Andrea Simonelli

Bridging theory and experiment in TMD physics

INTRODUCTION and MOTIVATIONS

or

How far we can go with the Parton Model picture

PARTON MODEL

The Behavior of Hadron Collisions at Extreme Energies

Motivated by high energy lepton-nucleon scattering

PARTON MODEL

$$\Phi(x) = \int \frac{d\xi^{-}}{2\pi} e^{ixP^{+}\xi^{-}} \langle P, S | \overline{\psi}(\xi) W_{0 \to \xi} \psi(0) | P, S \rangle$$

$$\Phi(x) = \int \frac{d\xi^-}{2\pi} e^{ixP^+\xi^-} \langle P, S | \overline{\psi}(\xi) W_{0 \to \xi} \psi(0) | P, S \rangle$$

"Probability" of finding an **unpolarized quark** with momentum fraction x and transverse momentum k_T inside a nucleon of spin S

$$\Phi(x) = f_1(x)\gamma^{-} + S_L g_{1L}(x)\gamma^{-}\gamma^{5} + i S_T^j h_{1T}(x)\gamma^{-}\gamma^{j} + \text{p.s.}$$

zation		U	L	Т
olariz	U	f_1		
on Pc	L		g_{1L}	
Nucle	Т			h_{1T}

Quark Polarization

$$\Phi(x) = \int \frac{d\xi^{-}}{2\pi} e^{ixP^{+}\xi^{-}} \langle P, S | \overline{\psi}(\xi) W_{0 \to \xi} \psi(0) | P, S \rangle$$

"Probability" of finding a **longitudinally polarized quark** with momentum fraction x and transverse momentum k_T inside a nucleon of spin S

$$\Phi(x) = f_1(x)\gamma^- + S_L g_{1L}(x)\gamma^- \gamma^5 + i S_T^j h_{1T}(x)\gamma^- \gamma^j + \text{p.s.}$$

cation		U	L	Т
olariz	U	f_1		
son Pc	L		g_{1L}	
Nucle	Т			h_{1T}

$$\Phi(x) = \int \frac{d\xi^-}{2\pi} e^{ixP^+\xi^-} \langle P, S | \overline{\psi}(\xi) W_{0 \to \xi} \psi(0) | P, S \rangle$$

"Probability" of finding a **transversely polarized quark** with momentum fraction x and transverse momentum k_T inside a nucleon of spin S

$$\Phi(x) = f_1(x)\gamma^{-} + S_L g_{1L}(x)\gamma^{-}\gamma^{5} + i S_T^j h_{1T}(x)\gamma^{-}\gamma^{j} + \text{p.s.}$$

Quark Polarization

Why "probabilities" and not probabilities?

POSITIVITY CONSTRAINT

Positivity of PDFs is related to the UV renormalization scheme used to define them

$$f_{1}(x) = \left[\int \frac{d\xi^{-}}{2\pi} e^{ixP^{+}\xi^{-}} \langle P, S | \overline{\psi}(\xi) W_{\infty \to \xi}^{\dagger} \frac{\gamma^{+}}{2} W_{0 \to \infty} \psi(0) | P, S \rangle \right]_{\text{UV ren.}}$$

$$= \int \frac{\int UV \text{ ren.}}{d^{2} \vec{k}_{T}} \int dk^{-} \left(\underbrace{P + \psi^{\dagger} \psi(\xi) W_{\infty \to \xi}^{\dagger} \frac{\gamma^{+}}{2} W_{0 \to \infty} \psi(0) | P, S \rangle}_{P + \psi^{\dagger} \psi(\xi) \psi^{\dagger} \psi^{\dagger} \psi(\xi) \psi^{\dagger} \psi(\xi) \psi^{\dagger} \psi^$$

large

$$\Phi(x,\vec{k}_T) = \int \frac{d\xi^- d^2 \vec{b}_T}{(2\pi)^3} e^{ixP^+\xi^- - i\vec{k}_T \cdot \vec{b}_T} \langle P, S | \overline{\psi}(\xi) | W_{0 \to \xi} \psi(0) | P, S \rangle$$

TMD PARTON DENSITIES

"Probability" of finding an **unpolarized quark** with momentum fraction x and transverse momentum $k_{\rm T}$ inside a nucleon of spin S

$$\Phi^{[\gamma^+]}(x,\vec{k}_T) = f_1(x,k_T^2) - \frac{\vec{k}_T \times \vec{S}_T}{M} f_{1T}^{\perp}(x,k_T^2) + \text{p.s.}$$

TMD PARTON DENSITIES

"Probability" of finding a **longitudinally polarized quark** with momentum fraction x and transverse momentum $k_{\rm T}$ inside a nucleon of spin S

$$\Phi^{[\gamma^+\gamma_5]}(x,\vec{k}_T) = S_L g_{1L}(x,k_T^2) - \frac{\vec{k}_T \cdot \vec{S}_T}{M} g_{1T}(x,k_T^2) + \text{p.s.}$$

15

TMD PARTON DENSITIES

"Probability" of finding a $transversely \, polarized \, quark$ with momentum fraction x and transverse momentum k_T inside a nucleon of spin S

$$\Phi^{[i\sigma^{j+}\gamma^{5}]}(x,\vec{k}_{T}) = S_{T}^{j}h_{1T}(x,k_{T}^{2}) + S_{L}\frac{k_{T}^{j}}{M}h_{1L}^{\perp}(x,k_{T}^{2})$$
$$-\frac{k_{T}^{j}\vec{k}_{T}\cdot\vec{S}_{T} + \frac{1}{2}k_{T}^{2}S_{T}^{j}}{M^{2}}h_{1T}^{\perp}(x,k_{T}^{2}) - \frac{\epsilon^{jk}k_{T}^{k}}{M}h_{1}^{\perp}(x,k_{T}^{2}) + \text{p.s.}$$

Γ	Quark Polarization				
atior		U	L	Т	
Nucleon Polariz	U	f_1		h_1^\perp	
	L		g_{1L}	h_{1L}^{\perp}	
	Т	f_{1T}^{\perp}	g_{1T}	h_{1T},h_{1T}^{\perp}	

16

Nice, but it doesn't work:

$\int dk^{-} \frac{\operatorname{Tr}_{C}}{N} \frac{\operatorname{Tr}_{D}}{4} \left(\underbrace{\int \mathcal{Q}_{QQQQQ}}_{QQQQQQ} \right) \sim a_{S} \frac{1}{k_{T}^{2}} \frac{1}{1-\xi} \right)$

Rapidity Divergences

Soft-collinear contributions

The elephant in the room in TMD physics (and not only)

SOFT ENTANGLEMENT

Many examples:

- $\circ~$ Two back-to-back hadrons produced in e^+e^- annihilation
- \circ Semi-Inclusive DIS at low $q_T = P_T/z$
- Drell-Yan with lepton pair almost back-to-back
- \circ DIS at threshold
- Thrust distribution in the 2-jet limit
- Single hadron production from e⁺e⁻ annihilation, reconstructing the thrust in the 2-jet limit

The world as seen by a **soft** particle:

A suitable combination of

$$\Phi(x,\vec{b}_T) = \int \frac{d\xi^-}{2\pi} e^{ixP^+\xi^-} \langle P,S|\overline{\psi}(\xi)W_{0\to\xi}\psi(0)|P,S\rangle \quad (Collinear radiation)$$

with

$$S(b_T, \phi_M) = \langle 0 | W_{\mathcal{C}}(b_T, \phi_M) | 0 \rangle$$

leads to a **well-defined** operator definition for the TMDs

Which combination?

FACTORIZATION (in QCD) gives the answer

 $S(b_T, y_1 - y_2) = \langle 0 | W_{\mathcal{C}}(b_T, y_1 - y_2) | 0 \rangle$

Soft-collinear radiation feels the world as the soft radiation (same operator definition) except for a different perception of collinear rapidities:

The **factorized** cross section is then:

$$d\sigma_{\text{SIDIS}} = H_{\text{SIDIS}} \int \frac{d^2 \vec{b}_T}{(2\pi)^2} e^{i \vec{q_T} \cdot \vec{b_T}} \underbrace{\frac{\Phi^{[\Gamma]}(x, b_T)}{S(b_T, y_1 - (-\infty))}}_{S(b_T, y_1 - (-\infty))} S(b_T, y_1 - y_2) \underbrace{\frac{C^{[\Gamma']}(z, b_T)}{S(b_T, +\infty - y_2)}}_{S(b_T, +\infty - y_2)} + \text{ p.s.}$$
Fully perturbative, process dependent hard part
$$H_{\text{SIDIS}} = 1 + a_S H^{[1]} + \mathcal{O}(a_S^2)$$
Soft-collinear subtractions and regularization of rapidity divergences

regularization of rapidity divergences

$$= H_{\text{SIDIS}} \int \frac{d^2 \vec{b}_T}{(2\pi)^2} e^{i \vec{q_T} \cdot \vec{b}_T} \Phi_{\text{sqrt.}}^{[\Gamma]}(x, b_T; y_n) C_{\text{sqrt.}}^{[\Gamma']}(z, b_T; y_n) + \text{ p.s.}$$
Soft troubles have been absorbed into the TMD definition

Smart rearrangement of soft factors

TMD DEFINITION

$$\Phi_{\text{sqrt.}}^{[\Gamma]}(x, b_T; \mu, y_n) = \Phi^{[\Gamma]}(x, b_T; \mu) \sqrt{\frac{S(b_T, \mu, y_n - (-\infty))}{S(b_T, \mu, +\infty - y_n)}}$$

And analogous for final state part (plus – minus reversed role).

It cannot be obtained just speculating on the quark propagator inside a nucleon or through some parton model generalization.

The factorization theorem in full QCD is **crucial** to get here.

BRIDGING THEORY AND EXPERIMENTAL DATA

Implementing the QCD Operator Definition What can we say about this complicate QCD operator?

• Adimensional (in b_T -space)

$$\Phi_{q_j/h}^{\text{sqrt}}(x, b_T; \mu, y_n) = \Phi_{q_j/h}^{\text{sqrt}}\left(x, a_S(\mu), \frac{\mu b_T}{c_1}, \frac{x\sqrt{2}P^+ e^{-y_n}}{\mu}\right)$$

Non-Perturbative at large distances $b_T \gg \frac{c_1}{c_1}$ **Collinear PDFs** OPE at small distances $b_T pprox rac{c_1}{2}$ • $\Phi_{q_j/h}^{\text{sqrt}} = \sum_{j} \int_{x}^{1} \frac{d\rho}{\rho} C_{q_j/k} \left(\rho, a_S(\mu), \log\left(\frac{\mu b_T}{c_1}\right), \log\left(\frac{\zeta}{\mu^2}\right) \right) f_{k/h} \left(\frac{x}{\rho}, \mu\right) + \mathcal{O}(\mu b_T)^a$ $OOOOCC_{q_j/k}$ Wilson coefficients, fully perturbative* $f_{k/h}$

31

Most importantly, we know the Evolution Equations:

The *reference scales* are totally arbitrary.

Nevertheless, their choice is crucial for the "implementation scheme".

$$\mu_0 = c_1/b_T \equiv \mu_b, \quad \zeta_0 = \mu_b^2$$

$$\Phi_{q_j/h}(x, b_T; \mu, \zeta) = \Phi_{q_j/h}(x, b_T; \mu_b, \zeta_b)$$

$$\times \exp\left\{\frac{1}{2}K(b_T; \mu_b)\log\frac{\zeta}{\mu_b^2} + \int_{\mu_b}^{\mu}\frac{d\mu'}{\mu'}\left[\gamma_{\phi}(a_S(\mu')) - \frac{1}{2}\gamma_K(a_S(\mu'))\log\frac{\zeta}{\mu'^2}\right]\right\}$$

$$a_S\left(c_1/b_T\right)$$
Problematic at large distances
$$\Psi_{q_j/h}^{\text{sqrt}}(x, b_T; \mu_b, \mu_b^2) = f_{q_j/h}(x) + a_S(\mu_b)\sum_k \int_x^1 \frac{d\rho}{\rho}C_{q_j/k}^{[1]}(\rho)f_{k/h}(x/\rho, \mu_b) + \dots$$

$$K(b_T, \mu_b) = \mathcal{O}\left(a_S^2(\mu_b)\right)$$

$$\mu_0 = \frac{c_1}{b_T} \sqrt{1 + \frac{b_T^2}{b_{\max}^2}} \equiv \mu_b^{\star}, \quad \zeta_0 = \mu_b^{\star 2} \qquad b_{\star} = \frac{b_T}{\sqrt{1 + \frac{b_T^2}{b_{\max}^2}}}$$

$$\Phi_{q_{j}/h}(x, b_{T}; \mu, \zeta) = \Phi_{q_{j}/h}(x, b_{T}; \mu_{b}^{\star}, \mu_{b}^{\star^{2}}) \\ \times \exp\left\{\frac{1}{2}K(b_{T}; \mu_{b}^{\star})\log\frac{\zeta}{\mu_{b}^{\star^{2}}} + \int_{\mu_{b}^{\star}}^{\mu}\frac{d\mu'}{\mu'}\left[\gamma_{\phi}(a_{S}(\mu')) - \frac{1}{2}\gamma_{K}(a_{S}(\mu'))\log\frac{\zeta}{\mu'^{2}}\right]\right\}$$

Logs do not cancel. Problematic at large distances

$$K(b_T, \mu_b^{\star}) = -8a_S(\mu_b^{\star})C_F \log\left(\sqrt{1 + \frac{b_T^2}{b_{\max}^2}}\right) + \dots$$

A way out (?): sum&subtract / multiply÷

$$K(b_{T}; \mu_{b}^{\star}) = \overline{K(b_{T}^{\star}, \mu_{b}^{\star})} - g_{K}(b_{T}, \dots)$$

$$\Phi_{q_{j}/h}(x, b_{T}; \mu_{b}^{\star}, \mu_{b}^{\star 2}) = \Phi_{q_{j}/h}(x, b_{T}^{\star}; \mu_{b}^{\star}, \mu_{b}^{\star 2}) \Phi_{q_{j}/h}^{\mathrm{NP}}(b_{T}, \dots)$$

$$\times \exp\left\{-\frac{1}{2}g_{K}(b_{T}, \dots)\log\frac{\mu_{b}^{\star 2}}{\zeta_{0}}\right\}$$

$$\Phi_{q_{j}/h}^{\mathrm{sqrt}}(x, b_{T}^{\star}; \mu_{b}^{\star}, \mu_{b}^{\star 2}) = f_{q_{j}/h}(x) + a_{S}(\mu_{b}^{\star})\sum_{k}\int_{x}^{1}\frac{d\rho}{\rho}C_{q_{j}/k}^{[1]}(\rho)f_{k/h}(x/\rho, \mu_{b}) + \mathcal{O}\left((b_{T}/b_{\max})^{a}; a_{S}^{2}(\mu_{b}^{\star})\right)$$

$$K(b_{T}^{\star}, \mu_{b}^{\star}) = \mathcal{O}\left(a_{S}^{2}(\mu_{b}^{\star})\right)$$

Nice. But does it *really* work?

$$\Phi^{\mathrm{NP}}_{q_j/h}(b_T,\dots)$$

MAP (Multi-dimensional Analyses of Partonic distributions) Collaboration • Alessandro Bacchetta (Pavia U. and INFN, Pavia) et al. (Jun 15, 2022)

$$f_{1NP}(x, \boldsymbol{b}_{T}^{2}; \zeta, Q_{0}) = \frac{g_{1}(x) e^{-g_{1}(x)\frac{\boldsymbol{b}_{T}^{2}}{4}} + \lambda^{2} g_{1B}^{2}(x) \left[1 - g_{1B}(x)\frac{\boldsymbol{b}_{T}^{2}}{4}\right] e^{-g_{1B}(x)\frac{\boldsymbol{b}_{T}^{2}}{4}} + \lambda^{2} g_{1C}(x) e^{-g_{1C}(x)\frac{\boldsymbol{b}_{T}^{2}}{4}}}{g_{1}(x) + \lambda^{2} g_{1B}^{2}(x) + \lambda^{2} g_{1C}^{2}(x)} \left[\frac{\zeta}{Q_{0}^{2}}\right]^{g_{K}(\boldsymbol{b}_{T}^{2})/2},$$

$$(38)$$

Valentin Moos (Regensburg U.), Ignazio Scimemi (Madrid U.), Alexey Vladimirov (Madrid U.), Pia Zurita (Regensburg U. and Madrid U.) (May 12, 2023)

$$f_{NP}^{f}(x,b) = \frac{1}{\cosh\left(\left(\lambda_{1}^{f}(1-x) + \lambda_{2}^{f}x\right)b\right)},$$
(2.32)
Both fit data very well!

$$g_K(b_T,\dots)$$

MAP Collaboration • Alessandro Bacchetta (Pavia U. and INFN, Pavia) et al. (May 22, 2024)

 $g_K(\boldsymbol{b}_T^2) = -g_2^2 \, \frac{\boldsymbol{b}_T^2}{2} \, .$

Ignazio Scimemi (Madrid U.), Alexey Vladimirov (Regensburg U.) (Dec 13, 2019)

$$\mathcal{D}(\mu, b) = \mathcal{D}_{\text{resum}}(\mu, b^*(b)) + c_0 b b^*(b),$$

Nowadays, there is no agreement on NP content of TMDs

(30)

(2.88)

Both fit data very well!

The b* prescription is doing two different jobs:

1. Evolution (RG)

2. Separation of Perturbative from Non-Perturbative regime

$$K(b_T; \mu_b^{\star}) = K(b_T^{\star}, \mu_b^{\star}) - g_K(b_T, \dots)$$

$$\Phi_{q_j/h}(x, b_T; \mu_b^{\star}, \mu_b^{\star 2}) = \Phi_{q_j/h}(x, b_T^{\star}; \mu_b^{\star}, \mu_b^{\star 2}) \Phi_{q_j/h}^{\text{NP}}(b_T, \dots)$$

$$\times \exp\left\{-\frac{1}{2}g_K(b_T, \dots)\log\frac{\mu_b^{\star 2}}{\zeta_0}\right\}$$
Strong impact on pheno

Resolution to the problem of consistent large transverse momentum in TMDs

J.O. Gonzalez-Hernandez (Turin U. and INFN, Turin), T. Rainaldi (Old Dominion U. and Jefferson Lab),

T.C. Rogers (Old Dominion U. and Jefferson Lab) (Mar 8, 2023)

Published in: *Phys.Rev.D* 107 (2023) 9, 094029 • e-Print: 2303.04921 [hep-ph]

#3

$$b_{\star} = \frac{b_T}{\sqrt{1 + \frac{b_T^2}{b_{\max}^2}}}$$

GOAL:

Implement the QCD operator definition such that:

- 1. OPE is satisfied at low bT
- 2. Transition to NP regime is smooth (natural)
- 3. pQCD is exploited as much as possible*
- 4. The pheno (model) bias is minimized

Combining nonperturbative transverse momentum dependence with TMD #5 evolution

J.O. Gonzalez-Hernandez (Turin U.), T.C. Rogers (Old Dominion U. and Jefferson Lab), N. Sato (Jefferson Lab) (May 11, 2022)

Published in: Phys.Rev.D 106 (2022) 3, 034002 • e-Print: 2205.05750 [hep-ph]

Resolution to the problem of consistent large transverse momentum in #3 TMDs

J.O. Gonzalez-Hernandez (Turin U. and INFN, Turin), T. Rainaldi (Old Dominion U. and Jefferson Lab), T.C. Rogers (Old Dominion U. and Jefferson Lab) (Mar 8, 2023)

Published in: Phys.Rev.D 107 (2023) 9, 094029 • e-Print: 2303.04921 [hep-ph]

Phenomenology of TMD parton distributions in Drell-Yan and $With^0$ boson $^{\#1}$

production in a hadron structure oriented approach

F. Aslan (Connecticut U. and Jefferson Lab), M. Boglione (Turin U. and INFN, Turin), J.O. Gonzalez-Hernandez (Turin U. and INFN, Turin), T. Rainaldi (Old Dominion U.), T.C. Rogers (Old Dominion U. and Jefferson Lab) et al. (Jan 25, 2024)

e-Print: 2401.14266 [hep-ph]

Most of the information about hadron structure is at low energies

Extract TMDs $Q_0pprox\,\,{
m few}\,\,{
m GeVs}$, then evolve and postdict high energy data

$$\mu_0 = \frac{c_1}{b_T} \sqrt{1 + \frac{b_T^2}{c_1^2/Q_0^2}} \equiv \overline{Q}_0(b_T), \quad \zeta_0 = Q_0^2$$

*We used a different parametrization for the reference scale

$$\Phi_{q_j/h}(x, b_T; \mu, \zeta) = \Phi_{q_j/h}(x, b_T; \overline{Q}_0(b_T), Q_0^2) \\ \times \exp\left\{\frac{1}{2}K(b_T; \overline{Q}_0(b_T))\log\frac{\zeta}{Q_0^2} + \int_{\overline{Q}_0(b_T)}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_{\phi}(a_S(\mu')) - \frac{1}{2}\gamma_K(a_S(\mu'))\log\frac{\zeta}{\mu'^2}\right]\right\}$$
Resolution to the problem of consistent large transverse momentum in [1]]

Why the large logs are not a problem now?

Resolution to the problem of consistent large transverse momentum in TMDs

J.O. Gonzalez-Hernandez (Turin U. and INFN, Turin), T. Rainaldi (Old Dominion U. and Jefferson Lab), T.C. Rogers (Old Dominion U. and Jefferson Lab) (Mar 8, 2023)

Published in: Phys.Rev.D 107 (2023) 9, 094029 • e-Print: 2303.04921 [hep-ph]

Because we parametrize (and fit) the large distance behavior:

An analogous treatment is adopted for the TMD at input scale

e-Print: 2401.14266 [hep-ph]

• Collinear PDFs are (usually) *just* inputs

$$\Phi_{q_j/h} = \sum_k C_{q_j/k} \otimes f_{k/h} \times e^{\cdots} \times (\text{NP content})$$

The efforts of TMD community are concentrated here

From LHAPDF for instance, ultimately from global analyses of collinear (**integrated**) data

The problem of the tails

Gonzalez, Rogers, Sato, Wang, Phys.Rev.D 98 (2018) 11, 114005

"We are basically trying to describe the integrand from the integral" T. Rogers

- $\,\circ\,$ We struggle to implement TMDs in b_T -space, but data are in k_T space
 - Inverse Fourier Transform are an expensive and crucial part of TMD pheno analyses
 - Inverse Fourier Transform necessarily requires to introduce a pheno bias (e.g. prescription to avoid the Landau pole)

 $\,\circ\,$ We struggle to implement TMDs in b_T -space, but data are in k_T space

The problem is that it is very difficult to obtain analytic expressions in k_T space and also being consistent with Evolution (log-counting)

Figure 1: Comparison of the numerical results of the various approaches for the calculation of the form factor.

\circ We struggle to implement TMDs in b_T -space, but data are in k_T space

More recently

Resummation of Transverse Momentum Distributions in Distribution Space

Markus A. Ebert (DESY), Frank J. Tackmann (DESY) (Nov 25, 2016) Published in: *JHEP* 02 (2017) 110 • e-Print: 1611.08610 [hep-ph] Solution of Evolution directly in $\boldsymbol{k}_{T}\text{-}\text{space}$

$$\frac{\mathrm{d}\sigma^{\mathrm{LL}}}{\mathrm{d}Q^{2}\mathrm{d}Y\mathrm{d}\vec{q}_{T}} = \sigma_{0}\frac{1}{2\pi q_{T}}\frac{\mathrm{d}}{\mathrm{d}q_{T}}f_{a}(\omega_{a},\mu_{T})f_{b}(\omega_{b},\mu_{T}) \int_{|\vec{p}_{T}| \leq q_{T}} \mathrm{d}^{2}\vec{p}_{T} \exp\left[\int_{\mu_{H}}^{\mu_{T}}\frac{\mathrm{d}\mu'}{\mu'}\gamma_{H}(Q,\mu')\right]\int \mathrm{d}^{2}\vec{k}_{s} \\
\times \left[\delta(\vec{p}_{T}-\vec{k}_{s}) + \sum_{n=1}^{\infty}\prod_{i=1}^{n}\int_{k_{i-1}|_{+}}^{\nu_{i-1}}\frac{\mathrm{d}\nu_{i}}{\nu_{i}}\int \mathrm{d}^{2}\vec{k}_{i}\gamma_{\nu}(\vec{k}_{i-1}-\vec{k}_{i},\mu_{T})\delta\left(\vec{p}_{T}-\vec{k}_{s}-\sum_{i}\vec{k}_{i}\right)\right] \\
\times \left(\delta(\vec{k}_{s}) + \left[\frac{1}{2\pi k_{s}}\frac{\mathrm{d}}{\mathrm{d}k_{s}}\exp\left\{\int_{k_{s}}^{\mu_{T}}\frac{\mathrm{d}\mu'}{\mu'}4\Gamma_{\mathrm{cusp}}[\alpha_{s}(\mu')]\ln\frac{\mu'}{k_{s}}\right\}\right]_{+}^{\mu_{T}}\right). \tag{6.8}$$

Infinite convolutions due to rapidity evolution

$\,\circ\,$ We struggle to implement TMDs in b_T -space, but data are in k_T space

Also:

Coherent branching algorithm

Higgs Transverse-Momentum Resummation in Direct Space

#1

Pier Francesco Monni (Oxford U., Theor. Phys.), Emanuele Re (Annecy, LAPTH), Paolo Torrielli (Turin U. and INFN, Turin) (Apr 7, 2016)

Published in: Phys.Rev.Lett. 116 (2016) 24, 242001 • e-Print: 1604.02191 [hep-ph]

$$\Sigma(p_t^{\rm H}) = \sigma_0 \int_0^\infty \langle dk_1 \rangle R'(k_{t,1}) e^{-R(k_{t,1})} \epsilon^{R'(k_{t,1})} \\ \times \sum_{n=0}^\infty \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon k_{t,1}}^{k_{t,1}} \langle dk_i \rangle R'(k_{t,1}) \Theta\left(p_t^{\rm H} - |\vec{q}_{n+1}|\right).$$
(7)

Semi-analytic resummation A fast and accurate method for perturbative resummation of transverse
 momentum-dependent observables

Daekyoung Kang (Los Alamos and Fudan U.), Christopher Lee (Los Alamos), Varun Vaidya (Los Alamos) (Sep 29, 2017) Published in: *JHEP* 04 (2018) 149 • e-Print: 1710.00078 [hep-ph]

$$\lambda = 2\beta_0 a_S(\mu)L$$

$$\Phi_{q_j/h}^{\text{LL}}(x, k_T; \mu, \mu^2) = -\frac{1}{2\pi k_T^2} h_1(\lambda) e^{Lg_1(\lambda)} f_{q_j/h}(x, k_T)$$

$$\Phi_{q_j/h}^{\text{NLL}}(x,k_T,\mu,\mu^2) = -\frac{1}{2\pi k_T^2} e^{Lg_1(\lambda) + g_2(\lambda)} \\ \times \left\{ \left[\left(h_1(\lambda) + \frac{1}{L} \vartheta_1(\lambda) \right) \psi(\lambda,L) + \frac{1}{L} \vartheta_2(\lambda) + \psi'(\lambda,L) \right] f_{q_j/k}(x,k_T) + \frac{d}{d\log k_T} f_{q_j/h}(x,k_T) \right\}$$

✓ Full analytic

 \checkmark Full perturbative \longrightarrow Can't be the final answer: $\lambda \lesssim 1$

$$\lambda = 2\beta_0 a_S(\mu)L$$

✓ Full perturbative

Power-law seems the functional form suggested by pQCD

✓ Natural extension to NP

- Clean test of how far we can get with the sole perturbative QCD (no pheno biases **at all**)
- Clean(er) test of QCD factorization
- Exploration of collinear PDFs in the Deep InfraRed

$$\Phi_{q_j/h} \hookleftarrow f_{q_j/h}(x, k_T)$$

BONUS: Natural flavor dependence inside the TMD Non-Perturbative content

62

CONCLUSIONS

GOAL:

- 1. OPE is satisfied at low bT
- 2. Transition to NP regime is smooth (natural)
- 3. pQCD is exploited as much as possible
- 4. The pheno (model) bias is minimized