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     Emulators for Inverse Problems in Dense Matter Physics 



An explosion of NS observations!
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Model for interaction between particles
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Dense matter physics in a nutshell



Model for interaction between particles    The Equation of State
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Dense matter physics in a nutshell
Tolman–Oppenheimer–Volkoff 
(TOV) equation
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Dense matter physics in a nutshell
Tolman–Oppenheimer–Volkoff 
(TOV) equation

Bayesian inference requires ~107 model evaluations 



The solution: Use emulators to accelerate calculations

Emulators mimic the behaviour of the full-scale model at a small fraction of its computational cost

Credits: NHERI SimCenter 7
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          TOV equations
            ~5 seconds

Overall strategy
  Quantum many-body methods
        ~1 million CPU hours
        (scarce training data)



Quantum Monte Carlo in a nutshell

● Virtually exact method for strongly interacting many-body 
systems

● First step is the preparation of a trial wavefunction, i.e. our 
best guess for the true ground state 

● The trial state is evolved in imaginary time. This is 
mathematically equivalent to the diffusion problem

● At infinite imaginary time, the system ‘cools’ to its true 
ground state

Trial wavefunction True ground state
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H(𝞪) is the Hamiltonian 

AWS Quantum Technologies

The Deuteron
~ 105 CPU-h



Emulators with scarce data: how about traditional ML?

● Goal: Build accurate surrogate models for QMC with ~5 - 10 training points

● The GP fails to accurately interpolate and extrapolate between training points
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         RS et al., arXiv:2404.11566



Emulators with scarce data: Reduced basis methods
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● Start with the full Schrödinger equation

       



Emulators with scarce data: Reduced basis methods
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● Start with the full Schrödinger equation

● Compute N training functions or ‘snapshots’

       



Emulators with scarce data: Reduced basis methods
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● Start with the full Schrödinger equation

● Compute N training functions or ‘snapshots’

● Project the Hamiltonian into the reduced space 
spanned by         

Mathematically, this corresponds to computing 
the matrix   

       

           Petrov-Galerkin projection method



Emulators with scarce data: Reduced basis methods
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● Start with the full Schrödinger equation

● Compute N training functions or ‘snapshots’

● Project the Hamiltonian into the reduced space 
spanned by         

Mathematically, this corresponds to computing 
the matrix   

       

● For QMC,          is dominated by stochastic noise and cannot be calculated. We therefore implemented a 
Petrov-Galerkin projection method for this problem:

           Petrov-Galerkin projection method



● The RBM outperforms the GP

● The RBM is capable of interpolating but fails to extrapolate away from training points
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Emulators with scarce data: Reduced basis methods

         RS et al., arXiv:2404.11566



Emulators with scarce data: Hybrid models

Duguet et al., arXiv:2310.19419

● Combine elements of RBMs with data-driven 
emulators

● We employ the recently proposed parametric 
matrix models 

● The form of the reduced subspace matrix is 
inspired by RBMs. However, we do not directly 
compute the projections, i.e. we do not compute 
the subspace matrix elements 

● Instead they are learned in some manner from the 
data
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Emulators with scarce data: Hybrid models

● The PMM outperforms both the GP and RBM

● It interpolates well but also gives excellent results for extrapolation!
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         RS et al., arXiv:2404.11566



Emulators with scarce data: Hybrid models

● We found that our PMM generalises very 
well to at least 4 - 5 dimensional 
parameter spaces. 
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● The PMM outperforms both the GP and RBM.

● It interpolates well but also gives excellent results for extrapolation!

         RS et al., arXiv:2404.11566



Model for interaction between particles    The Equation of State       Neutron star observables 

Bayesian Inference methods 19

   
 P

re
ss

ur
e

           Density

Overall strategy Speed-up factor  ~ 107 
Uncertainty         ~ 0.1 % 

          TOV equations
            ~5 seconds



Multilayer Perceptrons for the TOV equations

Multilayer Perceptrons (MLP) are the simplest, dense, feedforward neural networks. We use the method of 
deep ensembles where we use a set of 100 MLPs

Equation of State
parameters

                (x100)

20Reed, RS, et al., arXiv:2405.20558



Multilayer Perceptrons for the TOV equations

Multilayer Perceptrons (MLP) are the simplest, dense, feedforward neural networks. We use the method of 
deep ensembles where we use a set of 100 MLPs

Equation of State
parameters

The neutron star tidal 
deformability

                (x100)
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We generated 200K samples, randomly 
split into training and test data  

Reed, RS, et al., arXiv:2405.20558



● Average uncertainty on test samples is 0.04 %

● 0.01% of test samples are outliers 
(uncertainty > 10%)

Ensemble learning decreases 
test uncertainties by an order of 
magnitude  

22Reed, RS, et al., arXiv:2405.20558

Multilayer Perceptrons for the TOV equations
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Speed-up factor  ~ 103 
Uncertainty         ~ 0.04 % 

Speed-up factor  ~ 107 
Uncertainty         ~ 0.1 % 

(In Progress)

Summary
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                                         Backup slides



The trade-off between speed and computational accuracy 
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         RS et al., arXiv:2404.11566

Exact solver



The tradeoff between speed and accuracy
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