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Where does the proton spin come from and how?
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Figure 2.9: Present (outer area) and projected (inner area) accuracies for the correlated trun-
cated integrals of ∆Σ and ∆g over 0.001 ≤ x ≤ 1 [66].

vances in hadron beam polarimetry (cf. Sec-
tion 6.2.5).

An additional, and unique, avenue for de-
lineating the flavor structure of the quark
and anti-quark spin contribution to the pro-
ton spin at the EIC is electroweak deep-
inelastic scattering. At high Q2, the deep-
inelastic process also proceeds significantly

via exchange of Z and W± bosons. This
gives rise to novel structure functions that
are sensitive to different combinations of the
proton’s helicity distributions. For instance,
in the case of charged-current interactions
through W−, the inclusive structure func-
tions contribute,

gW
−

1 (x,Q2) =
[

∆u+∆d̄+∆c+∆s̄
]

(x,Q2) ,

gW
−

5 (x,Q2) =
[

−∆u+∆d̄−∆c+∆s̄
]

(x,Q2) , (2.12)

where ∆c denotes the proton’s polarized
charm quark distribution. The analysis
of these structure functions does not rely
on knowledge of fragmentation. Studies
show that both neutral-current and charged-
current interactions would be observable at
the EIC, even with relatively modest inte-
grated luminosities. To fully exploit the po-
tential of the EIC for such measurements,
positron beams are required, albeit not nec-
essarily polarized. Besides the new in-

sights into nucleon structure this would pro-
vide, studies of spin-dependent electroweak
scattering at short distances with an EIC
would be beautiful physics in itself, much
in the line of past and ongoing electroweak
measurements at HERA, Jefferson Labora-
tory, RHIC, and the LHC. As an illustra-
tion of the EIC’s potential in this area,
Fig. 2.10 shows production-level estimates
for charged-current interactions through W−

and W+ exchange at collision energy
√
s =

31

EIC white paper: EPJA (2016)
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Figure 144: Comparison between the two solution of the QCD fit on the gluon helicity distribution
and direct measurements. The direct measurements of COMPASS [150, 151], HER-
MES [148] and SMC [149] obtained in leading order from high p

T

hadrons and from
open charm muoproduction at COMPASS [147] in next-to-leading order are shown.

7.6.4 Comparison with other global QCD fits

The results for the parton helicity distributions are compared to the result of other recent
QCD fits by AAC [152], BB [113] and LSS [119, 153] in Figure 145. Different inputs were
used for the various QCD fits. In the case of the 2014 version of LSS and the 2010 version
of BB only deep inelastic scattering data were used. For the 2010 version of LSS also
results from semi-inclusive deep inelastic scattering were used. The 2008 version of AAC
used in addition to the deep inelastic scattering data also results from RHIC. In addition,
different methods were used in order to perform the QCD fit.

For the up quark helicity distribution, all results agree well with one another. The res-
ults for the down quark helicity distribution agree with one another. A slightly more
negative down quark helicity distribution at x ⇠ 0.2 is obtained from the results of the
QCD fit presented in this thesis compared to the other QCD fits. For the strange quark
helicity distribution very large difference are found. One of the reasons is the inclusion
of semi-inclusive deep inelastic scattering data. Their effect on the strange quark heli-
city distributions is visible in the two results of LSS. The results from the 2008 version
includes semi-inclusive deep inelastic scattering data, whereas the 2014 version does not.
Without such data, the strange quark helicity distribution is determined mainly by the
SU(3) flavour symmetry, which fixes the first moment to a negative value. Including the
semi-inclusive deep inelastic scattering data, the QCD fits become sensitive to the parton
helicity distributions of the individual quark flavours. They also introduce a new depend-
ence on the fragmentation functions, which describe the hadronisation of a quark. The
results for the gluon helicity distribution shows a large spread between the various results.

COMPASS Collaboration:  PRD (2018)
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On the lattice, calculate spatial correlation in coordinate space
X. Ji [PRL 2013]For polarized gluon PDF:

3

spin-dependent part of the matrix element is determined by the z-odd combination of Eq. (3) and the matrix elements
associated with the polarized gluon distribution is written as

f
M

µ↵;��(z, p) = m

µ↵;��(z, p)�m

µ↵;��(�z, p) (4)

As shown in [27], these matrix elements can be decomposed into invariant amplitudes, fM
sp

, fM
ps

, fM
sz

, fM
zs

, fM
pzps

,
fM

pzsz

using the four-vectors, p
µ

and z

µ

, pseudo vector s

µ

, and the metric tensor g

µ⌫

. Other invariant amplitudes

involving p

µ

, z
µ

, sz, and the metric tensors are fM
pp

, fM
zz

, fM
zp

, fM
pz

, fM
ppzz

, fM
gg

[27]. These amplitudes are
functions of the invariant interval z2 and the Io↵e-time p · z ⌘ �⌫ [30].

The light-cone polarized gluon distribution �g(x) is obtained from

g

↵� f
M+↵;�+(z�, p) = �2p+s+ [fM(+)

ps

(⌫, 0) + p+z� fM
pp

(⌫, 0)] , (5)

where z is taken in the light-cone “minus” direction, z = z�, p+ is the momentum in the light-cone “plus” direction,

and fM(+)
ps

= [fM
ps

+ fM
sp

]. The PDF can determined by the Io↵e-time distribution,

�i

eI
p

(⌫) ⌘ fM(+)
ps

(⌫)� ⌫

fM
pp

(⌫) , (6)

where,

eI
p

(⌫) =
i

2

Z 1

�1
dx e�ix⌫

x�g(x) . (7)

As noted in [26], with knowledge of the polarized gluon ITD, one can immediately obtain the gluon helicity contribution
to the nucleon spin

�G =

Z 1

0
d⌫ eI

p

(⌫) =

Z 1

0
dx �g(x) . (8)

Similar to the calculation of the unpolarized gluon distribution function [68], as the field-strength tensor G

µ↵

is
antisymmetric with respect to its indices and g�� = 0, the left hand side of Eq. (5) reduces to a summation over
the transverse indices i, j = x, y; perpendicular to the direction of separation between the two gluon fields. It has
been derived in [27] that the combination of the matrix elements f

M

ti;ti and f
M

ij;ij can be written interms of invariant
amplitudes as

f
M

ti;ti(⌫, z
2) + f

M

ij;ij(⌫, z
2) = �2p

z

p

2
0
fM(+)

sp

(⌫, z2) + 2p30z fMpp

(⌫, z2) , (9)

where the nucleon boost is along the z-direction, p ⌘ p

z

. This particular combination (9), cancels most of the
contamination terms and involves one contamination term which can be removed (as we discuss below). Therefore,
the above-mentioned matrix element in Eq. (9), after removal of the unwanted ultraviolet (UV) divergences, can be
used to extract the twist-2 invariant amplitude associated with the matrix elements relevant for polarized gluon ITD
and corresponding PDF.

The extended quark and gluon operators separated by a specelike Wilson line in Eq. (3) have additional link-related
UV divergences which are shown to be multiplicatively renormalizable [69–71]. In particular, various combinations of
spatially-separated gluon operators are shown to be multiplicatively renormalizable in [27, 68, 72, 73]. For this par-
ticular lattice QCD calculation of matrix elements corresponding to gluon helicity distribution, these UV divergences
can be canceled by taking the appropriate ratio as proposed in [27]:

fM(z, p
z

) ⌘ i

[fM00(z, pz)/pzp0]/ZL(z/aL)

M00(z, pz = 0)/m2
p

, (10)

where, we have defined f
M00(z, pz) ⌘ [fM

ti;ti(z, pz) + f
M

ij;ij(z, pz)] and M00(z, pz) ⌘ M

ti;it(z, pz) +M

ji;ij(z, pz) is the
matrix element for the unpolarized gluon PDF [62, 68]. The factor 1/ZL(z3/aL) detrmined in[27] cancels the UV

logarithmic vertex AD of the f
M00 matrix element. The factor i in (10) is used in accordance with the definition

of ITD �i

eI
p

(⌫) ⌘ fM(+)
ps

(⌫) � ⌫

fM
pp

(⌫). The ratio in Eq. (10) utilizes the presence of the same linear divergence

related to the gluon link self energy present in f
M00(z, pz) and M00(z, pz = 0) and cancels it. In addition, this ratio

in Eq. (10) preserves the logarithmic divergence at small z-separations that corresponds to the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) evolution of the PDF [74–76]. The ratio in (10) is called as the reduced pseudo-ITD
in the rest of the paper.

2

helicity GPD calculation of the proton [33], and a quasi-TMD calculation in the pion [34]. However, there are fewer
lattice calculations of gluon distribution functions than that of quark distributions. Lattice calculations include the
gluon momentum fraction [35, 36], the gluon contribution to the nucleon spin [37], gluon gravitational form factors
of the nucleon and the pion [38]. Recently, there have been attempts to calculate gluon PDFs in the nucleon [39, 40]
and in the pion [41].

In this work, we apply the pseudo-PDF approach [18] to extract the gluon PDF in the nucleon. We calculate the
Io↵e-time pseudo-distribution function (pseudo-ITD), M(⌫, z2) [18, 42, 43], where the Io↵e-time [44] is a dimensionless
quantity that describes the length of time that the DIS probe interacts with the nucleon, in units of the inverse
hadron mass. The related pseudo-PDF, P(x, z2) can be determined from the Fourier transform of the pseudo-ITD.
The pseudo-PDF and the pseudo-ITD are the Lorentz invariant generalizations of the PDF and of the Io↵e-time
distribution function (ITD) [45] to non-zero separations, z2 > 0, respectively. In renormalizable theories, the pseudo-
PDF has a logarithmic divergence at small z-separations that corresponds to the DGLAP evolution of the PDF.
The pseudo-PDF and the pseudo-ITD can be factorized into the PDF and perturbatively calculable kernels, similar
to the factorization framework for experimental cross-sections. There have been a number of lattice calculations
implementing the pseudo-PDF method [46–51]. Our calculation applies the reduced pseudo-ITD approach, in which
the multiplicative UV renormalization factors are canceled by constructing a ratio of the relevant matrix elements [48].
This ratio, the reduced pseudo-ITD, removes the Wilson-line related divergences, as well as various other systematic
errors. We determine the gluon PDF from the reduced pseudo-ITD through the short distance factorization (SDF).

The unpolarized gluon PDF must be extracted from our lattice results by inverting the convolution that relates the
PDF to the lattice matrix elements. We have access to a limited number of discrete and noisy values of the matrix
element on the lattice, so this inversion problem is ill-posed. A number of techniques have been proposed to overcome
this inverse problem [52], such as discrete Fourier transform, the Backus-Gilbert method [51, 52], the Bayes-Gauss-
Fourier transform [30], adapting phenomenologically-motivated functional forms [24], and finally the application of
neural networks [53, 54], which provide more flexible parameterizations of the PDFs. Here, we parameterize the
reduced pseudo-ITD using Jacobi polynomials [23, 55]. We vary the parameterization of the lattice matrix elements
to incorporate di↵erent correction terms and to compare multiple functional forms for the gluon PDF to study the
parameterization dependence.

The rest of this paper is organized as follows. In Sec. II, we first identify the matrix elements needed to calculate
the unpolarized gluon parton distribution, construct the reduced pseudo-ITD from the matrix elements and lay out
the position-space matching that relates the reduced pseudo-ITD to the light-cone ITD. In Sec. III, we describe
the construction of the gluonic currents associated with the matrix elements and the nucleon two-point correlators.
Sec. IV contains the details of our lattice setup. In Sec. V, we demonstrate the consistency of the nucleon two-point
correlators by extracting the energy spectra. Sec. VI describes the methodology we implement to calculate the reduced
pseudo-ITD from the three-point correlators. In Sec. VII, we extract the gluon PDF from the reduced pseudo-ITD
and compare our results with the phenomenological distributions. Sec. VIII contains our concluding remarks.

II. THEORETICAL BACKGROUND OF GLUON PSEUDO-DISTRIBUTIONS

A. Matrix Elements

To access the unpolarized gluon PDF, we calculate the matrix elements of a spin-averaged nucleon for operators
composed of two gluon fields connected by a Wilson line, which have the general form

M
µ↵;��

(z, p) ⌘ hp|G
µ↵

(z)W [z, 0]G
��

(0) |pi . (1)

Here, z
µ

is the separation between the gluon-fields, p
µ

is the 4-momentum of the nucleon, W [z, 0] is the standard
straight-line Wilson line in the adjoint representation,

W [x, y] = Pexp
n

ig
s

Z

1

0

d⌘ (x� y)µÃ
µ

�

⌘x+ (1� ⌘)y
�

o

, (2)

for the gauge field A
µ

, where P indicates that the integral is path-ordered. The matrix elements can be decomposed
into invariant amplitudes, M

pp

, M
zz

, M
zp

, M
pz

, M
ppzz

and M
gg

using the four-vectors, p
µ

and z
µ

, and the metric
tensor g

µ⌫

[56]. These amplitudes are functions of the invariant interval z2 and the Io↵e-time p · z ⌘ �⌫ [44].
The light-cone gluon distribution is obtained from

g↵� M
+↵;�+

(z�, p) = �2p2
+

M
pp

(⌫, 0) , (3)
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(RHIC) [10, 12], HERMES [13], JLab [14], COMPASS [15] and are planned for near future Electron-Ion Collider
(EIC) [16] to understand the origin of proton spin better.

Lattice QCD o↵ers a nonperturbative approach to compute each of the quark and gluon spin and angular momentum
contributions to the net proton spin (for example, refer [17, 18] for most recent nucleon spin decomposition using Ji
decomposition and quakr orbital angular momentum calculation using both Ja↵e-Manohar and Ji’s decomposition
in [19].) However, such lattice QCD calculation of �G is not straightforward because the decomposition is derived in
the light-cone frame with the choice of light-cone gauge cannot be obtained from a local matrix element in a lattice
QCD calculation. To circumvent this problem, it was proposed in [20] that the matrix element of equal-time local
operator ~

E⇥ ~

Aphys, where ~

Aphys is the gauge invariant part of the gauge potential Aµ

, coincides with the gluon helicity
obtained from the non-local operator of the light-cone gluon helicity distribution in [21]. A lattice QCD calculation [22]
was performed using this formalism and �G = 0.251(47)(16) was found. However, the matching coe�cient in the
finite piece in the 1-loop large momentum e↵ective theory [23] was found to be quite large indicating a convergence
problem for the perturbative series and the gluon helicity �G obtained in this lattice calculation is not conclusive. For
the status of lattice QCD research on the nucleon spin decomposition, we refer the readers to a recent review [24] and
the references therein. In contrast, the recent proposal to use the pseudo-PDF approach [25] to access �g(x,Q2) (or
equivalently, the corresponding Io↵e-time distribution [26]) o↵ers a gauge-invariant and frame-independent alternate
way to study �G without the issues noted above.

Let us briefly remind the reader of the underlying theoretical formalism. The pseudo-PDF approach [25] and the
associated proper combination of matrix elements derived in [27] that can give access to polarized gluon Io↵e-time
distribution (ITD) and corresponding gluon helicity parton distribution function (PDF) in the nucleon. Following
the convention for symbols of matrix elements from Ref. [27], we calculate the Io↵e-time pseudo-distribution function

(pseudo-ITD), fM(⌫, z2) [25, 28, 29], where ⌫ is the Io↵e-time [30]. The related pseudo-PDF, eP(x, z2) can be determined
from the Fourier transform of the pseudo-ITD. The pseudo-PDF and the pseudo-ITD can be factorized into the PDF
and perturbatively calculable kernels, similar to the factorization framework for experimental cross-sections. Our
calculation applies the reduced pseudo-ITD approach [31], in particular the ratio proposed in [27], for which the
multiplicative UV renormalization factors are canceled by constructing a ratio of the relevant matrix elements.

The aim of this work is to apply the recently established theoretical framework for polarized gluon pseudo-PDF in an
actual numerical lattice QCD computation. In comparison to the significant achievement in lattice QCD calculations
of quark structures of the nucleon and mesons in recent years [32–53] using di↵erent approaches [23, 25, 54–59], there
have been only a few recent attempts to calculate the x-dependent unpolarized gluon PDFs in the nucleon [60–62], in
the pion [63] and kaon [64]. (For more details about di↵erent methods for calculating x-dependent hadron structure
and related lattice QCD calculations, see recent reviews [65–67] and the references therein.) However, there has
been no lattice QCD calculation of x-dependent gluon helicity distribution in the nucleon. Therefore, the current
work closes this gap in the literature and provides the first look into the feasibility and the associated challenges in
addressing �g(x,Q2) and �G(Q2) from the pseudo-PDF approach.

The rest of this paper is organized as follows. In Sec. II, we first discuss the theoretical framework of the construction
of matrix elements and the reduced pseudo-ITD associated with the polarized gluon parton distribution in the nucleon.
In Sec. III, we briefly describe the lattice QCD methodologies for the construction of the gluonic currents needed for
gluon helicity distribution, nucleon two-point correlators and our lattice setup for this calculation of glounic matrix
elements. Sec. IV describes the methodology we implement to calculate the reduced pseudo-ITD from the nucleon
three-point correlators. In Sec. V, we extract the polarized gluon pseudo-ITD and discuss the potential of calculating
gluon helicity PDF from the reduced pseudo-ITD and compare our results with phenomenological distributions.
Sec. VI contains our concluding remarks.

II. THEORETICAL BACKGROUND OF POLARIZED GLUON PSEUDO-DISTRIBUTIONS

A. Matrix Elements

To access the polarized gluon PDF, one needs the matrix elements of a spin-averaged nucleon for operators composed
of two gluon fields connected by a Wilson line. Throughout the paper, we will follow the symbol convention from
the Ref. [27] where the authors used the tilde-symbol to denote the polarized gluonic matrix elements and associated
distributions. We start with the matrix elements of two spatially-separated gluon fields correlators

m

µ↵;��(z, p) = hp, s|G
µ↵

(z)W [z, 0] eG
��

(0) |p, si . (3)

Here, z
µ

is the separation between the gluon-fields, p
µ

is the 4-momentum of the nucleon, the dual field to G

��

is

defined as e
G

��

= 1
2✏��⇢�G

⇢� , and W [z, 0] is the standard straight-line Wilson line in the adjoint representation. The
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spin-dependent part of the matrix element is determined by the z-odd combination of Eq. (3) and the matrix elements
associated with the polarized gluon distribution is written as

f
M

µ↵;��(z, p) = m

µ↵;��(z, p)�m

µ↵;��(�z, p) (4)

As shown in [27], these matrix elements can be decomposed into invariant amplitudes, fM
sp

, fM
ps

, fM
sz

, fM
zs

, fM
pzps

,
fM

pzsz

using the four-vectors, p
µ

and z

µ

, pseudo vector s

µ

, and the metric tensor g

µ⌫

. Other invariant amplitudes

involving p

µ

, z
µ

, sz, and the metric tensors are fM
pp

, fM
zz

, fM
zp

, fM
pz

, fM
ppzz

, fM
gg

[27]. These amplitudes are
functions of the invariant interval z2 and the Io↵e-time p · z ⌘ �⌫ [30].

The light-cone polarized gluon distribution �g(x) is obtained from

g

↵� f
M+↵;�+(z�, p) = �2p+s+ [fM(+)

ps

(⌫, 0) + p+z� fM
pp

(⌫, 0)] , (5)

where z is taken in the light-cone “minus” direction, z = z�, p+ is the momentum in the light-cone “plus” direction,

and fM(+)
ps

= [fM
ps

+ fM
sp

]. The PDF can determined by the Io↵e-time distribution,

�i

eI
p

(⌫) ⌘ fM(+)
ps

(⌫)� ⌫

fM
pp

(⌫) , (6)

where,

eI
p

(⌫, µ2) =
i

2

Z 1

�1
dx e�ix⌫

x�g(x, µ2) . (7)

As noted in [26], with knowledge of the polarized gluon ITD, one can immediately obtain the gluon helicity contribution
to the nucleon spin

�G(µ2) =

Z 1

0
d⌫ eI

p

(⌫, µ2) =

Z 1

0
dx �g(x, µ2) . (8)

Similar to the calculation of the unpolarized gluon distribution function [68], as the field-strength tensor G

µ↵

is
antisymmetric with respect to its indices and g�� = 0, the left hand side of Eq. (5) reduces to a summation over
the transverse indices i, j = x, y; perpendicular to the direction of separation between the two gluon fields. It has
been derived in [27] that the combination of the matrix elements f

M

ti;ti and f
M

ij;ij can be written interms of invariant
amplitudes as

f
M

ti;ti(⌫, z
2) + f

M

ij;ij(⌫, z
2) = �2p

z

p

2
0
fM(+)

sp

(⌫, z2) + 2p30z fMpp

(⌫, z2) , (9)

where the nucleon boost is along the z-direction, p ⌘ p

z

. This particular combination (9), cancels most of the
contamination terms and involves one contamination term which can be removed (as we discuss below). Therefore,
the above-mentioned matrix element in Eq. (9), after removal of the unwanted ultraviolet (UV) divergences, can be
used to extract the twist-2 invariant amplitude associated with the matrix elements relevant for polarized gluon ITD
and corresponding PDF.

The extended quark and gluon operators separated by a specelike Wilson line in Eq. (3) have additional link-related
UV divergences which are shown to be multiplicatively renormalizable [69–71]. In particular, various combinations of
spatially-separated gluon operators are shown to be multiplicatively renormalizable in [27, 68, 72, 73]. For this par-
ticular lattice QCD calculation of matrix elements corresponding to gluon helicity distribution, these UV divergences
can be canceled by taking the appropriate ratio as proposed in [27]:

fM(z, p
z

) ⌘ i

[fM00(z, pz)/pzp0]/ZL(z/aL)

M00(z, pz = 0)/m2
p

, (10)

where, we have defined f
M00(z, pz) ⌘ [fM

ti;ti(z, pz) + f
M

ij;ij(z, pz)] and M00(z, pz) ⌘ M

ti;it(z, pz) +M

ji;ij(z, pz) is the
matrix element for the unpolarized gluon PDF [62, 68]. The factor 1/ZL(z3/aL) detrmined in[27] cancels the UV

logarithmic vertex AD of the f
M00 matrix element. The factor i in (10) is used in accordance with the definition

of ITD �i

eI
p

(⌫) ⌘ fM(+)
ps

(⌫) � ⌫

fM
pp

(⌫). The ratio in Eq. (10) utilizes the presence of the same linear divergence

related to the gluon link self energy present in f
M00(z, pz) and M00(z, pz = 0) and cancels it. In addition, this ratio

in Eq. (10) preserves the logarithmic divergence at small z-separations that corresponds to the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) evolution of the PDF [74–76]. The ratio in (10) is called as the reduced pseudo-ITD
in the rest of the paper.

(i, j = x, y) Balitsky et al [JHEP 2022]

eG

G

eG G



 LQCD formalism for calculating gluon PDFs 
Multiplicative renormalizability

Zhang, et al [PRL 2019], Li, et al [PRL 2019]

Renormalization:

3

spin-dependent part of the matrix element is determined by the z-odd combination of Eq. (3) and the matrix elements
associated with the polarized gluon distribution is written as

f
M

µ↵;��(z, p) = m

µ↵;��(z, p)�m

µ↵;��(�z, p) (4)

As shown in [27], these matrix elements can be decomposed into invariant amplitudes, fM
sp

, fM
ps

, fM
sz

, fM
zs

, fM
pzps

,
fM

pzsz

using the four-vectors, p
µ

and z

µ

, pseudo vector s

µ

, and the metric tensor g

µ⌫

. Other invariant amplitudes

involving p

µ

, z
µ

, sz, and the metric tensors are fM
pp

, fM
zz

, fM
zp

, fM
pz

, fM
ppzz

, fM
gg

[27]. These amplitudes are
functions of the invariant interval z2 and the Io↵e-time p · z ⌘ �⌫ [30].

The light-cone polarized gluon distribution �g(x) is obtained from

g

↵� f
M+↵;�+(z�, p) = �2p+s+ [fM(+)

ps

(⌫, 0) + p+z� fM
pp

(⌫, 0)] , (5)

where z is taken in the light-cone “minus” direction, z = z�, p+ is the momentum in the light-cone “plus” direction,

and fM(+)
ps

= [fM
ps

+ fM
sp

]. The PDF can determined by the Io↵e-time distribution,

�i

eI
p

(⌫) ⌘ fM(+)
ps

(⌫)� ⌫

fM
pp

(⌫) , (6)

where,

eI
p

(⌫, µ2) =
i

2

Z 1

�1
dx e�ix⌫

x�g(x, µ2) . (7)

As noted in [26], with knowledge of the polarized gluon ITD, one can immediately obtain the gluon helicity contribution
to the nucleon spin

�G(µ2) =

Z 1

0
d⌫ eI

p

(⌫, µ2) =

Z 1

0
dx �g(x, µ2) . (8)

Similar to the calculation of the unpolarized gluon distribution function [68], as the field-strength tensor G

µ↵

is
antisymmetric with respect to its indices and g�� = 0, the left hand side of Eq. (5) reduces to a summation over
the transverse indices i, j = x, y; perpendicular to the direction of separation between the two gluon fields. It has
been derived in [27] that the combination of the matrix elements f

M

ti;ti and f
M

ij;ij can be written interms of invariant
amplitudes as

f
M

ti;ti(⌫, z
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M

ij;ij(⌫, z
2) = �2p

z

p

2
0
fM(+)

sp

(⌫, z2) + 2p30z fMpp

(⌫, z2) , (9)

where the nucleon boost is along the z-direction, p ⌘ p

z

. This particular combination (9), cancels most of the
contamination terms and involves one contamination term which can be removed (as we discuss below). Therefore,
the above-mentioned matrix element in Eq. (9), after removal of the unwanted ultraviolet (UV) divergences, can be
used to extract the twist-2 invariant amplitude associated with the matrix elements relevant for polarized gluon ITD
and corresponding PDF.

The extended quark and gluon operators separated by a specelike Wilson line in Eq. (3) have additional link-related
UV divergences which are shown to be multiplicatively renormalizable [69–71]. In particular, various combinations of
spatially-separated gluon operators are shown to be multiplicatively renormalizable in [27, 68, 72, 73]. For this par-
ticular lattice QCD calculation of matrix elements corresponding to gluon helicity distribution, these UV divergences
can be canceled by taking the appropriate ratio as proposed in [27]:

fM(z, p
z

) ⌘ i

[fM00(z, pz)/pzp0]/ZL(z/aL)

M00(z, pz = 0)/m2
p

, (10)

where, we have defined f
M00(z, pz) ⌘ [fM

ti;ti(z, pz) + f
M

ij;ij(z, pz)] and M00(z, pz) ⌘ M

ti;it(z, pz) +M

ji;ij(z, pz) is the
matrix element for the unpolarized gluon PDF [62, 68]. The factor 1/ZL(z3/aL) detrmined in[27] cancels the UV

logarithmic vertex AD of the f
M00 matrix element. The factor i in (10) is used in accordance with the definition

of ITD �i

eI
p

(⌫) ⌘ fM(+)
ps

(⌫) � ⌫

fM
pp

(⌫). The ratio in Eq. (10) utilizes the presence of the same linear divergence

related to the gluon link self energy present in f
M00(z, pz) and M00(z, pz = 0) and cancels it. In addition, this ratio

in Eq. (10) preserves the logarithmic divergence at small z-separations that corresponds to the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) evolution of the PDF [74–76]. The ratio in (10) is called as the reduced pseudo-ITD
in the rest of the paper.
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As shown in [27], the reduced pseudo-ITD (10) contains a contamination term which is not present in the definition
of the light-cone gluon helicity ITD in (6). Writing the right hand side of Eq. (10) as in terms of invariant amplitudes
and as a function of Lorentz invariant variables ⌫ and z

2, we get
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where m

p

is the nucleon mass. There are other combinations derived in [27] that can also lead matrix elements

involving fM
pp

and fM(+)
sp

but involve more contamination terms. In this work, our goal is to therefore calculate the
matrix elements of the combination in Eq. (9) and try to eliminate the contamination terms as shown in Eqs. (11)

and (12) and extract [fM(+)
ps

(⌫, z2)� ⌫

fM
pp

(⌫, z2)] which, according to Eq. (5) can lead to the determination of gluon
helicity distribution in the nucleon.

With the removal of the target mass term present in Eqs. (11) or (12), this corresponding reduced pseudo-ITD
fM(⌫, z2) can be related light-cone polarized gluon ITD eI
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(⌫, µ2) and singlet quark ITD eI
S

(⌫, µ2) in the MS scheme
through the short distance factorization relationship with z

2 as the hard scale by the following one-loop perturbative
matching formula [27]:
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�(ū)

◆

+ 4


u+ ln(1� u)

ū
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�

� ↵

s

C

F

2⇡

Z 1

0
du eI

S

(u⌫, µ2)

⇢
ln

✓
z

2
µ

2 e
2�E

4

◆
eB
gq

(u) + 2ūu
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Here, ū ⌘ (1� u) and �

E

is the Euler–Mascheroni constant and the plus-prescription is
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We note that for a complete implementation of the one-loop matching, one would require the calculation of singlet
quark Io↵e-time distribution which has not been performed yet in the following lattice calculation.

III. COMPUTATIONAL FRAMEWORK

The calculation of gluonic currents and the nucleon two-point and three-point functions are performed using identical
methodologies and numerical techniques as in our previous work on the unpolarized gluon distribution. We therefore,
refer to our previous work in Ref. [62] for detailed descriptions and only briefly mention them in the following.

We perform our calculation on an isotropic ensemble with (2 + 1) dynamical flavors of clover Wilson fermions
with stout-link smearing [77] of the gauge fields and a tree-level tadpole-improved Symanzik gauge action, with
approximate lattice spacing, a ⇠ 0.094 fm and pion mass, m

⇡

⇠ 358 MeV [78]. We use 64 temporal sources over
1901 gauge configurations, with each configuration separated by 10 hybrid Monte Carlo [79] trajectories. The two
light quark flavors, u and d are taken to be degenerate and the lattice spacing was determined using the w0 scale [80]
and the strange quark mass is tuned by setting the quantity, (2m2

K+ � m

2
⇡

0)/m2
⌦� equal to its physical value. We

summarize the parameters of the ensemble in Table I.
On the lattice, the gluonic currents are calculated using the gradient flow [81–83]. The gradient flow exponentially

suppresses the UV field fluctuations, which corresponds to smearing out the original degrees of freedom in coordinate
space and therefore improves the signal-to-noise ratio for the gluon observables. In this work, we perform the calcu-
lation of gluonic matrix elements for flow times ⌧/a2 = 1.0, 1.4, 1.8, 2.2, 2.6, 3.0, 3.4, and 3.8. Below ⌧/a

2 = 1.0, the

perturbative 

matching
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spin-dependent part of the matrix element is determined by the z-odd combination of Eq. (3) and the matrix elements
associated with the polarized gluon distribution is written as

f
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µ↵;��(z, p) = m

µ↵;��(z, p)�m

µ↵;��(�z, p) (4)

As shown in [27], these matrix elements can be decomposed into invariant amplitudes, fM
sp

, fM
ps

, fM
sz

, fM
zs

, fM
pzps

,
fM

pzsz

using the four-vectors, p
µ

and z

µ

, pseudo vector s

µ

, and the metric tensor g

µ⌫

. Other invariant amplitudes

involving p

µ

, z
µ

, sz, and the metric tensors are fM
pp

, fM
zz

, fM
zp

, fM
pz

, fM
ppzz

, fM
gg

[27]. These amplitudes are
functions of the invariant interval z2 and the Io↵e-time p · z ⌘ �⌫ [30].

The light-cone polarized gluon distribution �g(x) is obtained from

g

↵� f
M+↵;�+(z�, p) = �2p+s+ [fM(+)

ps

(⌫, 0) + p+z� fM
pp

(⌫, 0)] , (5)

where z is taken in the light-cone “minus” direction, z = z�, p+ is the momentum in the light-cone “plus” direction,

and fM(+)
ps

= [fM
ps

+ fM
sp

]. The PDF can determined by the Io↵e-time distribution,

�i

eI
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(⌫) ⌘ fM(+)
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(⌫) , (6)

where,

eI
p

(⌫, µ2) =
i

2

Z 1

�1
dx e�ix⌫

x�g(x, µ2) . (7)

As noted in [26], with knowledge of the polarized gluon ITD, one can immediately obtain the gluon helicity contribution
to the nucleon spin

�G(µ2) =

Z 1

0
d⌫ eI

p

(⌫, µ2) =

Z 1

0
dx �g(x, µ2) . (8)

Similar to the calculation of the unpolarized gluon distribution function [68], as the field-strength tensor G

µ↵

is
antisymmetric with respect to its indices and g�� = 0, the left hand side of Eq. (5) reduces to a summation over
the transverse indices i, j = x, y; perpendicular to the direction of separation between the two gluon fields. It has
been derived in [27] that the combination of the matrix elements f

M

ti;ti and f
M

ij;ij can be written interms of invariant
amplitudes as

f
M

ti;ti(⌫, z
2) + f

M

ij;ij(⌫, z
2) = �2p

z

p

2
0
fM(+)

sp

(⌫, z2) + 2p30z fMpp

(⌫, z2) , (9)

where the nucleon boost is along the z-direction, p ⌘ p

z

. This particular combination (9), cancels most of the
contamination terms and involves one contamination term which can be removed (as we discuss below). Therefore,
the above-mentioned matrix element in Eq. (9), after removal of the unwanted ultraviolet (UV) divergences, can be
used to extract the twist-2 invariant amplitude associated with the matrix elements relevant for polarized gluon ITD
and corresponding PDF.

The extended quark and gluon operators separated by a specelike Wilson line in Eq. (3) have additional link-related
UV divergences which are shown to be multiplicatively renormalizable [69–71]. In particular, various combinations of
spatially-separated gluon operators are shown to be multiplicatively renormalizable in [27, 68, 72, 73]. For this par-
ticular lattice QCD calculation of matrix elements corresponding to gluon helicity distribution, these UV divergences
can be canceled by taking the appropriate ratio as proposed in [27]:

fM(z, p
z

) ⌘ i

[fM00(z, pz)/pzp0]/ZL(z/aL)

M00(z, pz = 0)/m2
p

, (10)

where, we have defined f
M00(z, pz) ⌘ [fM

ti;ti(z, pz) + f
M

ij;ij(z, pz)] and M00(z, pz) ⌘ M

ti;it(z, pz) +M

ji;ij(z, pz) is the
matrix element for the unpolarized gluon PDF [62, 68]. The factor 1/ZL(z3/aL) detrmined in[27] cancels the UV

logarithmic vertex AD of the f
M00 matrix element. The factor i in (10) is used in accordance with the definition

of ITD �i

eI
p

(⌫) ⌘ fM(+)
ps

(⌫) � ⌫

fM
pp

(⌫). The ratio in Eq. (10) utilizes the presence of the same linear divergence

related to the gluon link self energy present in f
M00(z, pz) and M00(z, pz = 0) and cancels it. In addition, this ratio

in Eq. (10) preserves the logarithmic divergence at small z-separations that corresponds to the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) evolution of the PDF [74–76]. The ratio in (10) is called as the reduced pseudo-ITD
in the rest of the paper.
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spin-dependent part of the matrix element is determined by the z-odd combination of Eq. (3) and the matrix elements
associated with the polarized gluon distribution is written as
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As shown in [27], these matrix elements can be decomposed into invariant amplitudes, fM
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, fM
ps

, fM
sz

, fM
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, fM
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,
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using the four-vectors, p
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and z
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, pseudo vector s
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, and the metric tensor g

µ⌫
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involving p
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, z
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, sz, and the metric tensors are fM
pp

, fM
zz

, fM
zp

, fM
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, fM
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, fM
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[27]. These amplitudes are
functions of the invariant interval z2 and the Io↵e-time p · z ⌘ �⌫ [30].

The light-cone polarized gluon distribution �g(x) is obtained from

g

↵� f
M+↵;�+(z�, p) = �2p+s+ [fM(+)

ps

(⌫, 0) + p+z� fM
pp

(⌫, 0)] , (5)

where z is taken in the light-cone “minus” direction, z = z�, p+ is the momentum in the light-cone “plus” direction,

and fM(+)
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= [fM
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+ fM
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]. The PDF can determined by the Io↵e-time distribution,
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where,
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2
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dx e�ix⌫

x�g(x, µ2) . (7)

As noted in [26], with knowledge of the polarized gluon ITD, one can immediately obtain the gluon helicity contribution
to the nucleon spin

�G(µ2) =

Z 1

0
d⌫ eI

p

(⌫, µ2) =

Z 1

0
dx �g(x, µ2) . (8)

Similar to the calculation of the unpolarized gluon distribution function [68], as the field-strength tensor G

µ↵

is
antisymmetric with respect to its indices and g�� = 0, the left hand side of Eq. (5) reduces to a summation over
the transverse indices i, j = x, y; perpendicular to the direction of separation between the two gluon fields. It has
been derived in [27] that the combination of the matrix elements f

M

ti;ti and f
M

ij;ij can be written interms of invariant
amplitudes as

f
M

ti;ti(⌫, z
2) + f
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0
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(⌫, z2) + 2p30z fMpp

(⌫, z2) , (9)

where the nucleon boost is along the z-direction, p ⌘ p

z

. This particular combination (9), cancels most of the
contamination terms and involves one contamination term which can be removed (as we discuss below). Therefore,
the above-mentioned matrix element in Eq. (9), after removal of the unwanted ultraviolet (UV) divergences, can be
used to extract the twist-2 invariant amplitude associated with the matrix elements relevant for polarized gluon ITD
and corresponding PDF.

The extended quark and gluon operators separated by a specelike Wilson line in Eq. (3) have additional link-related
UV divergences which are shown to be multiplicatively renormalizable [69–71]. In particular, various combinations of
spatially-separated gluon operators are shown to be multiplicatively renormalizable in [27, 68, 72, 73]. For this par-
ticular lattice QCD calculation of matrix elements corresponding to gluon helicity distribution, these UV divergences
can be canceled by taking the appropriate ratio as proposed in [27]:

fM(z, p
z

) ⌘ i

[fM00(z, pz)/pzp0]/ZL(z/aL)

M00(z, pz = 0)/m2
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, (10)

where, we have defined f
M00(z, pz) ⌘ [fM

ti;ti(z, pz) + f
M

ij;ij(z, pz)] and M00(z, pz) ⌘ M

ti;it(z, pz) +M

ji;ij(z, pz) is the
matrix element for the unpolarized gluon PDF [62, 68]. The factor 1/ZL(z3/aL) detrmined in[27] cancels the UV

logarithmic vertex AD of the f
M00 matrix element. The factor i in (10) is used in accordance with the definition

of ITD �i

eI
p

(⌫) ⌘ fM(+)
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(⌫) � ⌫

fM
pp

(⌫). The ratio in Eq. (10) utilizes the presence of the same linear divergence

related to the gluon link self energy present in f
M00(z, pz) and M00(z, pz = 0) and cancels it. In addition, this ratio

in Eq. (10) preserves the logarithmic divergence at small z-separations that corresponds to the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) evolution of the PDF [74–76]. The ratio in (10) is called as the reduced pseudo-ITD
in the rest of the paper.
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spin-dependent part of the matrix element is determined by the z-odd combination of Eq. (3) and the matrix elements
associated with the polarized gluon distribution is written as
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As shown in [27], these matrix elements can be decomposed into invariant amplitudes, fM
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, fM
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,
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using the four-vectors, p
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and z
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involving p
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, sz, and the metric tensors are fM
pp
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[27]. These amplitudes are
functions of the invariant interval z2 and the Io↵e-time p · z ⌘ �⌫ [30].

The light-cone polarized gluon distribution �g(x) is obtained from
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↵� f
M+↵;�+(z�, p) = �2p+s+ [fM(+)
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(⌫, 0) + p+z� fM
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(⌫, 0)] , (5)

where z is taken in the light-cone “minus” direction, z = z�, p+ is the momentum in the light-cone “plus” direction,

and fM(+)
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= [fM
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+ fM
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]. The PDF can determined by the Io↵e-time distribution,
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where,
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As noted in [26], with knowledge of the polarized gluon ITD, one can immediately obtain the gluon helicity contribution
to the nucleon spin

�G(µ2) =
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(⌫, µ2) =

Z 1
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dx �g(x, µ2) . (8)

Similar to the calculation of the unpolarized gluon distribution function [68], as the field-strength tensor G

µ↵

is
antisymmetric with respect to its indices and g�� = 0, the left hand side of Eq. (5) reduces to a summation over
the transverse indices i, j = x, y; perpendicular to the direction of separation between the two gluon fields. It has
been derived in [27] that the combination of the matrix elements f
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ij;ij can be written interms of invariant
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where the nucleon boost is along the z-direction, p ⌘ p

z

. This particular combination (9), cancels most of the
contamination terms and involves one contamination term which can be removed (as we discuss below). Therefore,
the above-mentioned matrix element in Eq. (9), after removal of the unwanted ultraviolet (UV) divergences, can be
used to extract the twist-2 invariant amplitude associated with the matrix elements relevant for polarized gluon ITD
and corresponding PDF.

The extended quark and gluon operators separated by a specelike Wilson line in Eq. (3) have additional link-related
UV divergences which are shown to be multiplicatively renormalizable [69–71]. In particular, various combinations of
spatially-separated gluon operators are shown to be multiplicatively renormalizable in [27, 68, 72, 73]. For this par-
ticular lattice QCD calculation of matrix elements corresponding to gluon helicity distribution, these UV divergences
can be canceled by taking the appropriate ratio as proposed in [27]:
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matrix element for the unpolarized gluon PDF [62, 68]. The factor 1/ZL(z3/aL) detrmined in[27] cancels the UV

logarithmic vertex AD of the f
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in Eq. (10) preserves the logarithmic divergence at small z-separations that corresponds to the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) evolution of the PDF [74–76]. The ratio in (10) is called as the reduced pseudo-ITD
in the rest of the paper.
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As shown in [27], the reduced pseudo-ITD (10) contains a contamination term which is not present in the definition
of the light-cone gluon helicity ITD in (6). Writing the right hand side of Eq. (10) as in terms of invariant amplitudes
and as a function of Lorentz invariant variables ⌫ and z

2, we get
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where m
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is the nucleon mass. There are other combinations derived in [27] that can also lead matrix elements

involving fM
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and fM(+)
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but involve more contamination terms. In this work, our goal is to therefore calculate the
matrix elements of the combination in Eq. (9) and try to eliminate the contamination terms as shown in Eqs. (11)
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Here, ū ⌘ (1� u) and �

E

is the Euler–Mascheroni constant and the plus-prescription is
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+
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h
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i
. (14)

We note that for a complete implementation of the one-loop matching, one would require the calculation of singlet
quark Io↵e-time distribution which has not been performed yet in the following lattice calculation.

III. COMPUTATIONAL FRAMEWORK

The calculation of gluonic currents and the nucleon two-point and three-point functions are performed using identical
methodologies and numerical techniques as in our previous work on the unpolarized gluon distribution. We therefore,
refer to our previous work in Ref. [62] for detailed descriptions and only briefly mention them in the following.

We perform our calculation on an isotropic ensemble with (2 + 1) dynamical flavors of clover Wilson fermions
with stout-link smearing [77] of the gauge fields and a tree-level tadpole-improved Symanzik gauge action, with
approximate lattice spacing, a ⇠ 0.094 fm and pion mass, m

⇡

⇠ 358 MeV [78]. We use 64 temporal sources over
1901 gauge configurations, with each configuration separated by 10 hybrid Monte Carlo [79] trajectories. The two
light quark flavors, u and d are taken to be degenerate and the lattice spacing was determined using the w0 scale [80]
and the strange quark mass is tuned by setting the quantity, (2m2

K+ � m

2
⇡

0)/m2
⌦� equal to its physical value. We

summarize the parameters of the ensemble in Table I.
On the lattice, the gluonic currents are calculated using the gradient flow [81–83]. The gradient flow exponentially

suppresses the UV field fluctuations, which corresponds to smearing out the original degrees of freedom in coordinate
space and therefore improves the signal-to-noise ratio for the gluon observables. In this work, we perform the calcu-
lation of gluonic matrix elements for flow times ⌧/a2 = 1.0, 1.4, 1.8, 2.2, 2.6, 3.0, 3.4, and 3.8. Below ⌧/a

2 = 1.0, the

4

(UV) divergences discussed in the next paragraph, can be used to extract the invariant amplitude associated with the
matrix elements relevant for the polarized gluon ITD and corresponding PDF.

The bilocal quark and gluon operators separated by a spacelike Wilson line (such as the operator in Eq. (3)) have
additional link-related UV divergences that are multiplicatively renormalizable (see Refs. [72–74] for the quark case).
In particular, various combinations of spatially-separated gluon operators are shown to be multiplicatively renormal-
izable in [27, 75–77]. For our calculation of the matrix elements corresponding to the gluon helicity distribution, these
UV divergences can be canceled by forming the following ratio proposed in [27]:

fM(⌫, z2) ⌘ i
[fM00(z, pz)/pzp0]/ZL(z/aL)

M00(z, pz = 0)/m2
p

, (11)

where we have defined fM00(z, pz) ⌘ [fM0i;0i(z, pz) + fM
ij;ij(z, pz)], and M00(z, pz) ⌘ [M0i;i0(z, pz) + M

ji;ij(z, pz)]
is the spin averaged matrix element corresponding to the unpolarized gluon PDF [65, 77]. The factor 1/ZL(z3/aL)

[z3 7! z] determined in [27] cancels the UV logarithmic vertex anomalous dimension of the fM00 matrix element. The

factor i in (11) is introduced in accordance with the definition of the ITD �ieI
p

(⌫) ⌘ fM(+)
ps

(⌫)� ⌫ fM
pp

(⌫). The ratio

in Eq. (11) utilizes the presence of the same linear UV divergence in fM00(z, pz) and M00(z, pz = 0) related to the
gluon link self energy and cancels this common divergent factor. Still, this ratio in Eq. (11) preserves the logarithmic
IR divergence at small z-separations that corresponds to the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
evolution of the PDF [78–80]. The ratio in (11) is referred to as the reduced pseudo-ITD in the rest of the paper.

As mentioned above (and shown in [27]), the reduced pseudo-ITD (11) contains a contamination term that is not
present in the definition of the light-cone gluon helicity ITD in (7). Indeed, writing the right hand side of Eq. (11) in
terms of the invariant amplitudes of Eq. (10) and using z = ⌫/p

z

(which is valid when z
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= (0, 0, 0, z)), we obtain,
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where m
p

is the nucleon mass.

There are other combinations derived in [27] that also contain the invariant amplitudes fM
pp

and fM(+)
sp

, but these
combinations involve more contamination terms. In this work, our goal therefore is to calculate the matrix elements
of the combination in Eq. (10), try to eliminate the O(m2

p

/p2
z

) contamination term present in Eq. (13), and extract

[fM(+)
ps

(⌫, z2)� ⌫ fM
pp

(⌫, z2)], necessary for determining the gluon helicity distribution in the nucleon.

With the removal of the O(m2
p

/p2
z

) terms present in Eqs. (12) and (13), the resulting reduced pseudo-ITD fM(⌫, z2)

can be related, up to power corrections, to the light-cone polarized gluon ITD eI
g

(⌫, µ2) and singlet quark ITD eI
S

(⌫, µ2)
in the MS scheme through the following short distance factorization relation [27]:
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where z2 provides the hard scale in the one-loop perturbative matching formula [27], ⇤QCD is the scale of QCD,
N

c

= 3, ū ⌘ (1� u), �
E

is the EulerMascheroni constant, and the plus-prescription is defined by
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. (15)

We note that for a complete implementation of the one-loop matching, one requires the calculation of the singlet
quark Io↵e-time distribution. In this proof-of-principle calculation, we exclude this quark singlet contribution. Even
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FIG. 5. Arbitrary examples of reduced matrix elements, fM(⌧/a2) extrapolated to ⌧ ! 0 limit for di↵erent nucleon momenta

and di↵erent field separations. The functional form used to fit the reduced matrix elements is: fM(⌧/a2) = c0 + c1⌧ . The
top-left panel shows the fit for p = 1 ⇥ 2⇡

aL = 0.41 GeV and z = 3a. The top-right panel shows the fit for p = 3 ⇥ 2⇡
aL = 1.23

GeV and z = 8a. The bottom-left panel shows the fit for p = 5⇥ 2⇡
aL = 2.05 GeV and z = 4a. The bottom-right panel shows

the fit for p = 6⇥ 2⇡
aL = 2.46 GeV and z = 8a.

FIG. 6. Reduced Io↵e-time pseudo-distribution, fM(⌫, z2) in the zero flow-time limit.

By comparing the target mass dependence in the lattice calculation of reduced pseudo-ITD in FIG. 6 and also the

Ioffe time pseudo-distribution in the zero flow time limit
Contamination term present in LQCD matrix element dominates
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2 ⇠ 7.3

m2
p/p

2 ⇠ 0.2

4

As shown in [27], the reduced pseudo-ITD (10) contains a contamination term which is not present in the definition
of the light-cone gluon helicity ITD in (6). Writing the right hand side of Eq. (10) as in terms of invariant amplitudes
and as a function of Lorentz invariant variables ⌫ and z

2, we get
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where m

p

is the nucleon mass. There are other combinations derived in [27] that can also lead matrix elements

involving fM
pp

and fM(+)
sp

but involve more contamination terms. In this work, our goal is to therefore calculate the
matrix elements of the combination in Eq. (9) and try to eliminate the contamination terms as shown in Eqs. (11)

and (12) and extract [fM(+)
ps

(⌫, z2)� ⌫

fM
pp

(⌫, z2)] which, according to Eq. (5) can lead to the determination of gluon
helicity distribution in the nucleon.

With the removal of the target mass term present in Eqs. (11) or (12), this corresponding reduced pseudo-ITD
fM(⌫, z2) can be related light-cone polarized gluon ITD eI

g

(⌫, µ2) and singlet quark ITD eI
S

(⌫, µ2) in the MS scheme
through the short distance factorization relationship with z

2 as the hard scale by the following one-loop perturbative
matching formula [27]:
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Here, ū ⌘ (1� u) and �

E

is the Euler–Mascheroni constant and the plus-prescription is
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. (14)

We note that for a complete implementation of the one-loop matching, one would require the calculation of singlet
quark Io↵e-time distribution which has not been performed yet in the following lattice calculation.

III. COMPUTATIONAL FRAMEWORK

The calculation of gluonic currents and the nucleon two-point and three-point functions are performed using identical
methodologies and numerical techniques as in our previous work on the unpolarized gluon distribution. We therefore,
refer to our previous work in Ref. [62] for detailed descriptions and only briefly mention them in the following.

We perform our calculation on an isotropic ensemble with (2 + 1) dynamical flavors of clover Wilson fermions
with stout-link smearing [77] of the gauge fields and a tree-level tadpole-improved Symanzik gauge action, with
approximate lattice spacing, a ⇠ 0.094 fm and pion mass, m

⇡

⇠ 358 MeV [78]. We use 64 temporal sources over
1901 gauge configurations, with each configuration separated by 10 hybrid Monte Carlo [79] trajectories. The two
light quark flavors, u and d are taken to be degenerate and the lattice spacing was determined using the w0 scale [80]
and the strange quark mass is tuned by setting the quantity, (2m2

K+ � m

2
⇡

0)/m2
⌦� equal to its physical value. We

summarize the parameters of the ensemble in Table I.
On the lattice, the gluonic currents are calculated using the gradient flow [81–83]. The gradient flow exponentially

suppresses the UV field fluctuations, which corresponds to smearing out the original degrees of freedom in coordinate
space and therefore improves the signal-to-noise ratio for the gluon observables. In this work, we perform the calcu-
lation of gluonic matrix elements for flow times ⌧/a2 = 1.0, 1.4, 1.8, 2.2, 2.6, 3.0, 3.4, and 3.8. Below ⌧/a

2 = 1.0, the
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Correction through fits using moments
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FIG. 7. Simultaneous fit to the gluonic matrix elements at all momenta used in this calculation. The lattice data points in
the upper panel are the reduced pseudo-ITD in the zero flow time limit and the fitted bands that describes the lattice data
points are generated using the fit parameters listed in Table III. Correction for the target mass contribution in the matrix
elements results in the desired reduced pseudo-ITD matrix elements associated with gluon helicity distribution and are shown
in the lower panel. For an appropriate comparison of the magnitude of these extrapolations, the fitted pseudo-ITD bands in
the bottom panel are normalized by the gluon momentum fraction, hxig from [17].

in the zero flow-time limit and illustrate the results in FIG. 8. For a comparison between two di↵erent methods
to correct for the target mass term and determination of gluon helicity pseudo Io↵e-time distribution, we plot the
fit bands, Fit-1 and Fit-2 from the analyses in Sec. IVA, referred to as Method-I. The agreement between the two
methods to correct for the target mass correction demonstrates the consistency between the fitting using moments and
the subtraction of leading-twist fM

pp

(z, ⌫ = 0) contribution support our determination of the gluon helicity pseudo
Io↵e-time distribution. We note that to determine the normalization of the gluon PDF according to Eq. (13), we need
to normalize it with the gluon momentum fraction. We take the result from [17], which is hxi

g

=0.427(92) and apply
this normalization to the target mass-corrected gluon helicity pseudo-ITD in FIGs. 7 and 8.

V. COMPARISON WITH PHENOMENOLOGICAL DISTRIBUTION AND PROSPECTS FOR
DETERMINING GLUON HELICITY PDF FROM LATTICE QCD

In general, determining PDFs from lattice calculations involves the challenge of how best to extract a continuous
distribution from the discrete lattice data, compounded by a limited number of data points due to a finite range of
field separations and hadron momenta, and therefore a finite range of ⌫. The extraction of x-dependent distribu-
tion functions from lattice data involves several techniques, such as discrete Fourier transform, the Backus-Gilbert
method [34, 41, 96, 97], the Bayes-Gauss-Fourier transform [41], adapting phenomenologically-motivated functional
forms for fitting lattice data [37, 40, 63, 98, 99], parameterization the of the reduced pseudo-ITD using Jacobi poly-
nomials [35, 91], and finally the application of neural networks [100, 101]. For this particular calculation of gluon
helicity distribution, the reduced pseudo-ITD data have enough precision, but after the attempt to correct for the

8

matrix elements indeed reach a plateau before t/a = 6, above which the statistical signal-to-noise ratio is essentially
very small for a robust determination of the plateau. This can be due to the large discretization error at small z and
large p matrix elements. On the other hand, the z = 8a matrix elements are seen to reach a plateau around t/a = 4
even at this large nucleon boost. These are in particular the cases, where the simultaneous and correlated fits with
the constraint on �E become advantageous and the matrix elements with clear plateau dominate the fit parameters
at a fixed nucleon momentum and flow time.

As already pointed out in the abstract, this is the first lattice QCD attempt to explore the feasibility of the extraction
of x-dependent gluon helicity distribution and naturally, there are challenges and limitations as are expected to be
present in any exploratory calculation. Moreover, for a given statistics, the polarized gluonic matrix elements are
much noisier than unpolarized gluonic matrix elements and the magnitude of the polarized gluon ITD is very small
as demonstrated in section V and also found in [95]). A significantly larger number of configurations and clear
plateau at larger source-sink separation at the largest nucleon momentum will be required to estimate the systematic
uncertainties associated with the extraction of the matrix elements. This is indeed the goal of a future calculation
with much larger statistics and inclusion of the singlet quark distribution. To demonstrate the feasibility of a lattice
calculation for the determination of gluon helicity PDF, in the following sections, we will use the extracted matrix
elements just considering the statistical uncertainties and discuss the construction of reduced pseudo-ITD.

A. Reduced Pseudo-ITD calculation and Zero Flow time Extrapolation

With the bare matrix elements, we now calculate the reduced matrix elements and determine polarized gluon
reduced pseudo-ITD using the ratio in Eq. (10) for di↵erent flow times, nucleon momenta, and field separations. We
present the reduced matrix elements for all the values of ⌧/a2 used in this work in FIG. 4. From the polarized gluon
reduced pseudo-ITDs in FIG. 4, we observe that the target mass type of contamination that is present in Eqs. (9),
(11), or (12) dominates. From Eq. (9), it is evident that this contribution does not vanish even when the nucleon
is at rest. Alternatively, from Eq. (12), it is understood that in the limits of large p at a fixed ⌫, the target mass
correction is suppressed and the relevant matrix elements can be used to determine polarized gluon ITD and PDF.
We will discuss more on the removal of this target mass correction in the next Section V.

Next, we calculate the reduced pseudo-ITD from the reduced matrix elements at di↵erent flow times by extrapolating
these matrix elements to zero flow time. At fixed values of the field separation and nucleon momentum, and as can
be seen from FIG. 5, the flow-time dependence can be best described by a linear fit of the form, fM(⌧/a2) = c0 + c1⌧ .
Similar to the calculation of unpolarized gluon distribution in [62], an addition of term like c2⌧

2 is found to not
have any contribution in the fit and we therefore use the linear fit form to determine the reduced pseudo-ITD matrix
elements in the subsequent analyses. We list the values of the fitted parameters in Table V of appendix C in a
convenient form for reproducible analysis and presentation of our calculation in the subsequent section. Out of 48
such extrapolations, we demonstrate four arbitrary examples of such extrapolation in FIG. 5 and for all extrapolations,
we find �

2
/d.o.f. < 1.0. Finally, we present the reduced pseudo-ITD in the zero flow time limit in FIG. 6.

IV. METHODS TO CORRECT FOR THE TARGET MASS TERM AND DETERMINATION OF
GLUON HELICITY PSEUDO IOFFE-TIME DISTRIBUTION

A. Method-I: through fits using moments

From Eq. (12), we see that at a fixed value of ⌫ and large p

fM(⌫, z2) ⇡ [fM+
sp

(⌫, z2)� ⌫

fM
pp

(⌫, z2)] (18)

and it is the ⌫-dependence of [fM+
sp

� ⌫

fM
pp

] that gives the x-dependent gluon helicity distribution. Therefore, our
goal in this section is to estimate the target mass correction and try to eliminate it from the matrix elements of
reduced pseudo-ITD.

In Eq. (12), fM+
sp

is an odd function ⌫ and fM
pp

is an even function of ⌫. We therefore write these amplitudes in
terms of odd and even moments that can describe the data in the accessible Io↵e-time region and parametrize the
lattice data of reduced pseudo-ITD in Eq. (10) using the following fit form:
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(UV) divergences discussed in the next paragraph, can be used to extract the invariant amplitude associated with the
matrix elements relevant for the polarized gluon ITD and corresponding PDF.

The bilocal quark and gluon operators separated by a spacelike Wilson line (such as the operator in Eq. (3)) have
additional link-related UV divergences that are multiplicatively renormalizable (see Refs. [72–74] for the quark case).
In particular, various combinations of spatially-separated gluon operators are shown to be multiplicatively renormal-
izable in [27, 75–77]. For our calculation of the matrix elements corresponding to the gluon helicity distribution, these
UV divergences can be canceled by forming the following ratio proposed in [27]:

fM(⌫, z2) ⌘ i
[fM00(z, pz)/pzp0]/ZL(z/aL)

M00(z, pz = 0)/m2
p

, (11)

where we have defined fM00(z, pz) ⌘ [fM0i;0i(z, pz) + fM
ij;ij(z, pz)], and M00(z, pz) ⌘ [M0i;i0(z, pz) + M

ji;ij(z, pz)]
is the spin averaged matrix element corresponding to the unpolarized gluon PDF [65, 77]. The factor 1/ZL(z3/aL)

[z3 7! z] determined in [27] cancels the UV logarithmic vertex anomalous dimension of the fM00 matrix element. The

factor i in (11) is introduced in accordance with the definition of the ITD �ieI
p

(⌫) ⌘ fM(+)
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(⌫)� ⌫ fM
pp

(⌫). The ratio

in Eq. (11) utilizes the presence of the same linear UV divergence in fM00(z, pz) and M00(z, pz = 0) related to the
gluon link self energy and cancels this common divergent factor. Still, this ratio in Eq. (11) preserves the logarithmic
IR divergence at small z-separations that corresponds to the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
evolution of the PDF [78–80]. The ratio in (11) is referred to as the reduced pseudo-ITD in the rest of the paper.

As mentioned above (and shown in [27]), the reduced pseudo-ITD (11) contains a contamination term that is not
present in the definition of the light-cone gluon helicity ITD in (7). Indeed, writing the right hand side of Eq. (11) in
terms of the invariant amplitudes of Eq. (10) and using z = ⌫/p

z

(which is valid when z
µ

= (0, 0, 0, z)), we obtain,
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or, alternatively,
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where m
p

is the nucleon mass.

There are other combinations derived in [27] that also contain the invariant amplitudes fM
pp

and fM(+)
sp

, but these
combinations involve more contamination terms. In this work, our goal therefore is to calculate the matrix elements
of the combination in Eq. (10), try to eliminate the O(m2

p
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) contamination term present in Eq. (13), and extract
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(⌫, z2)], necessary for determining the gluon helicity distribution in the nucleon.

With the removal of the O(m2
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) terms present in Eqs. (12) and (13), the resulting reduced pseudo-ITD fM(⌫, z2)

can be related, up to power corrections, to the light-cone polarized gluon ITD eI
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(⌫, µ2) and singlet quark ITD eI
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in the MS scheme through the following short distance factorization relation [27]:
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where z2 provides the hard scale in the one-loop perturbative matching formula [27], ⇤QCD is the scale of QCD,
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We note that for a complete implementation of the one-loop matching, one requires the calculation of the singlet
quark Io↵e-time distribution. In this proof-of-principle calculation, we exclude this quark singlet contribution. Even

4

(UV) divergences discussed in the next paragraph, can be used to extract the invariant amplitude associated with the
matrix elements relevant for the polarized gluon ITD and corresponding PDF.

The bilocal quark and gluon operators separated by a spacelike Wilson line (such as the operator in Eq. (3)) have
additional link-related UV divergences that are multiplicatively renormalizable (see Refs. [72–74] for the quark case).
In particular, various combinations of spatially-separated gluon operators are shown to be multiplicatively renormal-
izable in [27, 75–77]. For our calculation of the matrix elements corresponding to the gluon helicity distribution, these
UV divergences can be canceled by forming the following ratio proposed in [27]:

fM(⌫, z2) ⌘ i
[fM00(z, pz)/pzp0]/ZL(z/aL)

M00(z, pz = 0)/m2
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where we have defined fM00(z, pz) ⌘ [fM0i;0i(z, pz) + fM
ij;ij(z, pz)], and M00(z, pz) ⌘ [M0i;i0(z, pz) + M
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is the spin averaged matrix element corresponding to the unpolarized gluon PDF [65, 77]. The factor 1/ZL(z3/aL)

[z3 7! z] determined in [27] cancels the UV logarithmic vertex anomalous dimension of the fM00 matrix element. The

factor i in (11) is introduced in accordance with the definition of the ITD �ieI
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pp

(⌫). The ratio

in Eq. (11) utilizes the presence of the same linear UV divergence in fM00(z, pz) and M00(z, pz = 0) related to the
gluon link self energy and cancels this common divergent factor. Still, this ratio in Eq. (11) preserves the logarithmic
IR divergence at small z-separations that corresponds to the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
evolution of the PDF [78–80]. The ratio in (11) is referred to as the reduced pseudo-ITD in the rest of the paper.

As mentioned above (and shown in [27]), the reduced pseudo-ITD (11) contains a contamination term that is not
present in the definition of the light-cone gluon helicity ITD in (7). Indeed, writing the right hand side of Eq. (11) in
terms of the invariant amplitudes of Eq. (10) and using z = ⌫/p
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where m
p

is the nucleon mass.

There are other combinations derived in [27] that also contain the invariant amplitudes fM
pp

and fM(+)
sp

, but these
combinations involve more contamination terms. In this work, our goal therefore is to calculate the matrix elements
of the combination in Eq. (10), try to eliminate the O(m2

p

/p2
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) contamination term present in Eq. (13), and extract
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pp

(⌫, z2)], necessary for determining the gluon helicity distribution in the nucleon.

With the removal of the O(m2
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can be related, up to power corrections, to the light-cone polarized gluon ITD eI
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where z2 provides the hard scale in the one-loop perturbative matching formula [27], ⇤QCD is the scale of QCD,
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ū

�

+

�
✓

1

ū
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◆

+

� 1

2
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quark Io↵e-time distribution. In this proof-of-principle calculation, we exclude this quark singlet contribution. Even
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FIG. 7. Simultaneous fit to the gluonic matrix elements at all momenta used in this calculation. The lattice data points in the
upper panel are the reduced pseudo-ITD in the zero flow time limit and the fitted bands that describe the lattice data points
are generated using the fit parameters listed in Table III. After correcting for the O(m2

p/p
2
z) contamination term in the matrix

element, the desired reduced pseudo-ITDs associated with the gluon helicity distribution from both fits are shown in the lower
panel. For an appropriate comparison of the magnitude of these extrapolations, the fitted pseudo-ITD bands in the bottom
panel are normalized by the gluon momentum fraction, hxig from [17].

Although the subtracted representation still contains an O(m2
p

/p2
z

) contamination term, it now contains M
pp

in a

subtracted [fM
pp

(⌫, z2)� fM
pp

(⌫ = 0, z2)] form, the Taylor expansion (in ⌫) of which starts with ⌫2 and is accompanied
by the coe�cient b1. As Fit-2 suggests that this coe�cient is very small, we expect that the contamination term for
fMsub to be even smaller than that for fM.

Using the above prescription, we calculate fMsub(z, pz) for each z and p
z

for a given flow time and calculate the

reduced pseudo-ITD using Eq. (11). The results for fMsub(z, pz) are shown as a function of flow-time in Fig. 8.

In a manner similar to the procedure described in Sec. III A, we determine fMsub(⌫, z2) in the zero flow-time limit

and illustrate the results in the left and the right panels of Fig. 9. Fig. 9 shows that the data for fMsub(⌫, z2) at

the lowest momenta have a factor of ten reduction compared to those for fM(⌫, z2). This means that the proposed
subtraction has strongly decreased the magnitude of the contamination term. We note the resulting statistical error at
the smallest momentum is larger than at the higher momenta due to the factor of (p

z

)�1 in the definition in Eq (24).
In the left panel of Fig. 9, we compare the lattice data with the pseudo-ITD obtained by fits as we discussed previously
in the bottom panel of Fig. 7. We can clearly see that the expectation for the ITD based on method-1 agrees quite
well with the data for ITD obtained via method-2, thus serving as a cross-check of the two methods. In the right
panel of Fig. 9, we show the result of fits to fMsub(⌫, z2), using the functional form in Eq. (20) with the parameter
b0 = 0 and a0, a1 and b1 left to be fit. Fig. 9 shows that the e↵ect of the residual correction after subtraction, as given
by the b1⌫

3 term, is rather minimal, thus explaining why the subtracted data has an improved universal behavior
with respect to ⌫.

For a comparison between the two di↵erent methods of treating the O(m2
p

/p2
z

) contamination term and determi-
nation of the gluon helicity Io↵e-time pseudo-distribution, we plot the fit bands, Fit-1 and Fit-2 from the analyses in
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FIG. 8. The lattice data points represent the reduced Io↵e-time pseudo-distribution, fM(⌫, z2) in the zero flow-time limit
obtained through the subtraction method using p = 0 matrix elements. The red and cyan bands represent the target mass
corrected reduced Io↵e-time pseudo-distribution using the fit of moments in Sec. IVA. The lattice data points and the fit bands
are normalized using mention that this is normalized using gluon momentum fraction, hxig from [17].

target mass term the resulting matrix elements determined in Sec. IVB become much noisier because of cancellation
between lattice data of similar magnitudes. Within the current precision of the gluon helicity reduced pseudo-ITD
data, we do not expect the perturbative matching formula in Eq. (13) to have a noticeable e↵ect and therefore do
not apply this to the lattice data in this paper. Especially, the current precision of the lattice data does not allow us
to handle the inverse problem e↵ectively using the above-mentioned methods to extract the gluon helicity PDF and
gluon spin content in the nucleon. Similarly, the truncated fits using the moments as listed in Table III also result in
large uncertainty bands in the reduced pseudo-ITD data. While it is shown to be possible to reconstruct the PDFs
using the first few lower moments as in [102], the two extracted moments with larger uncertainty in this calculation
do not allow us for proper reconstruction of gluon helicity PDF. We also have pointed out earlier that, the eI

S

(⌫, µ2)
distribution is not included in the present work.

FIG. 9. A comparison between lattice reduced Io↵e-time pseudo-distribution, fM(⌫, z2) in the zero flow-time limit obtained
through the subtraction method using p = 0 matrix elements and gluon helicity ITD constructed from global fits of PDFs.
The red band denotes the ITD constructed from gluon helicity distribution by NNPDF collaboration. The green band labeled
by eI(+)

p and eI(+/�)
p represent the gluon helicity ITD with and without the positivity constraint on gluon helicity PDF by the

JAM collaboration.

On the other hand, this calculation already provides the first lattice QCD estimates of the first two nonzero

Correction by subtracting zero momentum matrix elements

Proposed subtraction :

12

Fit a0 a1 b0 b1 cov[a0, a1] cov[a0, b0] cov[a0, b1] cov[a1, b0] cov[a1, b1]

Fit-1 0.051(13) 0.0058(11) 0.362(22) - 7.34⇥ 10�6 0.00019 - 4.484231574 -

Fit-2 0.061(14) 0.0043(20) 0.371(31) 0.0066(33) 5.50⇥ 10�6 -0.00032 4.41⇥ 10�6 �1.72⇥ 10�5 �5.44⇥ 10�6

TABLE III. Fitted parameters from the fits to the reduced pseudo-ITD through fits (20) using moments. The covariance among
di↵erent fit parameters are listed as cov[ai, bj ]. The two di↵erent fits are labeled by Fit-1 and Fit-2 as described in the text.

and ⌫ fM
pp

, within the range of ⌫ spanned by our data.
Next, we try to incorporate another moment b1 in the fit using j = 0, 1, and find that the second moment does not

result in any significant value within error. We therefore use the fit parameters a0, a1, b0 as the prior for the Fit-2
and obtain the fit results listed in Table III. The smaller domain of Io↵e time data within the fixed z-range and in
particular, smaller p

z

-values are not su�cient to constrain higher moments in the fits without other prior information.
We compare the results of these two fits to the lattice data in the top panel of Fig. 7 with �2/d.o.f. shown. These two
fits are consistent within uncertainty and reproduce the lattice data. We have excluded z = a and 8a data from the
fits to get a smaller �2/d.o.f.. The z = a matrix element potentially has significant discretization errors O(a

z

) while
the z = 8a matrix elements could have significant higher twist contamination O(z2⇤2

QCD). The improved �2/d.o.f.
when these data are neglected support these possibilities. In future studies with increased precision and range of ⌫,
these systematic errors could be modeled as well. For this proof of principle study, the previously mentioned cuts on
the data are made. The bottom panel of the figure shows the extrapolation of the lattice data in the limit of zero
O(m2

p

/p2
z

) contamination term contribution within the fit parametrization. This is simply the fit band constructed
using

fM(⌫) =
X

i=0

(�1)i

(2i+ 1)!
a
i

⌫2i+1 (21)

from the above fits. From both of the fits, it is seen that the O(m2
p

/p2
z

) term is dominated by the first moment b0 of
fM

pp

. While this might be a consequence of our inability to constrain higher moments and choice of the fit forms, this
outcome will indeed become clearer in the following subsection, where we correct for the target mass correction in a
model-independent manner. From both of these methods, one might argue that within the Io↵e-time region ⌫ ⇡ [0, 9],
the fit bands in the bottom panel of Fig. 7 are good representations of the gluon helicity reduced pseudo-ITD. We
note that to determine the normalization of the gluon PDF according to Eq. (14), we need to normalize the results by
the gluon momentum fraction. We take the result from [17], which is hxi

g

=0.427(92), and apply this normalization
to the O(m2

p

/p2
z

) contamination-corrected gluon helicity pseudo-ITD in Figs. 7.

B. Method-II: subtraction using pz = 0 matrix element

As discussed, the O(m2
p

/p2
z

) contamination term dominates the original matrix element for modest values of mo-
menta accessible in this calculation. A natural consideration would be to eliminate this contamination, which would
be possible if we could perform a separate measurement of the fM

pp

(⌫, z2) invariant amplitude. While we cannot do

this, Eq. (10) allows access to ⌫ = 0 value of fM
pp

(⌫, z2), i.e. to the first term in the Taylor expansion of fM
pp

(⌫, z2)
over ⌫. Indeed, taking p

z

= 0 in Eq. (10), it follows

[fM0i;0i + fM
ij;ij ](z, pz = 0) = 2m3

p

z fM
pp

(⌫ = 0, z2). (22)

Now, we define a “subtracted” matrix element

[fM0i;0i + fM
ij;ij ]sub(z, p) ⌘ [fM0i;0i + fM

ij;ij ](z, p)� p0
m

p

[fM0i;0i + fM
ij;ij ](z, 0) , (23)

which vanishes for p
z

= 0. Dividing the subtracted matrix element by (�2p
z

p0) and introducing

fMsub(z, p) ⌘ (�2p0 pz)
�1

h

fM0i;0i + fM
ij;ij

i

sub
(z, p) , (24)

we derive the representation

fMsub(z, pz) = fM(+)
sp

(⌫, z2)� ⌫ fM
pp

(⌫, z2)� ⌫
m2

p

p2
z

h

fM
pp

(⌫, z2)� fM
pp

(⌫ = 0, z2)
i

. (25)

non-vanishing 
 at pz = 0

Isolating gluon helicity Ioffe-time distribution from LQCD data
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where z
µ

is the separation between the gluon fields, p
µ

is the four-momentum of the nucleon, and s
µ

⌘ u (p, s) �
µ

�5u (p, s),
a pseudovector normalized by s2 = �m2

p

, is the nucleon polarization vector and m
p

being the nucleon mass. Fi-

nally, the dual field to G
��

is defined as eG
��

= 1
2✏��⇢�G

⇢� , and W [z, 0] is a straight-line Wilson line in the adjoint
representation,

W [x, y] = Pexp
n

ig
s

Z 1

0
d⌘ (x� y)µÃ

µ

�

⌘x+ (1� ⌘)y
�

o

, (4)

for the gauge field A
µ

, where P indicates that the integral is path-ordered. The spin-dependent part of the matrix
element is determined by the linear combination in Eq. (5) that is odd in the separation z

µ

. The matrix elements
associated with the polarized gluon distribution are then written as

fM
µ↵;��(z, p, s) = em

µ↵;��(z, p, s)� em
µ↵;��(�z, p, s) . (5)

As shown in [27], using Lorentz invariance and taking into account the antisymmetric properties of the gluon field
strength tensor with respect to its indices, one can write these matrix elements as an expansion involving two types of
invariant amplitudes, di↵ering in the contribution of spin vector sµ to the Lorentz tensor structures. Of these, fM

sp

,
fM

ps

, fM
sz

, fM
zs

, fM
pzps

, fM
pzsz

are accompanied by tensor structures in which each one of the µ,↵;�,� indices is
carried by the nucleon polarization vector s

µ

, the nucleon momentum p
µ

, the separation z
µ

, and the metric tensor

g
µ⌫

. The invariant amplitudes of the second group, fM
pp

, fM
zz

, fM
zp

, fM
pz

, fM
ppzz

,fM
gg

are accompanied by tensor
structures in which the spin vector enters through the product s · z [27]. All invariant amplitudes are functions of the
invariant interval z2 and the Lorentz invariant (p · z) ⌘ �⌫ [26] called the Io↵e time due to its relation, up to a sign
and normalization of the target’s mass, with the original variable from DIS cross section analyses [30]. Ultimately, the

invariant amplitudes of interest will be those that contribute in the contraction g↵�fM
µ↵;�� with specific kinematics

that define the polarized PDF. All others that cannot be removed will contribute to systematic errors that must be
modeled or corrected for.

The light-cone polarized gluon distribution �g(x) is obtained from

g↵� fM+↵;�+(z�, p) = �2p+s+ [fM(+)
ps

(⌫, 0) + p+z� fM
pp

(⌫, 0)] , (6)

where z is taken in the light-cone “minus” direction, z = z�, p+ is the momentum in the light-cone “plus” direction,

and fM(+)
ps

= [fM
ps

+ fM
sp

]. The polarized gluon PDF can be determined by the Io↵e-time distribution

�ieI
p

(⌫) ⌘ fM(+)
ps

(⌫)� ⌫ fM
pp

(⌫) , (7)

where

eI
p

(⌫) =
i

2

Z 1

�1
dx e�ix⌫ x�g(x) . (8)

As noted in [26], with knowledge of the polarized gluon ITD eI
p

(⌫), one can immediately obtain the gluon helicity
contribution to the nucleon spin

�G =

Z 1

0
d⌫ eI

p

(⌫) =

Z 1

0
dx �g(x) . (9)

The field-strength tensor G
µ↵

is antisymmetric with respect to its indices and g�� = 0, so the left hand side of
Eq. (6) reduces to a summation over the transverse indices i, j = x, y, perpendicular to the direction of separation

between the two gluon fields. The combination of the matrix elements fM0i;0i and fM
ij;ij can be written in terms of

invariant amplitudes as

fM0i;0i(z, pz) + fM
ij;ij(z, pz) = �2p

z

p0 fM(+)
sp

(⌫, z2) + 2p30z fMpp

(⌫, z2) , (10)

where the nucleon boost is along the 3rd (z) direction, p = {p0, 0?, pz} [27]. The polarization vector that we use is
s = {p

z

, 0?, p0}, such that the requirement s · p = 0 is satisfied.
The particular combination in Eq. (10) cancels the contamination terms coming from invariant amplitudes other

than fM(+)
sp

and fM
pp

present in Eq. (7). Still, it involves a contamination term proportional to fM
pp

that, in fact,
can be removed (as we discuss below). Therefore, the matrix element in Eq. (10), after removal of the ultraviolet
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Sign of gluon helicity distribution is unsettled from global analyses of experimental data
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FIG. 7. Monte Carlo replicas for the spin-dependent gluon PDF x�g at Q

2 = 10 GeV2 fitted

under various theory assumptions according to the SU(2) (yellow lines), SU(3) (blue lines) and

SU(3)+positivity (red lines) scenarios, with 300 replicas randomly selected from the total of 723,

647 and 639 for the three scenarios, respectively. The vertical lines indicate the range of parton

momentum fractions x constrained by data.

as well as with small negative �g values, which would generally produce very small A
LL

values, in contradiction with the data in Fig. 5. While the numbers of negative solutions

found in the SU(2) and SU(3) scenarios are relatively smaller than the positive ones, their

ability to describe well the data indicates that at present the negative solutions cannot be

ruled out on phenomenological grounds.

In addition to the scenarios discussed above, we also note that some replicas give unphys-

ical values for the polarized DIS asymmetry at kinematics x & 0.8 and momentum transfer

Q2 > 50 GeV2 that are outside the currently measured region, but which could be probed at

a future Electron-Ion Collider [71]. After removing these replicas, the result shown in Fig. 6

for the SU(2) scenario indicates that the main e↵ect is observed at high x for the quark

distributions, while the e↵ect on �g is negligible. Similarly for the other two scenarios,

the impact of imposing the observable positivity on A
LL

outside measured regions is only
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3

demonstrate how these can provide valuable information
and important constraints in the determination of full-x
dependence of PDFs and also the higher moments
of PDFs in the future lattice QCD calculations. In
particular, we determine the analytic behavior of the
unpolarized and polarized gluon ITDs which are not
accessible within the reach of present LQCD calcula-
tions and can provide complementary information to
reconstruct full x-dependence of the unpolarized and
polarized gluon distributions in the future calculations.

II. HELICITY-DEPENDENT GLUON
DISTRIBUTION FROM

HELICITY-INDEPENDENT GLUON
DISTRIBUTION

h�xi(3)
g

h�xi(5)
g

h�xi(7)
g

h�xi(9)
g

The helicity-aligned gluon distribution is expected to
fall of at least (1 � x) faster than the valence quark dis-
tribution in the nucleon [? ] as x ! 1. The helicity-
aligned gluon distribution g

+(x) is thus expected to have
leading (1 � x)4 fall-o↵ as x ! 1 compared to (1 � x)3

fall-o↵ of the valence quark distribution. The helic-
ity anti-aligned gluon distribution g

�(x) is expected to
be suppressed by an additional factor of (1 � x)2 rel-
ative to g

+(x) as x ! 1. We note that non-leading
helicity flip amplitudes and contributions from higher
Fock components are power-law suppressed and we only
include the next higher Fock component contribution as
x ! 1 in our calculation. Besides, we also allow variation
in the exponents of (1 � x) fall-o↵ through the parameter
� and instead of fixing the pomeron intercept to be
exactly equal to 1, we also allow variation in the exponent
↵. Instead of strictly imposing the power counting at
x ! 1 and the pomeron intercept at x ! 0, we only
take them as a guidance and phenomenologically intro-
duce two parameters ↵ and � to allow the variation of the
power behavior at the small and large x regions as usu-
ally adopted in global analyses. Since it is expected that
the shape of PDFs is not just completely governed by the
small and large x limiting behaviors and being motivated
by the parametrizations in the global fits of PDFs, we
also allow a somewhat flexible interpolating function

(1 + �

p
x + �x) between these two limiting regions For

a well description of the gluon distribution in the full-x
region, we also include a polynomial 1 + c

p
x + dx with

parameters c and d to be fitted. Tianbo, perhaps some

more discussion on the flexibility of our parametrization?

Finally, we write the g

+(x) and g

�(x) distributions as
As a modification of the function form utilized in Ref. []
by including the polynomial, we parametrize the spin-
aligned and the spin-antialigned gluon distributions as

xg

+(x) = x

↵

⇥
A(1 � x)4+� + B(1 � x)5+�

⇤

⇥(1 + �

p
x + �x),

xg

�(x) = x

↵

⇥
A(1 � x)6+� + B(1 � x)7+�

⇤

⇥(1 + �

p
x + �x), (1)

where A and B are normalization parameters to be de-
termined. The inclusion of the subleading term in power
of (1 � x) is to account for the contribution from higher
Fock state. For each term, the power of (1�x) di↵ers by
2 as suggested by the pQCD analysis []. We refer to the
parametrization form Eq. (??) as the ansatz-1.

As a phenomenological exploration, the power di↵er-
ence suggested by the pQCD power counting may also
be modified. To take into account the model depen-
dence on imposing the (1 � x) power di↵erence between
g

+(x) and g

�(x), we consider another parametrization
by assuming the power di↵erence is 1 as We also consider
the following possibility when the large-x distribution of
g

�(x) is suppressed by one power of (1 � x) relative to
the g

+(x) distribution.

xg

+(x) = x

↵

⇥
A(1 � x)4+� + B(1 � x)5+�

⇤

(1 + �

p
x + �x),

xg

�(x) = x

↵

⇥
A(1 � x)5+� + B(1 � x)6+�

⇤

(1 + �

p
x + �x), (2)

(Tianbo, can you provide a better reasoning here? some
careful discussion needed for the choice of ansatzes 1 and
2) which we refer to as the ansatz-2. The polarized gluon
distribution �g(x) decreases to 0 as x ! 0 for both
ansatz-1 and ansatz-2. This indicates the helicity cor-
relation between the gluon and its parent nucleon disap-
pears when x ! 0, which is a natural expectation since
the relative rapidity becomes infinity.

With the parametrization of the spin-aligned and the
spin-antialigned gluon distributions, one can directly ob-
tain the unpolarized and polarized gluon distributions
from the sum and the di↵erence of them, The unpolarized
gluon distribution xg(x) can be written as a sum of the
helicity aligned and anti-aligned glouon distributions

xg(x) ⌘ xg

+(x) + xg

�(x), (3)

x�g(x) ⌘ xg

+(x) � xg

�(x). (4)

To determine the unknown parameters in g

+,�(x) in
Eqs. (??) and (??), we fit the unpolarized gluon distribu-
tion from the NNPDF global analysis []. Our precedure
described here can be applied to any other gluon distribu-
tion given by global analysis or model calculation. To fit
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Lattice data in a limited range of ⌫

Available lattice data is sensitive up to first few moments 
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Asymptotic form: 
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We define,

C

R

(a, b; !) ⌘ Re (E
R

(a, b; !)) , (16)

S

R

(a, b; !) ⌘ Im (E
R

(a, b; !)) (17)

Using the above expressions, we can summarize the
asymptotic expansions of the unpolarized and polarized
gluon ITDs for ansatz-1:

M(!, µ

2) = A

⇥ �
C

R

(↵, 4 + �; !)

+� C

R

(↵ + 1/2, 4 + �; !) + � C

R

(↵ + 1, 4 + �; !)
�

+
�

� ! � + 2
� ⇤

+ B

⇥
� ! � + 1

⇤

+O�
1/!

a+R+1
�

(18)

and

M(!, µ

2) = A

⇥ �
S

R

(↵, 4 + �; !)

+� S

R

(↵ + 1/2, 4 + �; !) + � S

R

(↵ + 1, 4 + �; !)
�

��
� ! � + 2

� i
+ B

⇥
� ! � + 1

⇤

+O�
1/!

a+R+1
�

(19)

Similar expressions can be written for ansatz-2 and
ansatz-3. We show the asymptotic limits of the unpo-
larized and polarized gluon ITDs for ansatz-2 in FIGs. 8
and 9, respectively. For the demonstration purpose, we
select one arbitrary set of parameters from to the fit to
1 replica of the NNPDF unpolarized gluon distribution
described in Section II.

The M(!) and �M(!) approach the asymptotic lim-
its around ! ⇠ 15 as can be seen in FIGs. 8 and 9. It
is important to note that if future LQCD calculations of
gluon ITD can reach the region ! ⇠ 15, they will be able
to provide nonperturbative information to the Lipatov’s
pomeron [36, 37].

Using the fact that gluon PDF diverges much faster
than the valence quark PDF in the limit x ! 0, one can
show that the asymptotic limit of the ITD corresponding
to nucleon valence quark distribution will set in at earlier
! compared to the gluon ITDs, also noted in [47]. This
implies that the asymptotic region of the nucleon valence
quark ITD can be approached easily in the nonperturba-
tive calculations compared to the gluon ITDs.

VII. APPLICATIONS TO LATTICE QCD
CALCULATIONS OF PDFS

In recent years, several LQCD methods have been pro-
posed and developed to probe the light-cone structure of
hadrons, including the path-integral formulation of the
deep-inelastic scattering hadronic tensor [73], coordinate-
space method for the calculating light-cone distribu-
tion amplitudes [59], inversion method [74], quasi-
PDFs/LaMET [17, 18], pseudo-PDFs [60], and good lat-
tice cross sections [61, 75]. For the most recent review of
LQCD calculations of PDFs, see [76].

FIG. 8. Asymptotic expansion of the unpolarized gluon
ITD corresponding to a given set of parameters obtained by
fitting one replica of NNPDF unpolarized gluon distribution
using ansatz-2 for the xg

+(x) and xg

�(x) distributions. The
cyan line indicates the ITD and the dashed line indicates the
asymptotic limit of the ITD governed by the corresponding
fit parameters.

FIG. 9. Asymptotic expansion of the polarized gluon ITD
corresponding obtained by fitting one replica of NNPDF un-
polarized gluon distribution using ansatz-2. The dashed line
indicates the asymptotic limit of the polarized gluon ITD cor-
responding to fit parameters.

The extraction of PDFs from LQCD calculations has
received great interest since Ji’s proposal in [17, 18]. In-
stead of directly calculating the light-cone correlation
functions which define the PDFs, one can extract them
from the spatial correlation of parton fields calculable on
the Euclidean lattice. We begin this section by acknowl-
edging that any LQCD calculations of PDFs using any of
the above formalisms share the common challenge of how
best to extract a continuous distribution from discrete
data, compounded by a limited number of data points
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pomeron [36, 37].

Using the fact that gluon PDF diverges much faster
than the valence quark PDF in the limit x ! 0, one can
show that the asymptotic limit of the ITD corresponding
to nucleon valence quark distribution will set in at earlier
! compared to the gluon ITDs, also noted in [47]. This
implies that the asymptotic region of the nucleon valence
quark ITD can be approached easily in the nonperturba-
tive calculations compared to the gluon ITDs.

VII. APPLICATIONS TO LATTICE QCD
CALCULATIONS OF PDFS

In recent years, several LQCD methods have been pro-
posed and developed to probe the light-cone structure of
hadrons, including the path-integral formulation of the
deep-inelastic scattering hadronic tensor [73], coordinate-
space method for the calculating light-cone distribu-
tion amplitudes [59], inversion method [74], quasi-
PDFs/LaMET [17, 18], pseudo-PDFs [60], and good lat-
tice cross sections [61, 75]. For the most recent review of
LQCD calculations of PDFs, see [76].

FIG. 8. Asymptotic expansion of the unpolarized gluon
ITD corresponding to a given set of parameters obtained by
fitting one replica of NNPDF unpolarized gluon distribution
using ansatz-2 for the xg

+(x) and xg

�(x) distributions. The
cyan line indicates the ITD and the dashed line indicates the
asymptotic limit of the ITD governed by the corresponding
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FIG. 9. Asymptotic expansion of the polarized gluon ITD
corresponding obtained by fitting one replica of NNPDF un-
polarized gluon distribution using ansatz-2. The dashed line
indicates the asymptotic limit of the polarized gluon ITD cor-
responding to fit parameters.

The extraction of PDFs from LQCD calculations has
received great interest since Ji’s proposal in [17, 18]. In-
stead of directly calculating the light-cone correlation
functions which define the PDFs, one can extract them
from the spatial correlation of parton fields calculable on
the Euclidean lattice. We begin this section by acknowl-
edging that any LQCD calculations of PDFs using any of
the above formalisms share the common challenge of how
best to extract a continuous distribution from discrete
data, compounded by a limited number of data points

9

We define,

C

R

(a, b; !) ⌘ Re (E
R

(a, b; !)) , (16)

S

R

(a, b; !) ⌘ Im (E
R

(a, b; !)) (17)

Using the above expressions, we can summarize the
asymptotic expansions of the unpolarized and polarized
gluon ITDs for ansatz-1:

M(!, µ

2) = A

⇥ �
C

R

(↵, 4 + �; !)

+� C

R

(↵ + 1/2, 4 + �; !) + � C

R

(↵ + 1, 4 + �; !)
�

+
�

� ! � + 2
� ⇤

+ B

⇥
� ! � + 1

⇤

+O�
1/!

a+R+1
�

(18)

and

M(!, µ

2) = A

⇥ �
S

R

(↵, 4 + �; !)

+� S

R

(↵ + 1/2, 4 + �; !) + � S

R

(↵ + 1, 4 + �; !)
�

��
� ! � + 2

� i
+ B

⇥
� ! � + 1

⇤

+O�
1/!

a+R+1
�

(19)

Similar expressions can be written for ansatz-2 and
ansatz-3. We show the asymptotic limits of the unpo-
larized and polarized gluon ITDs for ansatz-2 in FIGs. 8
and 9, respectively. For the demonstration purpose, we
select one arbitrary set of parameters from to the fit to
1 replica of the NNPDF unpolarized gluon distribution
described in Section II.

The M(!) and �M(!) approach the asymptotic lim-
its around ! ⇠ 15 as can be seen in FIGs. 8 and 9. It
is important to note that if future LQCD calculations of
gluon ITD can reach the region ! ⇠ 15, they will be able
to provide nonperturbative information to the Lipatov’s
pomeron [36, 37].

Using the fact that gluon PDF diverges much faster
than the valence quark PDF in the limit x ! 0, one can
show that the asymptotic limit of the ITD corresponding
to nucleon valence quark distribution will set in at earlier
! compared to the gluon ITDs, also noted in [47]. This
implies that the asymptotic region of the nucleon valence
quark ITD can be approached easily in the nonperturba-
tive calculations compared to the gluon ITDs.

VII. APPLICATIONS TO LATTICE QCD
CALCULATIONS OF PDFS

In recent years, several LQCD methods have been pro-
posed and developed to probe the light-cone structure of
hadrons, including the path-integral formulation of the
deep-inelastic scattering hadronic tensor [73], coordinate-
space method for the calculating light-cone distribu-
tion amplitudes [59], inversion method [74], quasi-
PDFs/LaMET [17, 18], pseudo-PDFs [60], and good lat-
tice cross sections [61, 75]. For the most recent review of
LQCD calculations of PDFs, see [76].

FIG. 8. Asymptotic expansion of the unpolarized gluon
ITD corresponding to a given set of parameters obtained by
fitting one replica of NNPDF unpolarized gluon distribution
using ansatz-2 for the xg

+(x) and xg

�(x) distributions. The
cyan line indicates the ITD and the dashed line indicates the
asymptotic limit of the ITD governed by the corresponding
fit parameters.

FIG. 9. Asymptotic expansion of the polarized gluon ITD
corresponding obtained by fitting one replica of NNPDF un-
polarized gluon distribution using ansatz-2. The dashed line
indicates the asymptotic limit of the polarized gluon ITD cor-
responding to fit parameters.

The extraction of PDFs from LQCD calculations has
received great interest since Ji’s proposal in [17, 18]. In-
stead of directly calculating the light-cone correlation
functions which define the PDFs, one can extract them
from the spatial correlation of parton fields calculable on
the Euclidean lattice. We begin this section by acknowl-
edging that any LQCD calculations of PDFs using any of
the above formalisms share the common challenge of how
best to extract a continuous distribution from discrete
data, compounded by a limited number of data points

RSS, Liu, Paul 
PRD 2021

Long-term 
mission for 
     LQCD 
community

/1411



Question: How best to extract x-dependent gluon helicity distribution from LQCD 

�G(µ2 = 10GeV2) = 0.251(47)(16) /1412

After 1-loop matching

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.5  1  1.5  2

S
G

(p
3
)

p3 (GeV)

32ID
48I   
24I   
32I   
32If  

RSS, Glatzmaier, Yang, Liu, et al  
PoS LATTICE(2014) 

Yang, RSS, et al (PRL 2017)

LQCD determination of gluon spin from local matrix element:

Ji, Zhang, Zhao [PRL 2013]

LaMET matching 
[Ji, Sci. China Phys 2014] 

�G

~Sg ! ~E ⇥ ~Aphys

Need two calculations to properly constrain                from  LQCD :x�g(x)



Question: How best to extract x-dependent gluon helicity distribution from LQCD 

8/12

Recall:

3

where z
µ

is the separation between the gluon fields, p
µ

is the four-momentum of the nucleon, and s
µ

⌘ u (p, s) �
µ

�5u (p, s),
a pseudovector normalized by s2 = �m2

p

, is the nucleon polarization vector and m
p

being the nucleon mass. Fi-

nally, the dual field to G
��

is defined as eG
��

= 1
2✏��⇢�G

⇢� , and W [z, 0] is a straight-line Wilson line in the adjoint
representation,

W [x, y] = Pexp
n

ig
s

Z 1

0
d⌘ (x� y)µÃ
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associated with the polarized gluon distribution are then written as

fM
µ↵;��(z, p, s) = em

µ↵;��(z, p, s)� em
µ↵;��(�z, p, s) . (5)
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invariant interval z2 and the Lorentz invariant (p · z) ⌘ �⌫ [26] called the Io↵e time due to its relation, up to a sign
and normalization of the target’s mass, with the original variable from DIS cross section analyses [30]. Ultimately, the

invariant amplitudes of interest will be those that contribute in the contraction g↵�fM
µ↵;�� with specific kinematics

that define the polarized PDF. All others that cannot be removed will contribute to systematic errors that must be
modeled or corrected for.

The light-cone polarized gluon distribution �g(x) is obtained from
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where z is taken in the light-cone “minus” direction, z = z�, p+ is the momentum in the light-cone “plus” direction,
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As noted in [26], with knowledge of the polarized gluon ITD eI
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The field-strength tensor G
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is antisymmetric with respect to its indices and g�� = 0, so the left hand side of
Eq. (6) reduces to a summation over the transverse indices i, j = x, y, perpendicular to the direction of separation

between the two gluon fields. The combination of the matrix elements fM0i;0i and fM
ij;ij can be written in terms of
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where the nucleon boost is along the 3rd (z) direction, p = {p0, 0?, pz} [27]. The polarization vector that we use is
s = {p

z

, 0?, p0}, such that the requirement s · p = 0 is satisfied.
The particular combination in Eq. (10) cancels the contamination terms coming from invariant amplitudes other

than fM(+)
sp

and fM
pp

present in Eq. (7). Still, it involves a contamination term proportional to fM
pp

that, in fact,
can be removed (as we discuss below). Therefore, the matrix element in Eq. (10), after removal of the ultraviolet
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Figure 7.11: Correlation (upper panel) and sensitivity (lower panel) coefficients between the
gluon helicity distribution Dg(x, Q2

) and the (photon-nucleon) double-spin asymmetry A1,
as well as between the quark-singlet distribution DS(x, Q2

) and A1, as a function of {x, Q2}.
The lighter blue and darker blue circles represent the values of the correlation (sensitivity)
coefficient for

p
s = 45 GeV and 140 GeV, respectively. In all the cases the size of the circles

is proportional to the value of the correlation (sensitivity) coefficient.
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Figure 7.12: Impact of the projected EIC ALL pseudoda on the gluon helicity (left panel)
and quark singlet helicity (right panel) distributions as a function of x for Q2

= 10 GeV2.
In addition to the DSSV14 estimate (light-blue), the uncertainty bands resulting from the fit
including the

p
s = 45 GeV DIS pseudodata (blue) and, subsequently, the reweighting withp

s = 140 GeV pseudodata (dark blue), are also shown.

the impact of the extrapolation region, three sets of pseudodata were generated by
shifting the unmeasured region at low x with ±1s confidence level, using existing
helicity PDF uncertainties as well as the central predictions.

In Fig. 7.13 the uncertainty bands for gp
1 before and after the three scenarios (±1s

confidence level and central) at the EIC are shown, along with the ratios d

EIC/d

Impact of projected EIC data 
(EIC Yellow Report)

Constraints from LQCD 
& theory of small-x needed

ALL always limited to x 2 [xmin, 1]

Kovchegov, et al [JHEP 2018]
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Summary & Outlook
First LQCD determination of polarized gluon Ioffe-time distribution

Thank you!

Goal: determination of gluon contribution to proton spin 
& x-dependent helicity distribution from LQCD
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Future calculation:  

  With precise LQCD matrix elements, perform pQCD matching to obtain  
   light-cone Ioffe-time distribution  

  Consider mixing with singlet quark distribution


