjβ

L ][QkγT
L CQmδ

L ][Qp′ρT
R CQq′σ

R ] (∆†R)r
′s′

After symmetry breaking of U(1)B−L, replace ∆R by VEV, vR.



In the same way as before, we obtain the low-energy 4D EFT by integrating the
operator products over the n extra dimensions.

Because O
(nn̄)
1 and O

(nn̄)
2 involve only one kind of fermion field (namely, QR), we find

that for these two operators the integral over y does not yield any exponential
(Gaussian) suppression factor. Coeffs. κ̄(nn̄)

r can naturally be ∼ O(1) in the model for
these operators.

This is in contrast to the SM EFT, where the integrals of all n− n̄ operators involved
exponential suppression factors.

Because of this, the constraint that this model should agree with the experimental
lower limit on τnn̄ imposes a more stringent lower bound on the scale Mnn̄ in this
model than in the SM EFT analysis:

Mnn̄
>∼ max

[
(1× 103 TeV)

( τnn̄

4.7× 108 sec

)1/9

×
( µ

3× 103 TeV

)4/9
(|κ̄(nn̄)

r 〈n̄|O(nn̄)
r |n〉|

Λ6
QCD

)1/9
]
, r = 1, 2



Other models can predict n-n̄ transitions near to current limits (Mohapatra +
Marshak, 1980; Rao + RS, 1984; Babu + Mohapatra, 2001; Babu, Bhupal Dev,
Mohapatra... 2006-present (post-sphaleron baryogenesis); Wise et al. (2013); Barrow
et al. (2022)... others... In several of these models, nucleon decay is absent or
suppressed so that n-n̄ oscillations are main manifestation of BNV.

Among ∆B = −2 processes, in the context of a given EFT (not dependent on an
extra-dimensional model framework), one can relate limits on ∆B = −2 dinucleon
decays dilepton final states, as discussed in:

S. Girmohanta and RS, Phys. Lett. B 803, 135296 (2020) [arXiv:1910.08356]

S. Nussinov and RS, Phys. Rev. D 102, 035003 (2020) [arXiv:2005.12493]

Similar technique applied to ∆B = −1 nucleon decays to multi-lepton final states:

S. Girmohanta and RS, Phys. Rev. D 100, 115025 (2019) [arXiv:1910.08106]



n-n̄ Transitions in Neutron Stars

It is of interest to investigate effects of n-n̄ transitions in a neutron star (NS). An early
estimate by Buchella, Gualdi, and Orlandini, Nuovo Cim. 100, 809 (1987) found this to
be negligible. In 2405.08591, using the same framework without any assumptions for
dark matter, n′, etc., Fu, Ge, Guo, and Wang claimed a larger effect by many orders of
magnitude, Mnn̄�MGUT . If correct, this claim would remove the justification for
further terrestrial n-n̄ search experiments.

This motivated a reanalysis in the same framework and we have done this in Goldman,
Mohapatra, Nussinov, and RS, Phys. Rev. Lett. in press, 2408.14555. We find the
effect to be negligible and strengthen the upper bound on NS heating obtained by
Buchella et al. by ∼ 10−5.

Recall some basic properties of neutron stars. These originate as remnants of
supernova. The Fermi energy of degenerate electrons becomes sufficiently high that the
reaction e+ p→ νe + n takes place, producing a compact object consisting mainly
of a degenerate Fermi sea of neutrons.

The stability of the neutron star arises from a combination of neutron degeneracy
pressure and the hard-core repulsion of the neutrons.



Typical neutron star mass is MNS ∼ 1.4M� (where M� = 2.0× 1033 g is the
solar mass), and NS masses have been observed up to ∼ 2.1M�.

Radius: RNS ∼ O(10) km; typical value RNS ∼ 12 km.

Mass density increases from outer region to core; typical average value ρ ∼ 5× 1014

g/cm3, and correspondingly, ave. neutron number density ρn is somewhat larger than
the saturation nuclear value ρn,nuc = 0.16 fm−3. Number of neutrons in NS ∼ 1057.

Owing to the contraction from stellar radii to ∼ 10 km, neutron stars have large
rotation rates with periods P ∼ 0.05− 10 sec and large magnetic fields
B = | ~B| ∼ 1012 Gauss or more. Many have been observed as pulsars.

Compendium of NS, e.g., Potekhin et al., MNRAS 496, 5052 (2020).
After initially cooling mainly by neutrino emission, subsequent cooling is via photon
emission, approximately described by thermal blackbody relation with power

L = 4πR2
NSσSBT

4

where T refers to surface temp. and σSB = π2k4
B/(60~3c2) = 5.67× 10−5

erg/(sec-cm2-K4) is Stefan-Boltzmann const.



The n-n̄ transition is suppressed as in nuclei. The associated n̄ annihilation or
equivalently ∆B = −2 dinucleon decay releases E ∼ 2mn energy. The annihilation
yields mainly pions with average multiplicity ∼ 5, as in normal matter.

These pions will undergo strong reactions with adjacent neutrons on a time scale
∼ 10−23 s, including π+n→ π0p. The π0s produced directly from the n̄
annihilation and via this charge-exchange reaction will then decay via π0 → γγ on a
time scale τπ0 = 0.85× 10−16 sec.

Other effects slightly increase or decrease the energy release in photon luminosity. The
effective neutron mass is somewhat decreased in the NS, but this will largely cancel.
Another decrease is due to energy loss from antineutrinos from π−→ µ−ν̄µ. A slight
increase is due to the energy released as high-lying neutrons in the Fermi sea move
down to occupy the holes left by the ∆B = −2 annihilation.



The matter instability due to n− n̄ transitions and consequent annihilation is
characterized by the matter decay rate Γm = 1/τm. We have

Nn(t) = Nn(0)e−t/τm

so

dNn

dt
= −

Nn(0)

τm
e−t/τm ' −

Nn(0)

τm

where Nn(0) denotes the initial number of neutrons in the neutron star and we have
used the fact that τm� tU , where tU = 1.38× 1010 yrs to approximate
e−t/τm ' 1 in dNn/dt.

Hence, the number of neutrons that transform to n̄, denoted Nn→n̄, divided by the
initial number of neutrons, Nn(0), is

Nn→n̄(t)

Nn(0)
=

1

Nn(0)

∣∣∣dNn

dt

∣∣∣t =

(
t

τm

)
< 2.8× 10−29

( t

104 yr

)
(Typical ages of observed NS range from ∼ 103 yrs to ∼ 106 yrs.)



The energy deposition rate resulting from the n-n̄ transitions followed by annihilation is
then

dU

dt
=
∣∣∣dNn

dt

∣∣∣(2mn) =

(
Nn(0)

τm

)
(2mn) =

2MNS

τm

Note that with Nn(0) 'MNS/mn, the dependence on mn divides out in this
expression for dU/dt. Numerically,

dU

dt
= (4.4× 1014 erg/s)

(
MNS

1.4M�

)(
3.6× 1032 yr

τm

)
This can also be expressed in terms of the fundamental quantity τnn̄, as

dU

dt
= (4.4× 1014 erg/s)

(
MNS

1.4M�

)(
4.7× 108 s

τnn̄

)2

This is an upper bound on this energy deposition rate in our analysis, since values we
used for τm and τnn̄ are experimental lower bounds.



To see if this energy deposition is significant, we choose an old neutron star that has
undergone a long period of cooling, since the fractional effect on the surface
temperature Ts is largest for the lowest Ts. Typical values for moderately old NS are
Ts ∼ 5× 105 K to 106 K.

The corresponding thermal radiative luminosity is

LNS = 4πR2
NSσSBT

4
s = (7.1× 1032 erg/s)

( RNS

10 km

)2( Ts

106 K

)4

(1)

The fractional change due to the n-n̄ transitions is thus

(dU/dt)

LNS
<∼ 10−18

which is negligibly small.

This is in agreement with the earlier study by Buchella et al. and improves the bound
on the effect by ∼ 105, mainly due to increase in lower limit on τnn̄.

In addition to calculating the effect of the ∆B = −2 annihilations on (i) NS
luminosity, we also calculate the effect on (ii) the rotation of a NS and (iii) the periods
of binary (NS) pulsars.



Effect on Rotation period: Let us denote the NS rotation period as P , the angular
frequency of rotation as ω = 2π/P , and the moment of inertia as I. We have
I ' (2/5)MNSR

2
NS. For a typical neutron star of mass MNS ∼ 1.4M� and

radius RNS ' 10 km, I ' 1045 g cm2.

Because of the emission of electromagnetic radiation, ω decreases (spin-down process),
and hence Erot = (1/2)Iω2 decreases.

Hence, dErot/dt = Iωω̇ = −(2π)2I(Ṗ )/P 3, From the observed values of P and
Ṗ , one calculates a time tc = (1/2)P/Ṗ that is approximately characteristic of the
age of the pulsar.

For example, consider the Vela pulsar, with P = 0.0893 sec and tc = 1.13× 104 yr,
and hence Ṗ = P/(2tc) = 1.2× 10−13. Consequently, −Ėrot ' 7× 1036 erg/s.

The energy deposition rate dU/dt from n-n̄ is <∼ 10−22 of this spin-down energy loss
rate and therefore has a negligible effect on it. We reach the same conclusion analyzing
other pulsars with a range of values of P and Ṗ .



Finally, we estimate the effect of n-n̄ transitions on the orbital period Pb of binary
pulsars. We use the Jeans relation Ṗb/Pb = −2Ṁ/M , where Pb denotes the orbital
period, M = M1 +M2 is total binary system mass.

Let us consider, for example, the well-studied Taylor-Hulse binary pulsar system, PSR
B1913+16 (= PSR J1915+1606), which was used as a test of general relativity (GR).

For this system, Pb = 0.322997 days, M = 2.83M�, and
Ṗb,int = (−2.393± 0.004)× 10−12 for the intrinsic (int) Ṗb (Weisberg, Nice,
Taylor (2010); Weisberg, Huang, 2016).

This agrees with the GR prediction Ṗb,GR = (−2.40263± 0.00005)× 10−12:

Ṗb,int

Ṗb,GR

= 0.9983± 0.0016

So residual (res) Ṗb,res ≡ Ṗb,int − Ṗb,GR = (4.6± 4.0)× 10−15 and hence

Ṗb,res

Pb
= (5.2± 4.5)× 10−12 yr−1



Substituting M = 2.83M�, denoting this mass/energy loss as Ṁn−n̄ = −dU/dt,
and using Jeans relation, the change due to the ∆B = −2 annihilation is

Ṗb,nn̄

Pb
= −2

Ṁn−n̄

M
= (1.1× 10−32 yr−1)

(
4.7× 108 s

τnn̄

)2

Again, this is an upper limit, since the value used for τnn̄ is the experimental lower limit.

Thus, the increase in Ṗb/Pb due to possible n-n̄ transitions is about 1020 times
smaller than the observed residual Ṗb,res/Pb for the Taylor-Hulse binary pulsar. We
find similar results for other binary pulsars.

This shows that possible n-n̄ transitions have a negligible effect on the period of binary
pulsars, just as they have a negligible effect on the pulsar luminosities and spin-down
rates.



As with the Buchella et al. study, we do not assume any particular model of dark
matter, since there is no consensus on a preferred model and there are many DM
models (recent DM review: 2406.01705 by Cirelli, Strumia, and Zupan).

In ongoing work we are studying the effects of n-n̄ transitions in NS in the presence of
various types of dark matter (DM).

These DM models are constrained by NS properties even in the absence of n-n̄
transitions. For example, in mirror DM models, constraints on n-n′ mixing in NS have
been derived by many groups ( Goldman, Mohapatra, Nussinov, Zhang; Baym et al.;
McKeen, Nelson, Reddy, Zhou, Pospelov, Raj; Motta et al.; Berezhiani et al.; Gardner
et al.; Thompson et al...).



Conclusions

• General theoretical expectation that baryon number is violated, and this is borne out
in many BSM scenarios.

• n-n̄ transitions are an interesting possible manifestation of baryon number violation,
of |∆B| = 2 type, complementary to proton decay, motivating further
experimental searches.

• We have discussed two models that show how new physics beyond the SM can
produce n-n̄ transitions at rates comparable with current limits. These models also
show that n-n̄ transitions can be the main manifestation of baryon number
violation, since proton decay is strongly suppressed.

• Analysis of effects of n-n̄ transitions in neutron stars.

Thank you


