Emulators for Inverse Problems in Dense Matter Physics

Rahul Somasundaram
Los Alamos National Laboratory and Syracuse University

07/10/2024, INT Workshop: Inverse Problems and Uncertainty Quantification in Nuclear Physics

An explosion of NS observations!

Dense matter physics in a nutshell

Model for interaction between particles

Dense matter physics in a nutshell

Model for interaction between particles $H|\psi\rangle=E|\psi\rangle$ The Equation of State

Dense matter physics in a nutshell

Model for interaction between particles $H|\psi\rangle=E|\psi\rangle>$ The Equation of State $G^{\mu \nu}=\kappa T^{\mu \nu}$ Neutron star observables

Dense matter physics in a nutshell

Bayesian inference requires $\sim 10^{7}$ model evaluations

```
Tolman-Oppenheimer-Volkoff (TOV) equation
``` Model for interaction between particles \(H|\psi\rangle=E|\psi\rangle>\) The Equation of State \(\left.G^{\mu \nu}=\kappa T^{\mu \nu}\right\rangle\) Neutron star observables


Density
Bayesian Inference methods

\section*{The solution: Use emulators to accelerate calculations}

Emulators mimic the behaviour of the full-scale model at a small fraction of its computational cost

Simulation model

UQ Analysis / Optimization

\section*{Overall strategy}

Quantum many-body methods
\(\sim 1\) million CPU hours
(scarce training data)
TOV equations
~5 seconds

\section*{Quantum Monte Carlo in a nutshell}

\[
\mathrm{H}(\boldsymbol{a}) \text { is the Hamiltonian }
\]

- Virtually exact method for strongly interacting many-body systems
- First step is the preparation of a trial wavefunction, i.e. our best guess for the true ground state
- The trial state is evolved in imaginary time. This is mathematically equivalent to the diffusion problem
- At infinite imaginary time, the system 'cools' to its true ground state

\section*{Emulators with scarce data: how about traditional ML?}
- Goal: Build accurate surrogate models for QMC with ~5-10 training points
- The GP fails to accurately interpolate and extrapolate between training points

\section*{Emulators with scarce data: Reduced basis methods}
- Start with the full Schrödinger equation
\[
H|\psi\rangle=E|\psi\rangle
\]

\section*{Emulators with scarce data: Reduced basis methods}
- Start with the full Schrödinger equation
\[
H|\psi\rangle=E|\psi\rangle
\]
- Compute \(\mathbf{N}\) training functions or 'snapshots' \(\left|\psi_{j}\right\rangle\)

\section*{Emulators with scarce data: Reduced basis methods}
- Start with the full Schrödinger equation

Petrov-Galerkin projection method
\[
H|\psi\rangle=E|\psi\rangle
\]
- Compute \(\mathbf{N}\) training functions or 'snapshots' \(\left|\psi_{j}\right\rangle\)
- Project the Hamiltonian into the reduced space spanned by \(\left|\psi_{j}\right\rangle\)

Mathematically, this corresponds to computing the matrix
\[
M_{i j} \equiv\left\langle\psi_{i}\right| H\left|\psi_{j}\right\rangle
\]

\section*{Emulators with scarce data: Reduced basis methods}
- Start with the full Schrödinger equation

Petrov-Galerkin projection method
\[
H|\psi\rangle=E|\psi\rangle
\]
- Compute \(\mathbf{N}\) training functions or 'snapshots' \(\left|\psi_{j}\right\rangle\)
- Project the Hamiltonian into the reduced space spanned by \(\left|\psi_{j}\right\rangle\)

Mathematically, this corresponds to computing the matrix
\[
M_{i j} \equiv\left\langle\psi_{i}\right| H\left|\psi_{j}\right\rangle
\]
- For QMC, \(M_{i j}\) is dominated by stochastic noise and cannot be calculated. We therefore implemented a Petrov-Galerkin projection method for this problem:
\[
M_{i j}=\left\langle\psi_{i}\right| \boldsymbol{T}\left|\psi_{j}\right\rangle
\]

\section*{Emulators with scarce data: Reduced basis methods}
- The RBM outperforms the GP
- The RBM is capable of interpolating but fails to extrapolate away from training points

\section*{Emulators with scarce data: Hybrid models}
- Combine elements of RBMs with data-driven emulators
- We employ the recently proposed parametric matrix models
\[
M(\vec{\alpha})=M_{0}+\sum_{i} \alpha_{i} M_{i}
\]
- The form of the reduced subspace matrix is inspired by RBMs. However, we do not directly compute the projections, i.e. we do not compute the subspace matrix elements
reduced order models

Duguet et al., arXiv:2310.19419
- Instead they are learned in some manner from the data

\section*{Emulators with scarce data: Hybrid models}
- The PMM outperforms both the GP and RBM
- It interpolates well but also gives excellent results for extrapolation!

\section*{Emulators with scarce data: Hybrid models}
- The PMM outperforms both the GP and RBM.
- It interpolates well but also gives excellent results for extrapolation!

- We found that our PMM generalises very well to at least 4-5 dimensional parameter spaces.

\section*{Overall strategy}

Speed-up factor \(\sim 10^{7}\)
Uncertainty \(\sim 0.1 \%\)

\section*{Multilayer Perceptrons for the TOV equations}

Multilayer Perceptrons (MLP) are the simplest, dense, feedforward neural networks. We use the method of deep ensembles where we use a set of 100 MLPs

\section*{Multilayer Perceptrons for the TOV equations}

Multilayer Perceptrons (MLP) are the simplest, dense, feedforward neural networks. We use the method of deep ensembles where we use a set of 100 MLPs

\section*{Multilayer Perceptrons for the TOV equations}

- Average uncertainty on test samples is \(0.04 \%\)

Reed, RS, et al., arXiv:2405.20558

Summary
Speed-up factor \(\sim 10^{7}\)
Uncertainty \(\sim 0.1 \%\)
Speed-up factor \(\sim 10^{3}\)
Uncertainty \(\sim 0.04\) \%

\section*{Acknowledgements}

Collaborators:
Ingo Tews, Duncan Brown, Achim Schwenk, Stefano Gandolfi, Collin Capano, Soumi De, Cassandra Armstrong, Brendan Reed, Pablo Giuliani, Kyle Godbey, Andrew Deneris

\section*{Thank You!}

\section*{U.S. DEPARTMENT OF \\ ENERGY \\ (1)}

\section*{Backup slides}

The trade-off between speed and computational accuracy

The tradeoff between speed and accuracy
```

