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The limits of stability (relative to nucleon emission) of light nuclei are considered. The
existence (in the sense of stability against decay with emission of a nucleon) of the follow-
ing nuclei is predicted: He®, Belz, 013, 315,17,19, Cie—zo, N18'21, Mgzo. The problem of the
possibility of existence of heavy nuclei composed of neutrons only is considered. The prob-
lem is reduced to that of a Fermi gas with a resonance interaction between the particles.
The energy of such a gas is proportional to w3 where w is its density. The accuracy

of the calculations is not sufficient to determine the sign of the energy and answer the ques-
tion as to the existence of neutron nuclei.
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One attractive model of two-neutron Borromean
nuclei: Efimov effect

large neutron-neutron, core-neutron scattering
lengths, modeled by zero-range interaction

Is Efimov effect necessary?



Core-neutron s-wave
resonance needed!

® Two particles with zero-range resonant interaction, in
Gaussian potential of an infinitely massive core:

1
H=— E(v% + V2) = Vy(e ™% + e7"2%) — ¢, 6(F) — )

® core-neutron scattering length diverges when

Vo= Ve = 0.671

e At which ng(’dy 3-body bound state first appears! How

close this value is to Vgn?



Variational calculation

e—a(rlz+r22)
Ww(ry, ry)) = —5—-—=
|y — 1,

satisfies Bethe-Peierls boundary condition

2
variational bound ng(’dy <0417 < EVSH

. . 3bod 1 ch
better variational ansatz: VO Y <0.3285 < EVO

3-body bound state appears long before 2-body one



Iwo regimes

® When the core-neutron scattering length is large:
Efimov effect

® But 3-body bound state can exist without the Efimov
effect
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Examples

22C has large matter radius Togano et al 2016 — small
binding energy

| a(n?°C)| < 2.8 fm Mosby et al 2013

Hypertriton Apn: total binding energy 2.35 MeV,
a,, ~ 5.4fm

but most estimate for the An scattering length is < 3 fm,
and typically |a| < rqff



Two fine tunings

Weakly bound 2-neutron halos with two small
energy scales:

neutron-neutron virtual energy
h2
a~ —19 fm €, = ~ (.12 MeV
m,a?

2-neutron separation energy

B(*’C) ~ 0.1 MeV

Appropriate approach: effective field theory (if no
other small energy scale)



Neutrons and fixed points
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Neutrons sector

VZ

e Zheutron = il/ﬁ(@z | . >l//_ Col//TTl//f'/fil//T
® |ntroducing auxiliary field d (“dimer”)
Vv d'd
— T | _ Tyt — ] |
e Zneutron = W/ <0t ey )l/f yow'd — d'yy; »
® Fine-tuning ¢,
1
Gd(a), p) o
LA
4m a



Free fixed point

VZ
S=Jdtdxyﬂ 10, > W

Nonrelativistic power counting [x]=—1, [f] = —2

3
[y] = Bk [y ] =3

[l//fl//; l//Tllfi] =6

a WfWTT Wiy, is an irrelevant deformation:
fixed point is stable



Unitary fixed point

3 ] @
o Whena = o [l/j]:a but a=0 1/a=0
(d(t. D 0.0)) ~ - (ixz) [d] =2
> X ” ~ — X —_— —
2P\
Operator product expansion:
.. = dO)
@ © ==+

o [d'd]=4 so—d'dis a relevant deformation
a

Fixed point is unstable
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EFT for weakly-bound halo
nuclei: degrees of freedom



EFT for weakly-bound halo
nuclei: degrees of freedom

® neutron Y, forming dimer d



EFT for weakly-bound halo
nuclei: degrees of freedom

® neutron Y, forming dimer d

oy
V@



EFT for weakly-bound halo
nuclei: degrees of freedom

® neutron Y, forming dimer d

D



EFT for weakly-bound halo
nuclei: degrees of freedom

® neutron Y, forming dimer d

® corec d@



EFT for weakly-bound halo
nuclei: degrees of freedom

® neutron Y, forming dimer d

® corec d@



EFT for weakly-bound halo
nuclei: degrees of freedom

® neutron Y, forming dimer d

® corec d@

® halo nucleus 4 as independent field
(small binding energy B)



EFT for weakly-bound halo
nuclei: degrees of freedom

® neutron Y, forming dimer d

® corec d@

® halo nucleus 4 as independent field

(small binding energy B) ;



EFT for weakly-bound halo
nuclei: degrees of freedom

® neutron Y, forming dimer d

® corec d@

® halo nucleus 4 as independent field

(small binding energy B) ;

® Interaction: h'dc + d'c'h



EFT for weakly-bound halo
nuclei: degrees of freedom

® neutron Y, forming dimer d

® corec d@

® halo nucleus 4 as independent field

(small binding energy B) ;

e Interaction: h'dc +d'c'h
3 3

e dimension: 2 = S:marginal

2 2




Effective Lagrangian

V- V?
&z = hf(iat 1 B)h + cf(ia, : >c + g(hted + ¢tdh)
"‘gneutron
2
Sy : Landau pole

g runs logarithmically




Universality?

® |s the 3-body system universal?

Can physical quantities be written as

B
O =B2F (—)
€n

® Answer:almost, up to the logarithmically running
coupling



Charge and matter radii
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Charge and matter radii
5 hﬂ

4 A2 g2 : /,
Charge radius = , o
n 1 parccos ff
== fiB) =—— -

B
A =Acore

= (- p)"



Charge and matter radii
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o Charge radius (r) = AT B f(ﬁ) (.
€, 1 p arccos f3
p= ) fc(ﬁ)—l_ﬁz_(l_ﬁz)yz
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e Matter radius (r2) = [f(ﬁ) +1,(P)]

27 (A+2)52 B
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N

|
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® FEach contains g2, but universal ratio

12y 2| L)

() _A[, 5B {%A B>e¢
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Charge and matter radii
5 hﬂ

4 AV : |
Charge radius = PR
o g <rc> T (A 2)5/2 f(ﬁ)
e 5) = 1 B [ arccos ff
p= B JdlP) = 1—p2 (1= p2)3ne
A = Acore
, 9 A3/2 2
Matter radius = +

N (2 = 5 oy g D) +H B

arccos [

N

1
Ju(P) = e [n 2B+ (% —2)

® FEach contains g2, but universal ratio

2 2
) _ é B ) 34 B>, Hongo, DTS 2201.09912
72y 2 B 1A B<e Naidon 2302.08716
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Dipole strength in the
unitarity limit

® When neutrons are in the unitarity limit a = oo

dB(El)  ,(w— B)*

dw S w*?




Result for dipole strength

1 dB(E1)
N

dB(El)  ,(w— B)2f ( € ) "
da) e El o — B 0.08

0.06 -

& 9 0.04
fEl(CC) =1- gCE(l + 5132)3/2 + Ax? (1 + —5132> 0.02

3 . | | | | |
0 | 2 - 4 - 6 o 8 -
M.Hongo, DTS 2201.09912
consistency check: sum rules
Vi dB(E1) 3 55, 7 dB(E1) 3 5 2 3
/dw = EZ e“(rs), dw w T 47TZ A4

0 0



Corrections to EFT

® Corrections to EFT:irrelevant terms EFT
® Effective range in n-n scattering:
7 dT(ia —lVZ)d dimension 6
0 I 4
D.Costa, M.Hongo, DTS to appear

® s-wave core-neutron scattering
v anci
a.c'y'wc  also dimension 6

® Corrections in ryand a., should be computed
perturbatively



Core-n resonance!’

® A p-wave core-neutron resonance can be treated
perturbatively:

introduce resonance as a free field y

L= 11
[%¢VW]=7>5

® He-6 can be treated within EFT?



Conclusion

Weakly bound two-neutron halo nuclei can be

described by an EFT. Renormalizable with 1 log-running
coupling

Ratios of radii and shape of E1 dipole function are
universal, analytically computable

Corrections: perturbative in nn effective range, core-
neutron scattering length

Applications beside 22C? 6He?!? Cold atom realization!?

Unstable systems



