Inferring chiral three-nucleon forces from third-generation gravitational-wave detectors

Rahul Somasundaram Los Alamos National Laboratory and Syracuse University

Collaborators: Isak Svensson, Philippe Landry, Ingo Tews, Duncan Brown, Achim Schwenk, Soumi De, Andrew Deneris, Yannick Dietz, Brendan Reed, Pablo Giuliani, Cassandra Armstrong

08/30/2024, INT Workshop: EOS Measurements with Next-Generation GW Detectors

High precision measurements of the EOS from next-generation detectors

Walker et al., arXiv:2401.02604

Finstad et al., Astrophys.J. 955 (2023) 1, 45

But can we go beyond the EOS? What can we learn about the underlying nuclear interactions?

Hebeler, Phys.Rept. 890 (2021) 1-116

Bertsch et al., United States: N. p., 2007. Web.

Hebeler, Phys.Rept. 890 (2021) 1-116

Fit to NN scattering

Hebeler, Phys.Rept. 890 (2021) 1-116

Hebeler, Phys.Rept. 890 (2021) 1-116

Astrophysical NS observations?

Hebeler, Phys.Rept. 890 (2021) 1-116

In principle, how would we do this?

Model for interaction between particles

In principle, how would we do this?

In principle, how would we do this? Tolman–Oppenheimer–Volkoff (TOV) equation Bayesian inference requires $\sim 10^7$ model evaluations Proceura Model for interaction between particles $|H|\psi\rangle = E|\psi\rangle$ The Equation of State $G^{\mu\nu} = \kappa T^{\mu\nu}$ Neutron star observables Nucleon-nucleon Ouarks and interactions gluons (QCD) Juantum manybody problem DD2 Pressure $\log_{10} P (dynes cm^{-2})$ ΒΗΒΛΦ $M\,(M_{\rm solar})$ - DD2 SFHo ВНВАф SFHx - DDME2 DDME2 34 - HQ1 HS(TM1 HO2 HS(TMA) Nuclear SFHo - HQ1 Nuclear reactions structure SFHx HQ2 N³LO — HS(TM1) Leading order (LO) NLO - HS(TMA) $V_{NN} = c_i(\Lambda)$ $+c_i(\Lambda)$ +c_ν(Λ) 12 16 +..... R (km) ³² 14.2 14.4 14.6 14.8 15.2 15 15 $\log_{10} \varepsilon$ (g cm⁻³) Density **Bayesian Parameter Estimation** 11

The solution: Use emulators to accelerate calculations

Emulators mimic the behaviour of the full-scale model at a small fraction of its computational cost

12

Emulators for neutron matter calculations

- Use Many-Body Perturbation Theory (MBPT) as 'High Fidelity Model'
- Approximate MBPT predictions with lowest eigenvalue of a 2x2 matrix

$$M = M_0 + c_1 M_1 + c_3 M_3$$

RS et al., In preparation

Emulators for the TOV equations

We use an ensemble of feedforward neural networks to emulate solutions to the TOV equations

Emulators for the TOV equations

- Average uncertainty on test samples is 0.02 %
- 0.01% of test samples are outliers (uncertainty > 2%)

Reed, **RS**, et al., arXiv:2405.20558

RS, et al., In preparation

1.4

 $M [M_{\odot}]$

1.6

1.2

Ŭ.О

1.8

2.0

Putting everything together

$$p(\theta|d,H) = \frac{p(d,H|\theta)p(\theta|H)}{p(d|H)}$$

Estimate the posterior using MCMC; Use emulators to evaluate Likelihood

For the data, we use:

• GW170817 + 2 M_{solar} constraint

Putting everything together

$$p(\theta|d,H) = \frac{p(d,H|\theta)p(\theta|H)}{p(d|H)}$$

Estimate the posterior using MCMC; Use emulators to evaluate Likelihood

For the data, we use:

- GW170817 + 2 M_{solar} constraint
- + NICER's J0030 observation
- + NICER's J0740 observation
- + NICER's J0437 observation

We can do much better with next-generation detectors!

Simulation with CE-40, CE-20, and ET for 1 year's worth of observation

For source population, assume uniform distribution on component masses with random pairing into binaries

From the generated 427 events, select the 20 loudest events; SNR > 225. Analyse each event within the Fisher Matrix approximation

We can do much better with next-generation detectors!

Within 1 year, next-generation observatories can measure c_3 at a level comparable with laboratory data.

Marginalization over high-density EOS necessary to avoid systematic uncertainties

20

Conclusion and Outlook

We have demonstrated how to use astrophysical NS observations, especially next-generation observations, to constrain microphysical parameters governing the nuclear interaction

Future work:

- Improved nuclear interactions at higher orders in the EFT expansion
- Explore EFTs with heavier degrees of freedom, such as the Delta resonance
- Going beyond the Fisher Matrix approximation: Implement emulators in GW analysis pipelines such as PyCBC
- Incorporate systematics carefully: Waveform modeling, High density EOS extrapolations, emulator uncertainties, etc.

