Hunting for Humming Continuous Wave Signals —— Neutron Stars, Dark Matter, New Physics

Australian **National** University

Image: OzGrav | Carl Knox

Dr Ling Sun, OzGrav-ANU INT Workshop 2024, Seattle WA

Gravitational wave detections

ICRR, Univ. of Tokyo/LIGO Lab/Caltech/MIT/Virgo Collaboration

 $*$ This material is based upon work supported by NSF's LIGO Laboratory which is a major facility fully funded by the National Science Foundation.

LONG DURATION <u>.</u>

@astronerdika

UNMODEL

 \subset \circ

NODELI

Image: Shanika Galaudage / LIGO-Virgo-KAGRA collaboration3

Continuous Waves from Neutron Stars

See recent reviews: Piccinni, Galaxies 10(3) (2022) Riles, Living Reviews in Relativity 26, 3 (2023) Wette, Astroparticle Physics 153, 102880 (2023) Image: OzGrav | Carl Knox

- *• Interior structure of neutron star*
- *• Neutron star properties, e.g., mass, spin, ellipticity*
- *• Nuclear equation of state*
- *• May discover exotic states of matter*
- *• Multi-messenger studies, e.g., mass and magnetic field structure inferred from GW/EM relative phase*
- *• Testing General Relativity*
- *• … and so on*

NASA's Goddard Space Flight Center / Conceptual Image Lab

-
- *• Signal is weak but persistent*

$$
f_{\rm GW}=2f_{\rm rotation}
$$

$$
h_0 = \frac{4\pi^2 G}{c^4} \frac{I_{zz} f_{\text{GW}}^2}{D} \epsilon
$$

• Non-axisymmetric deformation due to elastic stresses or magnetic field -- tiny "mountains"

$$
\left(\frac{\epsilon}{10^{-5}}\right) \left(\frac{I_{zz}}{10^{45} \text{ g cm}^2}\right) \left(\frac{f_{\text{GW}}}{100 \text{ Hz}}\right)^2 \left(\frac{1 \text{ kpc}}{D}\right)
$$

cf. GW150914 peak h0~10-21

 $h_0 \approx 10^{-25}$

$$
\epsilon = \frac{I_{xx} - I_{yy}}{I_{zz}} \leftarrow \text{ellipticity}
$$

• Free precession around the rotation axis

Credit: M. Kramer

 $f_{\rm GW} \sim f_{\rm rotation} + f_{\rm precession}$ $f_{\rm GW} \sim 2 f_{\rm rotation} + 2 f_{\rm precession}$

Continuous waves from neutron stars

• r-modes —— long-lasting oscillations in the fluid that makes up most of the star —— a fluid wave travelling around the star and driven by the Coriolis force due to rotation (see Rossby waves)

Credit: C. Hanna and B. Owen

$$
f_{\text{GW}} \sim 4 f_{\text{rotation}} / 3
$$

\n
\n
$$
h_0 \simeq 3.6 \times 10^{-26} \left(\frac{\alpha}{10^{-3}}\right) \left(\frac{f_{\text{GW}}}{100 \text{ Hz}}\right)^3 \left(\frac{1 \text{ kpc}}{D}\right)
$$

• Deformation due to matter accretion in the binary system

- *• Accretion is a natural method of powering GW emission*
- *• Torque-balance theory —— accretion spins the star up; GW emission slows it down*
- *• Signal frequency might be wandering slightly due to accretion*

Credit: Mark Myers, OzGrav-Swinburne

Continuous waves from neutron stars

 $f_{\rm GW} \sim 2 f_{\rm rotation}$

9

Continuous waves signal models

¹⁰ Wette, Astroparticle Physics 153, 102880 (2023)

- *• Intrinsic parameters, e.g., spin frequency, time derivatives of the frequency*
- *• Extrinsic parameters, e.g., sky location, orientation, orbital motion (if applicable), etc.*

• Secular spin down of the neutron star

 $f_{\rm gw} \propto f_{\rm gw}^n$

- *• EM (n~3)*
- *• GW (n=5)*
- *• r-mode (n=7)*
- *• Signal frequency is modulated by the motion of the detector*
- *• Signal amplitude is modulated by the antenna pattern*

Modulation of continuous wave signals

11

(There is extra modulation if the source is in a binary orbit)

Continuous waves search types

Sieniawska & Bejger, Universe 2019, 5(11), 217 and the set of the se

Continuous waves search methods

Credit: K. Wette, G2401246

• Fully coherent searches provide

the best sensitivity but allow for

least flexibility in signal models;

- Strain
- *• Semi-coherent methods sacrifice some sensitivity but are more computationally efficient and can allow for more flexible signal models*

also most expensive

Continuous waves search methods

14

See Riles, Living Reviews in Relativity 26, 3 (2023) for a comprehensive review of search methods

- *• Can increase the coherent time as follow-ups in hierarchical searches to balance sensitivity vs computing cost*
- *• But there are difficulties with different signal model assumptions, e.g., spinwandering effect*

15

- *• Trade-off between breadth and depth*
-

Wette, Astroparticle Physics 153, 102880 (2023)

TARGETED: 236 known pulsars

Also see O3 narrowband search: O3 HLV, Abbott+ (LVK) ApJ 932, 133 (2022)

- *• For 23 pulsars, resulting upper limits have surpassed EM measured spin-down limits.*
- *• For 9 pulsars, their spin-down limits have been surpassed for the first time.*
-

• For Crab & Vela, our limits are factors of ~100 and ~20 more constraining than the spin-down limits, respectively.

- *• Searched at once and twice the spin frequency 62 Hz*
- *• First time reach below GW spin-down limit for this star by more than a factor of 2 and limit GWs (l=m=2 mode) to account for <14% of the spin-down energy budget.*

TARGETED: Energetic young pulsar PSR J0537-6910

X-ray pulsar, largest spin-down luminosity, frequent and strong glitches; Use a NICER timing ephemeris

[NICER — Neutron star Interior Composition Explorer]

- *• Inter-glitch braking index suggests that r-mode oscillations may be important to GW emission.*
- *• Search in a narrow band 86—97 Hz*
- *• Allow for the r-mode driven spin-down scenario for a lowermass neutron star with soft EoSs*

O3 HL, Abbott+ (LVK), ApJ 922, 71 (2021)

DIRECTED: Young supernova remnants & Milky Way center

[Also see open data searches, e.g., Ming et al., 2024]

• Young supernova remnants may have larger ellipticity and

DIRECTED: Scorpius X-1

O3 HL, Abbott+ (LVK), PRD 106, 062002 (2022) O3 HL, Abbott+ (LVK), ApJL 941, L30 (2022)

Re-analyses with corrected orbital ephemeris: Whelan+ ApJ 949 117 (2023) Vargas+Melatos arXiv:2310.19183 (2023)

 2×10^{-26}

- *• Scorpius X-1 is the most X-ray-luminous low-mass X-ray binary*
- *• Several methods have been used, reaching physically interesting regimes*
- *• Better understanding of the spin-wandering effect can facilitate more sensitive searches*

 10^{-24}

 5×10^{-25}

 h_0^{eff} upper limit 2×10^{-25} 10^{-25}

BLIND ALL-SKY: Isolated neutron stars

- Need to account for the modulation due to the binary orbit
- *• Binary orbital parameters: orbital period [3, 45] days and projected semimajor axis [2, 40] light-sec*

BLIND ALL-SKY: Neutron stars in binary systems

O3a HL, Abbott+ (LVK), PRD 103, 064017 (2021) [Also see open data analyses, e.g., Covas et al., (2022), Covas et al., (2024)]

Challenges in searches and interpretations

• Large parameter space

- ‣ *The full possible frequency range, and/or sky positions*
- ‣ *Large range of frequency time derivatives*
- ‣ *Breadth vs depth trade-off*

• Long-duration integration

‣ *Computationally challenging*

• Uncertainty in signal models

- ‣ *Lower limit of neutron star ellipticity*
- ‣ *Improved theoretical modelling of r-modes*
- **Credit: ESA Credit: ESA Credit: ESA Credit: ESA**
- ‣ *Spin-wandering has been seen in EM observations fluctuation of magnetospheric or superfluid torques; fluctuation of accretion torque in binaries*
- ‣ *Glitches*
- ‣ *Other imperfectness in signal models*
- ‣ *Unknown effects*

• Uncertainty in interpretations

‣ *Uncertainties associated with the source properties, e.g., distance, orientation, age, and signal models*

• Need better theoretical understanding, e.g.

Probe the Dark Sector with GW Detectors

Probes of dark matter with GW detectors

24

Astrophysical probes via GW observations

Goddard Space Flight Center/NASA

- *• If neutron stars were to contain dark matter, there would be imprints in the star's tidal deformability, which may be accessible to GW observation.*
- *• Compact objects can form with an astrophysical or dark matter origin. Dissipative dark matter can allow new formation channels for compact objects.*
- *• Primordial black holes are also dark matter candidates. Sub*solar-mass black hole inspirals are continuous GW sources.
- *• Astrophysical probes of ultralight boson condensates around black holes become possible via GW observation, by only assuming a coupling through gravity.*

Superradiance: Brito, Cardoso, Pani

Searches and constraints on primordial black holes

-
- Quasi-continuous-wave search methods are being developed and improved to carry out more *sensitive searches to primordial black hole inspirals.* e.g., [Horowitz+ 2020, Miller+ 2021, Alestas+ 2024, Andres-Carcasona+ 2024, Velcani 2024]

Ultralight bosons

- *• Alternative beyond Standard Model theoretical frameworks* predict the existence of new ultralight boson particles, including *scalar (spin 0), vector (spin 1), and tensor (spin 2) fields.*
- *• QCD axion (well motivated to solve the strong CP problem), string axion, dark photon, etc. —— They are also dark matter candidates.*
- *• Their model-dependent weak couplings to the Standard Model (if at all) and the vanishingly small mass make them extremely difficult to detect by conventional lab experiments.*
- Now we can appeal to the new experimental field and use GW detectors to search *for them, taking advantage of their universal character of gravitational couplings.*

Artist's impression of an axion. Image: Science Photo Library / Andrade, Ramon / 3dciencia

Superradiant instability

$$
\equiv 2\pi \lambda_{\mu} \equiv h/(m_b c) \qquad r_g \equiv GM/c^2
$$

 Boson mass

[Arvanitaki+ (2010), Arvanitaki & Dubovsky (2011)]

Continuous waves from boson clouds

—— Probe a parameter space that is inaccessible by conventional *lab particle physics experiments; may detect new particles*

• A massive vector boson cloud oscillates around a black hole and produces gravitational waves

Credit: W. East (<https://www2.perimeterinstitute.ca/personal/weast/research.html>)

• What can we learn?

See e.g., [Arvanitaki+ (2010), Yoshino & Kodama (2014), Arvanitaki+ (2015), Arvanitaki+ (2017), Brito+ (2017), Baryakhtar+ (2017), East (2018)]

Searches for individual galactic sources (examples)

• Searches for boson clouds around unknown BHs

- ‣ *An all-sky search tailored for scalars in O3 data* [Abbott+ PRD 105, 102001 (2022)] *semiquantitative constraints on the possible presence of emitting boson clouds in our Galaxy, e.g., systems* ${younger}$ *than* $\sim 10^3$ ${yrs}$ *are disfavored in the whole Galaxy for* ${boson}$ ${\rm masses}\sim [2.5,\,10]\times 10^{-13}\, {\rm eV}$ for a maximum BH mass of $50M_\odot$ and $\sim [1.2,\,10]\times 10^{-13}\, {\rm eV}$ for a maximum BH mass of $100M_\odot$ (using Kroupa mass distribution with PDF $\propto m^{-2.3}$)
- ‣ *Constraints derived from all-sky/Milky Way center continuous wave searches, e.g.,* [Dergachev+ (2019), Palomba+ (2019), Abbott+ PRD 106, 042003 (2022)]

Unknown black holes or black holes with unknown history are not ideal in order to obtain robust constraints Remnant black holes in GW merger events are better targets! [Arvanitaki+ (2017)]

 \triangleright **E.g., boson masses** [6.4, 8.0] × 10⁻¹³ eV are disfavored assuming a BH age *of 5* × 10^6 yrs and [6.3, 13.2] × $10^{-13}\,\mathrm{eV}$ assuming a BH age of 10^5 yrs

• A dedicated search for scalars targeting Cygnus X-1 in O2

[Sun+ PRD 101, 063020 (2020), PRD 102, 089902 (2020), Collaviti+ (2024)]

CBC remnant black holes — Horizon distance (scalar)

1*.*0 $\cdot\,10^4$ 27 °10 *^f >* ¹⁰°⁸ Hz/s 0*.*8 \cdot 10^2 $\begin{picture}(180,170)(-170,-170) \put(100,170){\line(1,0){150}} \put(100,170){\line(1,0){150}} \put(100,170){\line(1,0){150}} \put(100,170){\line(1,0){150}} \put(100,170){\line(1,0){150}} \put(100,170){\line(1,0){150}} \put(100,170){\line(1,0){150}} \put(100,170){\line(1,0){150}} \put(100,170){\line(1,0){150}}$ 13 11 0*.*6 °° -10^{0} 10 10 $\begin{array}{c} \text{10--2} \\ \text{10--2} \\ \text{11--2} \\ \end{array}$.
. $\bm{\times}$ 0*.*4 10°² $\overline{\mathbb{X}}$ °**10** 0*.*2 -10^{-4} $J \cdot \angle$ **Promising with future detectors** $\frac{1}{10^{-6}}$ 0.0^{+} 10^0 10^1 10^2 10^3 10^4 M_i $M_i = 60 M_{\odot}$ $\chi_i = 0.70$ **[GW150914] can reach ~160 Mpc**

Jones+ PRD 108, 064001 (2023) Sensitivity estimates based on latest numerical relativity studies [2 aLIGO, 1 CE, 1ET, observation duration depends on emission timescale $\tau_{\rm GW}$]

Horizon Distance $[obj]$

CBC remnant black holes — Horizon distance (vector)

- *• Vector signals have much stronger radiation power but last much shorter (hours—months)*
- *• Vector clouds around CBC remnants can potentially be reached by current-generation detectors*
- *• Plots are showing an optimally matching scenario —— max GW strain when the cloud is saturated*
- *• Can probe a small range of boson masses for each given BH target; sensitive to non-optimally matching cases —— signals are slightly weaker but last longer*

Searches via Direct Interactions

• GW detectors are extremely sensitive to displacements — can be used as direct dark matter detectors through the field's weak coupling to normal matter.

Caltech/MIT/LIGO Lab

O3LHV, Abbott+ (LVK), PRD 105, 063030 (2022) PRD 109, 089902 (2024)

- *• Dark photons may directly couple to the baryons in the test masses and cause an oscillatory force on the detector*
- *• Constraints on the coupling strength of dark photons to baryons in the mirrors using two methods*

Searches via Direct Interactions

• KAGRA mirrors are made from different materials (sapphire test masses and fused silica auxiliary mirrors), enhancing a potential vector DM signal

• Projected sensitivity for 1-year observation —— KAGRA is more sensitive than LIGO/Virgo in low mass range (< 10Hz) by using auxiliary length channels for the B-L coupling

Michimura+ PRD 102, 102001 (2020)

• Constraints are less stringent noise level and measurement time) —— demonstrating the

than those derived from previous experiments (limited by current applicability of the method to the lower-mass vector DM search

```
m_A[eV/c^2]
```


Challenges in searches and interpretations

• Uncertainty in signal models

- ‣ *Signal morphology highly depends on theories*
- ‣ *Minor features not taken into account in simplified signal models*
- ‣ *Uncertainties and approximations in theoretical and numerical studies*
- ‣ *Not well-understood effects*

• Uncertainty in interpretations

- ‣ *Uncertainties associated with the source properties, e.g., black hole age and spin, PBH systems*
- ‣ *Uncertainties of the property distribution in the population (more relevant for blind search and stochastic background studies)*

• Large parameter space

- ‣ *The full possible frequency range, and/or sky positions*
- ‣ *Large range of frequency time derivatives*
- ‣ *Breadth vs depth trade-off*

• Long-duration integration

‣ *Computationally challenging*

• Need better theoretical understanding, e.g.

- ‣ *Coupling and self-interaction strength*
- ‣ *More accurate waveforms*
- ‣ *Theoretically preferred parameter space*
- *• Multiple types of searches for multiple types of continuous-wave signals*
- *• Opened up new avenues for studying dark matter and new physics*
- *• No detections yet but probing physically interesting regions*
- *• Continuous-wave signal processing techniques continue to develop and improve*
- *• Inputs from astronomers and theorists are essential to improve future studies*
- *• With further improved detectors in the near future, new discovery is at the horizon!*

Thanks! Questions?

GW signal timescales (scalar)

• Fastest growing scalar level $(s = n = 0, j = l = m = 1)$

$$
\alpha \equiv \frac{r_g}{\lambda_\mu} = \frac{GM}{c} \frac{m_b}{\hbar}
$$

$$
\tau_{\text{inst}}^{(\text{s})} \approx 27 \text{days} \left(\frac{M}{10 \ M_{\odot}} \right) \left(\frac{0.1}{\alpha} \right)^9 \frac{1}{\chi_i}
$$

$$
\tau_{GW}^{(s)} \approx 6.5 \times 10^4 \text{ yr} \left(\frac{M}{10 M_{\odot}}\right) \left(\frac{0.1}{\alpha}\right)^{15} \frac{1}{\chi}
$$

39

GW signal timescales (vector)

Population and stochastic background studies

• Constraints obtained from black hole spin measurements

e.g. [Arvanitaki et al. 2017, Brito et al. 2017, Baryakhtar et al. 2017, Cardoso et al. 2018, Ng et al., PRD 2021, Ng et al. PRL 2021]

- *• Exclusion regions in the BH mass-spin plane for a massive scalar field (l=m = 1,2,3) for a time scale of 50 Myr*
- *• There are systematics and uncertainties associated with spin measurements*

• Constraints from searches for stochastic GW background

e.g. [Tsukada et al. 2019, Tsukada et al. 2021, Yuan et al. 2022]

- *• Constraints on vectors (O1+O2 aLIGO data) —— excluding vector boson mass ~10-13 eV*
- *• Assumptions are made for BH population and spin distribution*

Population and stochastic background studies

- *• Unknown age and history*
- *• Systematics affecting the spin measurements*
- *• Not well understood impact from the active environment*
- *• Relatively low BH mass*
- *• Search challenges due to the binary motion*

• Clean environment, no impact from binary motion • Unknown location (need an all-sky blind search) • Contingent on BH populations • Unknown age, spin, etc.

• There may be plenty of detectable sources in our galaxy (if the bosons exist)

[Zhu et al., PRD 102, 063020 (2020)]

 10^{-16} .

 10^{-17} :

 10^{-18} =

 10^{-19} .

 GeV

Relax the assumption — consider self interactions (scalar)

- *• Self-interaction leads to smaller clouds and faster growth of the next level*
- *• Constraints from Cygnus X-1 O2 search and future prospects considering boson* \widetilde{f} *self-interaction (assuming a BH age of 105 year)*
- *• There are potential observational prospects of level transition signals*
- *• Further numerical studies in high boson mass regime that capture full dynamics of the cloud will facilitate future searches*

• Test weak coupling of kinetically mixed dark photon —— With a non-vanishing kinetic mixing, the superradiant cloud also dissipates energy through electromagnetic radiation.

Relax the assumption — consider weak couplings (vector)

• Test the dark Higgs-Abelian sector —— Depending on the relevant coupling strengths, the presence of the Higgs boson may lead to additional frequency evolution/dark radiation or an explosive bosenova forming strings

Jones+ in prep (2024)

Imprints on hierarchical mergers

- *• Hierarchical mergers in dense stellar clusters can create intermediate/massive BHs*
- *• Recoil velocity can kick the remnant BH out of the dense stellar environment*
- *• Low-spin progenitor BHs lead to lower recoil velocity of the remnant*
- *• Superradiance can rapidly spin down BHs and may keep more BHs in the dense stellar environment*

• Simulate merging BH populations by evolving a model cluster population (such that it visually matches the observed nuclear star cluster population after evolution)