Universal properties of weakly bound two-neutron halo nuclei

Dam Thanh Son (University of Chicago) *Quantum Few- and Many-Body Systems in Universal Regimes* Institute for Nuclear Theory, October 24, 2024

References

Masaru Hongo, DTS, PRL 128, 212501 (2022) [arXiv:2201.09912]

Davi Costa, Masaru Hongo, DTS, to appear

Tsunoda et al. Nature 587, 66 (2020)

THE EXISTENCE OF NEW ISOTOPES OF LIGHT NUCLEI AND THE EQUATION OF *STATE OF NEUTRONS*

Ya. B. ZEL'DOVICH

Submitted to JETP editor October 22, 1959

J. Exptl. Theoret. Phys. (U.S.S.R.) **38,** 1123-1131 (April, 1960)

The limits of. stability (relative to nucleon emission) of light nuclei are considered. The existence (in the sense of stability against decay with emission of a nucleon) of the following nuclei is predicted: He⁸, Be¹², O¹³, B^{15,17,19}, C¹⁶⁻²⁰, N¹⁸⁻²¹, Mg²⁰. The problem of the possibility of existence of heavy nuclei composed of neutrons only is considered. The problem is reduced to that of a Fermi gas with a resonance interaction between the particles. The energy of such a gas is proportional to $\omega^{2/3}$, where ω is its density. The accuracy of the calculations is not sufficient to determine the sign of the energy and answer the question as to the existence of neutron nuclei.

THE EXISTENCE OF NEW ISOTOPES OF LIGHT NUCLEI AND THE EQUATION OF *STATE OF NEUTRONS*

Ya. B. ZEL'DOVICH

Submitted to JETP editor October 22, 1959

J. Exptl. Theoret. Phys. (U.S.S.R.) **38,** 1123-1131 (April, 1960)

The limits of. stability (relative to nucleon emission) of light nuclei are considered. The existence (in the sense of stability against decay with emission of a nucleon) of the following nuclei is predicted: He^{8} , Be^{12} , O^{13} , $B^{15,17,19}$, C^{16-20} , N^{18-21} , Mg^{20} . The problem of the possibility of existence of heavy nuclei composed of neutrons only is considered. The problem is reduced to that of a Fermi gas with a resonance interaction between the particles. The energy of such a gas is proportional to $\omega^{2/3}$, where ω is its density. The accuracy of the calculations is not sufficient to determine the sign of the energy and answer the question as to the existence of neutron nuclei.

THE EXISTENCE OF NEW ISOTOPES OF LIGHT NUCLEI AND THE EQUATION OF *STATE OF NEUTRONS*

Ya. B. ZEL'DOVICH

Submitted to JETP editor October 22, 1959

J. Exptl. Theoret. Phys. (U.S.S.R.) **38,** 1123-1131 (April, 1960)

The limits of. stability (relative to nucleon emission) of light nuclei are considered. The existence (in the sense of stability against decay with emission of a nucleon) of the following nuclei is predicted: $\left(\text{He}^8\right)$ Be¹², O^{13} , $\text{B}^{15\,(17,19)}$ C^{16-20} , N^{18-21} , Mg²⁰. The problem of the possibility of existence of heavy nuclei composed of neutrons only is considered. The problem is reduced to that of a Fermi gas with a resonance interaction between the particles. The energy of such a gas is proportional to $\omega^{2/3}$, where ω is its density. The accuracy of the calculations is not sufficient to determine the sign of the energy and answer the question as to the existence of neutron nuclei.

THE EXISTENCE OF NEW ISOTOPES OF LIGHT NUCLEI AND THE EQUATION OF *STATE OF NEUTRONS*

Ya. B. ZEL'DOVICH

Submitted to JETP editor October 22, 1959

J. Exptl. Theoret. Phys. (U.S.S.R.) **38,** 1123-1131 (April, 1960)

The limits of. stability (relative to nucleon emission) of light nuclei are considered. The existence (in the sense of stability against decay with emission of a nucleon) of the following nuclei is predicted: $\left(He^{8}\right)Be^{12}$, O^{13} , $B^{15\cdot17,19}$, C^{16-20} , N^{18-21} , Mg^{20} . The problem of the possibility of existence of heavy nuclei composed of neutrons only is considered. The problem is reduced to that of a Fermi gas with a resonance interaction between the particles. The energy of such a gas is proportional to $\omega^{2/3}$, where ω is its density. The accuracy of the calculations is not sufficient to determine the sign of the energy and answer the question as to the existence of neutron nuclei.

THE EXISTENCE OF NEW ISOTOPES OF LIGHT NUCLEI AND THE EQUATION OF STATE OF NEUTRONS

Ya. B. ZEL'DOVICH

Submitted to JETP editor October 22, 1959

J. Exptl. Theoret. Phys. (U.S.S.R.) **38,** 1123-1131 (April, 1960)

The limits of. stability (relative to nucleon emission) of light nuclei are considered. The existence (in the sense of stability against decay with emission of a nucleon) of the following nuclei is predicted: $\left(He^{8}\right)Be^{12}$, O^{13} , $B^{15\cdot17,19}$, C^{16-20} , N^{18-21} , Mg^{20} . The problem of the possibility of existence of heavy nuclei composed of neutrons only is considered. The problem is reduced to that of a Fermi gas with a resonance interaction between the particles. The energy of such a gas is proportional to $\omega^{2/3}$, where ω is its density. The accuracy of the calculations is not sufficient to determine the sign of the energy and answer the question as to the existence of neutron nuclei.

- One attractive model of two-neutron Borromean nuclei: Efimov effect
- large neutron-neutron, core-neutron scattering lengths, modeled by zero-range interaction
- Is Efimov effect necessary?

Core-neutron s-wave resonance needed?

• Two particles with zero-range resonant interaction, in Gaussian potential of an infinitely massive core:

$$
H = -\frac{1}{2}(\nabla_1^2 + \nabla_2^2) - V_0(e^{-r_1^2/2} + e^{-r_2^2/2}) - c_0 \delta(\vec{r}_1 - \vec{r}_2)
$$

- core-neutron scattering length diverges when $V_0 = V_0^{\text{cn}} = 0.671$
- At which V_0^{3body} 3-body bound state first appears? How close this value is to V_0^{cn} ? 0 0

Variational calculation

$$
\bullet \ \ \mathcal{W}(\vec{r}_1, \vec{r}_2) = \frac{e^{-\alpha (r_1^2 + r_2^2)}}{|\vec{r}_1 - \vec{r}_2|}
$$

satisfies Bethe-Peierls boundary condition

• variational bound
$$
V_0^{3body} \le 0.417 < \frac{2}{3}V_0^{cn}
$$

• better variational ansatz: V_0^{3body} 0 ^{o</sub> o $\leq 0.3285 <$} 1 2 V_0^{cn} 0

3-body bound state appears long before 2-body one

- When the core-neutron scattering length is large: Efimov effect
- But 3-body bound state can exist without the Efimov effect

- When the core-neutron scattering length is large: Efimov effect
- But 3-body bound state can exist without the Efimov effect

- When the core-neutron scattering length is large: Efimov effect
- But 3-body bound state can exist without the Efimov effect

- When the core-neutron scattering length is large: Efimov effect
- But 3-body bound state can exist without the Efimov effect

- When the core-neutron scattering length is large: Efimov effect
- But 3-body bound state can exist without the Efimov effect

- When the core-neutron scattering length is large: Efimov effect
- But 3-body bound state can exist without the Efimov effect

Examples

- 22C has large matter radius Togano et al 2016 \rightarrow small binding energy \rightarrow
- $|a(n^{20}C)| < 2.8$ fm Mosby et al 2013
- Hypertriton Λpn : total binding energy 2.35 MeV, Λ*pn* $a_{pn} \approx 5.4$ fm
- but most estimate for the Λn scattering length is < 3 fm, and typically $|a| < r_{\rm eff}$ Λ*n*

Two fine tunings

- Weakly bound 2-neutron halos with two small energy scales:
- neutron-neutron virtual energy $a \approx -19$ fm $\epsilon_n =$ \hbar^2 *mna*² ≈ 0.12 MeV
- 2-neutron separation energy

 $B(^{22}{\rm C}) \sim 0.1$ MeV

• Appropriate approach: effective field theory (if no other small energy scale)

Neutrons and fixed points

Neutrons sector

•
$$
\mathscr{L}_{\text{neutron}} = i\psi^{\dagger} \left(\partial_t + \frac{\nabla^2}{2m} \right) \psi - c_0 \psi^{\dagger}_1 \psi^{\dagger}_1 \psi_1 \psi_1
$$

 \bullet Introducing auxiliary field d ("dimer") *d*

•
$$
\mathcal{L}_{\text{neutron}} = i\psi^{\dagger} \left(\partial_t + \frac{\nabla^2}{2m} \right) \psi - \psi^{\dagger}_{\uparrow} \psi^{\dagger}_{\downarrow} d - d^{\dagger} \psi_{\downarrow} \psi_{\uparrow} + \frac{d^{\dagger} d}{c_0}
$$

+ + + *d*

• Fine-tuning c_0

$$
G_d(\omega, \mathbf{p}) = \frac{1}{\sqrt{\frac{p^2}{4m} - \omega - \frac{1}{a}}}
$$

Free fixed point

$$
a = 0
$$
 $1/a = 0$

$$
\bullet \quad S = \int dt \, d\mathbf{x} \, \psi^{\dagger} \left(i \partial_t + \frac{\nabla^2}{2} \right) \psi
$$

• Nonrelativistic power counting $[x] = -1$, $[t] = -2$

$$
\bullet \ \ [\psi] = \frac{3}{2}, \ \ [\psi_{\uparrow}\psi_{\downarrow}] = 3
$$

• $[\psi^{\dagger}_{\downarrow}\psi^{\dagger}_{\uparrow}\psi^{\dagger}_{\uparrow}\psi^{\dagger}_{\downarrow}]=6$

 is an irrelevant deformation: *a ψ*† ↓*ψ*† [↑]*ψ*↑*ψ*[↓] fixed point is stable

Unitary fixed point

• When
$$
a = \infty
$$
 $[\psi] = \frac{3}{2}$ but
$$
\langle d(t, \vec{x})d^{\dagger}(0, \vec{0}) \rangle \sim \frac{1}{t^2} \exp\left(\frac{ix^2}{4t}\right) \qquad [d] = 2
$$

Operator product expansion:
\n
$$
\psi_{\uparrow}(\vec{x})\psi_{\downarrow}(\vec{0}) = \frac{d(\vec{0})}{|\vec{x}|} + \cdots
$$
\n•
$$
[d^{\dagger}d] = 4 \text{ so } \frac{1}{a}d^{\dagger}d \text{ is a relevant deformation}
$$

Fixed point is unstable

Neutrons and fixed points

• neutron *ψ*, forming dimer *^d*

• neutron *ψ*, forming dimer *^d*

• neutron *ψ*, forming dimer *^d*

- neutron *ψ*, forming dimer *^d*
	- core *^c*

- neutron *ψ*, forming dimer *^d*
	- core *^c*

- neutron *ψ*, forming dimer *^d*
	- core *^c*
	- halo nucleus *h* as independent field (small binding energy B) *h B*) and *c*

- neutron *ψ*, forming dimer *^d*
	- core *^c*
	- halo nucleus *h* as independent field (small binding energy B) *h*

- neutron *ψ*, forming dimer *^d*
	- core *^c*
	- halo nucleus *h* as independent field $(s$ mall binding energy B) *h*
- Interaction: $h^{\dagger}dc + d^{\dagger}c^{\dagger}h$

- neutron *ψ*, forming dimer *^d*
	- core *^c*
	- halo nucleus *h* as independent field $(s$ mall binding energy B) *h*
- Interaction: $h^{\dagger}dc + d^{\dagger}c^{\dagger}h$

$$
\bullet \quad \text{dimension:} \frac{3}{2} + \frac{3}{2} + 2 = 5 \text{: marginal}
$$

Effective Lagrangian $\mathbf{C} = \mathbf{C} \mathbf{C} \mathbf{C}$

$$
\mathcal{L} = h^{\dagger} \left(i\partial_t + \frac{\nabla^2}{2m_h} + B \right) h + c^{\dagger} \left(i\partial_t + \frac{\nabla^2}{2m_\phi} \right) c + g(h^{\dagger}cd + c^{\dagger}d^{\dagger}h)
$$

 $+{\mathscr L}$ neutron

 g runs logarithmically

Universality?

• Is the 3-body system universal?

Can physical quantities be written as

$$
O = B^{\Delta_O} F\left(\frac{B}{\epsilon_n}\right)
$$

• Answer: almost, up to the logarithmically running coupling

 $h \rightarrow$

 ϕ

 \bigotimes

 $h \rightarrow$

 ϕ

 \bigotimes

• **charge radius**
$$
\langle r_c^2 \rangle = \frac{4}{\pi} \frac{A^{1/2}}{(A+2)^{5/2}} \frac{g^2}{B} f_c(\beta),
$$

\n
$$
\beta = \sqrt{\frac{\epsilon_n}{B}} \qquad f_c(\beta) = \frac{1}{1-\beta^2} - \frac{\beta \arccos \beta}{(1-\beta^2)^{3/2}}
$$
\n
$$
A = A_{\text{core}}
$$

• **charge radius**
$$
\langle r_c^2 \rangle = \frac{4}{\pi} \frac{A^{1/2}}{(A+2)^{5/2}} \frac{g^2}{B} f_c(\beta),
$$

\n
$$
\beta = \sqrt{\frac{\epsilon_n}{B}} \qquad f_c(\beta) = \frac{1}{1-\beta^2} - \frac{\beta \arccos \beta}{(1-\beta^2)^{3/2}}
$$
\n
$$
A = A_{\text{core}}
$$

• Matter radius $\langle r_m^2 \rangle =$ 2 2*π A*3/2 $(A + 2)^{5/2}$ g^2 $\frac{\partial}{\partial B} [f_c(\beta) + f_n(\beta)]$

$$
f_n(\beta) = \frac{1}{\beta^3} \left[\pi - 2\beta + (\beta^2 - 2) \frac{\arccos \beta}{\sqrt{1 - \beta^2}} \right]
$$

h

 ϕ

• **charge radius**
$$
\langle r_c^2 \rangle = \frac{4}{\pi} \frac{A^{1/2}}{(A+2)^{5/2}} \frac{g^2}{B} f_c(\beta),
$$

\n
$$
\beta = \sqrt{\frac{\epsilon_n}{B}} \qquad f_c(\beta) = \frac{1}{1-\beta^2} - \frac{\beta \arccos \beta}{(1-\beta^2)^{3/2}}
$$
\n
$$
A = A_{\text{core}}
$$

• Matter radius $\langle r_m^2 \rangle =$ 2 2*π A*3/2 $(A + 2)^{5/2}$ g^2 $\frac{\partial}{\partial B} [f_c(\beta) + f_n(\beta)]$

$$
f_n(\beta) = \frac{1}{\beta^3} \left[\pi - 2\beta + (\beta^2 - 2) \frac{\arccos \beta}{\sqrt{1 - \beta^2}} \right]
$$

h

 ϕ

d

• Each contains g^2 , but universal ratio

$$
\frac{\langle r_m^2 \rangle}{\langle r_c^2 \rangle} = \frac{A}{2} \left[1 + \frac{f_n(\beta)}{f_c(\beta)} \right] = \begin{cases} \frac{2}{3}A & B \gg \epsilon_n \\ A & B \ll \epsilon_n \end{cases}
$$

• **charge radius**
$$
\langle r_c^2 \rangle = \frac{4}{\pi} \frac{A^{1/2}}{(A+2)^{5/2}} \frac{g^2}{B} f_c(\beta),
$$

\n
$$
\beta = \sqrt{\frac{\epsilon_n}{B}} \qquad f_c(\beta) = \frac{1}{1-\beta^2} - \frac{\beta \arccos \beta}{(1-\beta^2)^{3/2}}
$$
\n
$$
A = A_{\text{core}}
$$

• Matter radius $\langle r_m^2 \rangle =$ 2 2*π A*3/2 $(A + 2)^{5/2}$ g^2 $\frac{\partial}{\partial B} [f_c(\beta) + f_n(\beta)]$

$$
f_n(\beta) = \frac{1}{\beta^3} \left[\pi - 2\beta + (\beta^2 - 2) \frac{\arccos \beta}{\sqrt{1 - \beta^2}} \right]
$$

• Each contains g^2 , but universal ratio

$$
\frac{\langle r_m^2 \rangle}{\langle r_c^2 \rangle} = \frac{A}{2} \left[1 + \frac{f_n(\beta)}{f_c(\beta)} \right] = \begin{cases} \frac{2}{3}A & B \gg \epsilon_n \\ A & B \ll \epsilon_n \end{cases}
$$

Hongo, DTS 2201.09912 Naidon 2302.08716

h

 ϕ

• *dB*(*E*1) *dω* (*ω*) ∼ ∑ *n* $|\langle n | (\mathbf{r}_c - \mathbf{R}_{cm}) | 0 \rangle|^2 \delta(E_n - \omega)$

$$
\bullet \quad \frac{dB(E1)}{d\omega}(\omega) \sim \sum_{n} |\langle n | (\mathbf{r}_c - \mathbf{R}_{cm}) | 0 \rangle|^2 \delta(E_n - \omega)
$$

• can be mapped to current-current correlation

$$
\frac{\mathrm{d}B(E1)}{\mathrm{d}\omega}(\omega) \sim \frac{1}{\omega^2} \mathrm{Im}\,\langle JJ \rangle(\omega)
$$

$$
\bullet \quad \frac{dB(E1)}{d\omega}(\omega) \sim \sum_{n} |\langle n | (\mathbf{r}_c - \mathbf{R}_{cm}) | 0 \rangle|^2 \delta(E_n - \omega)
$$

• can be mapped to current-current correlation

$$
\frac{\mathrm{d}B(E1)}{\mathrm{d}\omega}(\omega) \sim \frac{1}{\omega^2} \mathrm{Im}\,\langle JJ \rangle(\omega)
$$

• Feynman diagram \sim inelastic scatterings

$$
\int \frac{dB(E1)}{d\omega}(\omega) \sim \sum_{n} |\langle n | (\mathbf{r}_c - \mathbf{R}_{cm}) | 0 \rangle|^2 \delta(E_n - \omega)
$$

• can be mapped to current-current correlation t-current correlation

$$
\frac{\mathrm{d}B(E1)}{\mathrm{d}\omega}(\omega) \sim \frac{1}{\omega^2} \mathrm{Im}\,\langle JJ \rangle(\omega)
$$

• Feynman diagram ~ inelastic scatterings \sim inelastic scate erings

Dipole strength in the unitarity limit

• When neutrons are in the unitarity limit $a = \infty$

$$
\frac{\mathrm{d}B(E1)}{\mathrm{d}\omega} \sim g^2 \frac{(\omega - B)^2}{\omega^4}
$$

 \mathbf{t} the application of our theory doubtful. angle of the isosceles triangle with sides ^ph*r*² $\begin{array}{ccc} 0 & & & 1 \end{array}$ d! $\frac{1}{2}$ the error band Γ above, for the reasons listed above, for the reasons listed above, Γ

 $\mathbf{1}$ *^A*(*^A* + 2) *,* (32) with the charge radius given by Eq. (10). The energy-h*r*2 *cn*i, and ^ph*r*² *nn*i) is close to 60 and is again within

Corrections to EFT

- Corrections to EFT: irrelevant terms EFT
	- Effective range in *n-n* scattering:

 $r_0 d^{\dagger} (i \partial_t - \frac{1}{4} \nabla^2) d$ dimension 6 D.Costa, M.Hongo, DTS to appear

- *^s*-wave core-neutron scattering $a_{cn}c^{\dagger}\psi^{\dagger}\psi c$ also dimension 6
- Corrections in r_0 and a_{cn} should be computed perturbatively

Core-n resonance?

• A p-wave core-neutron resonance can be treated perturbatively:

introduce resonance as a free field *χ*

$$
[\vec{\chi}\,\phi\overrightarrow{\nabla}\psi] = \frac{11}{2} > 5
$$

• He-6 can be treated within EFT?

Conclusion

- Weakly bound two-neutron halo nuclei can be described by an EFT. Renormalizable with 1 log-running coupling
- Ratios of radii and shape of E1 dipole function are universal, analytically computable
- Corrections: perturbative in *nn* effective range, coreneutron scattering length
- Applications beside ²²C? ⁶He? Cold atom realization?
- Unstable systems