Probing dark photon superradiance through follow-up searches

Nils Siemonsen

Princeton Gravity Initiative

November 19, 2024

Candidates:

- Axion (spin-0)
- Dark photon (spin-1)

Candidates:

- Axion (spin-0)
- Dark photon (spin-1)

Couplings:

- Axion-photon
- Kinetic mixing

Candidates:

- Axion (spin-0)
- Dark photon (spin-1)

Couplings:

- Axion-photon
- Kinetic mixing

Candidates:

- Axion (spin-0)
- Dark photon (spin-1)

Couplings:

- Axion-photon
- Kinetic mixing

Unique features:

- Only gravitational interaction
- No dark matter assumption

Candidates:

- Axion (spin-0)
- Dark photon (spin-1)

Couplings:

- Axion-photon
- Kinetic mixing

Unique features:

- Only gravitational interaction
- No dark matter assumption

Requirements:

- 1. Isolate search strategy
- 2. Understand theory

Large body of work

[Arvanitaki, Baryakhtar, Brito, East, Yoshino, Kodama, ...]

- Growth rates, power, frequency evolution
- Across parameter space, various modes
- Scalar & vector fields
- (Semi-)analytic, numerical techniques

Large body of work

[Arvanitaki, Baryakhtar, Brito, East, Yoshino, Kodama, ...]

- Growth rates, power, frequency evolution
- Across parameter space, various modes
- Scalar & vector fields
- (Semi-)analytic, numerical techniques

Large body of work

[Arvanitaki, Baryakhtar, Brito, East, Yoshino, Kodama, ...]

- Growth rates, power, frequency evolution
- Across parameter space, various modes
- Scalar & vector fields
- (Semi-)analytic, numerical techniques

SuperRad waveform model [**NS** et al., 2023]

- Combine all results on a single platform
- Goal: fast & easy-to-use (python-based)

Large body of work

[Arvanitaki, Baryakhtar, Brito, East, Yoshino, Kodama, ...]

- Growth rates, power, frequency evolution
- Across parameter space, various modes
- Scalar & vector fields
- (Semi-)analytic, numerical techniques

SuperRad waveform model [**NS** et al., 2023]

- Combine all results on a single platform
- Goal: fast & easy-to-use (python-based)

SuperRad v2 [May et al. (incl. **NS**), 2024]

- Accurately model the frequency evolution & understand theoretical uncertainties
- Current waveform phase error $\Delta \phi \leq 1$ across parameter space

Well yes, but no.

 \Rightarrow There is a need to understand non-gravitational interactions Why?

Well yes, but no.

 \Rightarrow There is a need to understand non-gravitational interactions Why?

Dark Photon Superradiance:

- Kinetic mixing $\varepsilon: \mathcal{L} \supset \varepsilon F'_{\mu\nu}F^{\mu\nu}$
	- $\Rightarrow e^{\pm}$ experience Lorentz force
- Synchrotron assisted pair plasma production

Well yes, but no.

 \Rightarrow There is a need to understand non-gravitational interactions Why?

Dark Photon Superradiance:

- Kinetic mixing $\varepsilon: \mathcal{L} \supset \varepsilon F'_{\mu\nu}F^{\mu\nu}$
	- $\Rightarrow e^{\pm}$ experience Lorentz force
- Synchrotron assisted pair plasma production

Well yes, but no.

 \Rightarrow There is a need to understand non-gravitational interactions Why?

Dark Photon Superradiance:

- Kinetic mixing $\varepsilon: \mathcal{L} \supset \varepsilon F'_{\mu\nu}F^{\mu\nu}$
	- $\Rightarrow e^{\pm}$ experience Lorentz force
- Synchrotron assisted pair plasma production
- Luminosity: $L \leq 10^{43}$ erg/s
- \Rightarrow Superradiance mechanism largely unaffected
- Evidence for periodicity \Rightarrow "fake pulsars"
- $B \leq 10^8$ Gauss \Rightarrow X-ray & γ -ray
- ⇒ High-energy electromagnetic signatures

How is the gravitational wave signal modified?

- GW amplitude may decay more rapidly
- GW frequency may evolve more quickly
- \Rightarrow Understand impact on GWs as function of ε

How is the gravitational wave signal modified?

[**NS**, Modino, Egaña-Ugrinovic, Huang, Baryakhtar, East, 2023]

- GW amplitude may decay more rapidly
- GW frequency may evolve more quickly
- \Rightarrow Understand impact on GWs as function of ε

How does this affect follow-up searches?

[Jones et al. (incl. **NS**), in prep]

- CW search methods are flexible
- Exploit this to map constraints
- Quantitatively:
	- Next-generation sensitivity
	- Population of merger remnants
- No need to modify search!

How is the gravitational wave signal modified? [**NS**, Modino, Egaña-Ugrinovic, Huang, Baryakhtar, East, 2023]

- GW amplitude may decay more rapidly
- GW frequency may evolve more quickly
- \Rightarrow Understand impact on GWs as function of ε

How does this affect follow-up searches?

[Jones et al. (incl. **NS**), in prep]

- CW search methods are flexible
- Exploit this to map constraints
- Quantitatively:
	- Next-generation sensitivity
	- Population of merger remnants
- No need to modify search!

How is the gravitational wave signal modified? [**NS**, Modino, Egaña-Ugrinovic, Huang, Baryakhtar, East, 2023]

- GW amplitude may decay more rapidly
- GW frequency may evolve more quickly
- \Rightarrow Understand impact on GWs as function of ε

How does this affect follow-up searches?

[Jones et al. (incl. **NS**), in prep]

- CW search methods are flexible
- Exploit this to map constraints
- Quantitatively:
	- Next-generation sensitivity
	- Population of merger remnants
- No need to modify search!

Summary

Summary:

- Waveform modelling basically complete
- Understanding non-gravitational interactions is important

Outlook dark photon superradiance:

- Impact on accretion disks
- Microscopic understanding of plasma dynamics

Outlook:

- Waveform modelling: higher-order modes? get frequency evolution to matched-filter level?
- Weakly nonlinear effects in Higgs-Abelian sector
- What about LISA?

Nils Siemonsen **Probing dark photon superradiance through follow-up** search probing dark photon superradiance through follow-up