

Office of Science

UPC physics in Run 3 and Run 4 with ALICE

Daniel Tapia Takaki

INT Workshop: Heavy-Ion Physics in the EIC era

August 19-23, 2024

Ultra peripheral collisions (UPC)

INT workshop: Heavy-ion physics in the EIC era

Gluon saturation matters

At high energies, or for heavy nuclei at lower energies, gluon saturation is predicted

- Non-linear QCD evolution equations introduced, but how is gluon saturation triggered?
- Experimental observables needed to map out the transition between the dilute and saturation regimes. The onset of saturation
- Can we determine experimentally the saturation scale (Q_S)?
- Is there a state of matter formed by gluon saturated matter with universal properties?

Experimental program

- The <u>Electron-Ion Collider</u> will be a dedicated QCD machine with the precision and control capabilities for studying gluon saturation and shadowing in a systematic way like never before.
- The <u>LHC</u> explores the high energy domain for both hadronic and photon-induced reactions
- <u>FoCa</u>I at ALICE will explore a unique low-*x* regime reaching *x* down to 10⁻⁶

The LHC is the Large **Photon** Collider

 <u>Ultra Peripheral Collisions (UPC)</u> can explore a wide range of energies using almost real photons

 $\begin{array}{l} \mathsf{k} = \gamma \mathsf{M}_{\mathsf{V}} \exp(\pm, \mathsf{y}) \\ \text{Up to several TeV in } \gamma \mathsf{p} \\ \text{Up to } \sim 700 \text{ GeV/nucleon in } \gamma \mathsf{A} \\ \text{Up to } \sim 150 \text{ GeV in } \gamma \gamma \text{ using UPC PbPb,} \\ \sim 4 \text{ TeV in in } \gamma \gamma \text{ using UPC pp} \end{array}$

 <u>UPCs at the LHC probe the hadronic structure over</u> broad and unique Bjoren x region, yet the precision not compatible to DIS machines like the EIC x = M_V/γm_p exp(±,y) Interactions mediated by the EM interactions

Equivalent photon flux

Two-photon interactions in UPC Pb-Pb

INT workshop: Heavy-ion physics in the EIC era

Exclusive dimuons in UPC pPb

Phys. Rev. D 108 (2023) 11, 112004

Two-photon measurements providing tests to the photon flux calculations

- <u>STARLight:</u> point-like charge with radial cutoff
- SuperChic: Charge distributions using form factors

INT workshop: Heavy-ion physics in the EIC era

Vector meson (VM) photoproduction in UPCs

- As in DIS, several reactions are possible in UPCs:
 - -Exclusive photoproduction -Semi-exclusive photoproduction -Inclusive photoproduction
 - INT workshop: Heavy-ion physics in the EIC era

- By studying various VMs, it is possible to study the Q² dependence
- In the dipole approach, the light VMs (φ, ρ⁰) are more sensitive to saturation because of the larger dipole, but pQCD methods not applicable

Predictions pre-LHC data for exclusive J/ ψ off protons

- Deviations from the HERA power-law trend predicted as signatures of saturation
- At high energies also possible to distinguish among saturation models

Two-fold ambiguity on the photon direction in symmetric systems

$$W_{\gamma p}^2 = 2E_p M_{J/\psi} e^{\pm y}$$

Symmetric systems (pp, A-A) suffer from the two-fold ambiguity on the photon direction

$$\frac{d\sigma}{dy} = n(+y)\sigma(\gamma p, +y) + n(-y)\sigma(\gamma p, -y)$$

Only UPC asymmetric systems (p-Pb) analyses provide <u>a model</u> <u>independent way</u> of the energy dependence of $\sigma(\gamma p)$

Exclusive J/ψ measurements by ALICE using Run 1 (2013)

Phys. Rev. Lett. 113 (2014) 23, 232504

- No change with respect to HERA power-law growth observed at low energies up to 700 GeV
- UPC p-Pb collisions have no ambiguity on the photon energy

$$W_{\gamma p}^2 = 2E_p M_{J/\psi} e^{\pm y}$$

Exclusive J/ ψ in UPC p-Pb (2023)

Phys. Rev. D 108 (2023) 11, 112004

- No change in the behavior observed between HERA and LHC energies
- The highest energy point measured in a modelindependent way is only up to 700 GeV in UPC p-Pb by ALICE

Dissociative J/ψ in UPC

See talk by A. Ridzikova at DIS'24 Figures from her

Gluon saturation and dissociative J/ψ in UPC

See talk by A. Ridzikova at DIS'24 Figures from her

In the hot spot model, the increase of large hot spots within the proton reaches a point of significant overlap, and the resulting uniformity reduces both the variance and the dissociative cross section

Phys. Lett. B 766 (2017) 186-191

Dissociative J/ ψ in UPC pPb

Transverse profile of the target

UPCs can probe the transverse profile of the target!

Appearance and location of diffractive dips can be signatures of gluon saturation

Transverse profile of the target

V. Goncalves, et al. Phys. Lett. B791 (2019) 299-304

Energy dependence of the

t-distribution: onset of gluon saturation

Signature of gluon saturation

INT workshop: Heavy-ion physics in the EIC era

t-dependence measurement of UPC ρ^0

V. Goncalves, et al. Phys. Lett. B791 (2019) 299-304

Coherent J/ ψ in UPC Pb-Pb

Eur. Phys. J. C 73 (2013) 11, 2617

Phys. Lett. B 772 (2017) 489-511

Coherent J/ ψ in UPC Pb-Pb

- Confirmation of nuclear shadowing with Run 2 data
- No model can describe the rapidity dependence

$$W_{\gamma p}^2 = 2E_p M_{J/\psi} e^{\pm y}$$

Mid-rapidity x ~10⁻³

Forward rapidity 95% at x $\sim 10^{-2}$ 5% at x $\sim 10^{-5}$

Projections for VMs in γ Pb

Recent NLO calculations indicate importance of quark contribution and large scale uncertainties

The FoCal region is gluon dominated

- At LO predicted to be proportial to the square of the gluon density (Z. Ryskin Phys. C 57, 89 (1993), but several caveats
- UPC J/ψ also
 described by
 Generalized Parton
 Distributions (GPDs),
 with some theory
 considerations

Nuclear suppression factor for UPC J/ ψ : Comparing γ Pb to γ p

V. Guzey et al. PLB 726 (2013)

An experimental definition, which can be linked to PDFs at LO

$$S_{Pb}(x) = \sqrt{\frac{\sigma_{\gamma A \to J/\psi A}(W_{\gamma p})}{\sigma_{\gamma A \to J/\psi A}^{\mathrm{IA}}(W_{\gamma p})}} = \kappa_{A/N} \frac{xg_A(x,\mu^2)}{Axg_N(x,\mu^2)}$$

Run 1 data from ALICE was the first at indicating nuclear gluon shadowing at $x \sim 10^{-3}$

Large scale NLO uncertainties should cancel in the $S_{Pb}(x)$ ratio

ALICE results at y=0 have no ambiguity on the photon energy

INT workshop: Heavy-ion physics in the EIC era

Two-fold ambiguity on the photon direction in symmetric systems

$$W_{\gamma p}^2 = 2E_p M_{J/\psi} e^{\pm y}$$

Symmetric systems (pp, A-A) suffer from the two-fold ambiguity on the photon direction

$$\frac{d\sigma}{dy} = \frac{n(+y)\sigma(\gamma p, +y) + n(-y)\sigma(\gamma p, -y)}{n(-y)\sigma(\gamma p, -y)}$$

Analyses of UPC asymmetric systems (p-Pb) provide <u>a model independent way</u> to study the energy dependence of $\sigma(\gamma p)$

Impact parameter flux profile

Broz, Contreras and DTT, CPC 235 (2020) 107181

Neutron-dependence of coherent J/ ψ in UPC Pb-Pb

The photon flux (n) depends on the impact parameter

Decomposed in terms of neutron configurations emitted in the forward region

$$\frac{d\sigma}{dy} = \frac{d\sigma(0n0n)}{dy} + 2\frac{d\sigma(0nXn)}{dy} + \frac{d\sigma(XnXn)}{dy}$$

Solving the linear equations resolves the two-fold ambiguity for VMs at $y \neq 0$

$$\frac{d\sigma}{dy} = n(+y)\sigma(\gamma p, +y) + n(-y)\sigma(\gamma p, -y)$$

Guzey, Strikman, Zhalov, EPJC 74 (2014) 7, 2942

Nuclear suppression factor for peripheral (not UPC) J/ ψ

J.G. Contreras, Phys. Rev. C 96 (2017) 1, 015203

Energy dependence of coherent J/ ψ in γ Pb – ALICE Run 1 and Run 2 data

JHEP 10 (2023) 119

Confirmed Run 1 results. At low x, both shadowing and saturation models describe the data

Energy dependence across the whole range not described by models

In a single experiment exploring (20,800) GeV in $W_{\gamma Pb}$ and x from 10^{-2} to 10^{-5}

Nuclear suppression factor – ALICE Run 1 and Run 2 data

<u>JHEP 10 (2023) 119</u>

At low x, both shadowing and saturation models describe the data

Confirmation that peripheral hadronic events can be used to extract the energy dependence. Already explored down to x = 4.4×10⁻⁵ using Run 1 data

With the neutrondependent analysis using Run 2 data, down to x =1.1×10⁻⁵, Run 2

INT workshop: Heavy-ion physics in the EIC era

Energy dependence of coherent J/ ψ in γ Pb

<u>JHEP 10 (2023) 119</u>

Both gluon saturation and shadowing describe the data at high energies

At low energies the data cannot be described by these models

t-dependence of coherent and incoherent J/ ψ in UPC Pb-Pb

First measurement of the |t|-dependence of incoherent J/ψ photonuclear productionPhys.Rev.Lett. 132 (2024) 16, 162302Probing for gluonic "hot spots" in Pb

INT workshop: Heavy-ion physics in the EIC era

t-dependence of incoherent J/ ψ in UPC Pb-Pb

Editors' Suggestion

First Measurement of the |t| Dependence of Incoherent J/ψ Photonuclear Production

S. Acharya *et al.* (ALICE Collaboration) Phys. Rev. Lett. **132**, 162302 (2024) – Published 19 April 2024

The first experimental measurement of the incoherent photonuclear production of J/ψ in ultraperipheral heavy-ion collisions is better explained by the presence of subnuclear quantum fluctuations of the gluon field. Show Abstract +

INT workshop: Heavy-ion physics in the EIC era

Beyond the 1-Dimensional picture

INT workshop: Heavy-ion physics in the EIC era

A new point of view

EVERY CROSS SECTION

A new point of view

Martens, Ralston, Tapia Takaki Eur. Phys. J. C78, 5, 2018

ALICE in Run 3: A major upgrade

- 50 times increase in the readout rate
- 3 to 6x improvement in pointing resolution

 Secondary vertexing for forward muons

ALICE in Run 3: Trigger-less mode

2 μs time frame of Pb-Pb collisions at a 50 kHz interaction rate in the TPC

Great performance for reconstructing UPC vector mesons

Run 3 data analysis: Inelastic γ +Pb -> X events

Experimental signatures for inelastic photonuclear interactions:

1) There is a rapidity gap on the side of the photonemitting nucleus \rightarrow main experimental signature

2) The photon energy << beam energy \rightarrow particle production is shifted in rapidity to the side of the target nucleus

Phys. Rev C 66 (2002) 044906 <u>Total cross sections in Pb+Pb @ $\sqrt{s} = 5.5$ TeV</u> $\sigma(Pb+Pb \rightarrow Pb+ccbar+X) = 2b$ $\sigma(Pb+Pb \rightarrow Pb + bbbar +X) = 830 \ \mu b$

Nucleus breaks up Multiple neutrons

<u>Direct production:</u> a bare photon interacts with a parton in the target

<u>Resolved production:</u> the photon fluctuates to vector meson which interacts inelastically with the target

ALICE timeline

FoCal and ITS3

ALICE gets the green light for new subdetectors

CERN's dedicated heavy-ion physics experiment, ALICE, is upgrading its Inner Tracking System and adding a forward calorimeter for the next phase of the LHC upgrade

25 APRIL, 2024 | By ALICE collaboration

INT workshop: Heavy-ion physics in the EIC era

The ALICE FoCal project for Run 4

The ALICE FoCal project for Run 4

UPC VM projections for FoCal

	A. Bylink	in, J. Nystrand and DTT	<i>J. Phys. G</i> 50 (2023) 055105, 5
VM	$\sigma(\mathbf{p} + \mathbf{Pb} \rightarrow \mathbf{p} + \mathbf{Pb} + \mathbf{VM})$	$\sigma(3.4 \le \eta_{1,2} \le 5.8)$	Yield
		$p \rightarrow FoCal$	$p \rightarrow FoCal$
$ ho^0$	35 mb	140 nb	21,000
ϕ	1.7 mb	51 nb	7,700
${ m J}/\psi$	$98 \ \mu b$	400 nb	60,000
$\psi(2S)$	$16 \ \mu b$	8.9 nb	$1,\!300$
$\Upsilon(1S)$	220 nb	0.38 nb	60
		$Pb \rightarrow FoCal$	$Pb \rightarrow FoCal$
ρ^0	35 mb	17 nb	2,600
ϕ	1.7 mb	5.3 nb	800
${ m J}/\psi$	$98 \ \mu \mathrm{b}$	36 nb	$5,\!400$
$\psi(2S)$	$16 \ \mu b$	$0.53 \mathrm{~nb}$	80
$\Upsilon(1S)$	220 nb	$0.67 \mathrm{\ pb}$	~ 0

INT workshop: Heavy-ion physics in the EIC era

Projections for exclusive J/ψ off protons

- Deviations from a power-law trend should signal non-linear QCD dynamics
- Here, projections based on STARlight which uses a parametrization based on HERA data $\sigma_0 (W_{\gamma p}/W_0)^{\delta}$
- For all figures, 60% efficiency. Conservative assumption after acceptance selection

Projections for exclusive J/ψ off protons

- Projections assuming a broken power-law
- Projected points based on NLO BFKL calculation

$$\sigma(\gamma p) \approx \frac{\sigma_0}{\frac{1}{W_{\gamma p}^{\delta}} + A}$$

Projections for exclusive J/ψ off protons

Power-law behavior (STARlight)

UPC p-Pb $\sqrt{s_{NN}} = 8.16 \text{ TeV}, 150 \text{ nb}^{-1}$

Broken power-law behavior (NLO BFKL)

UPC p-Pb $\sqrt{s_{NN}} = 8.16 \text{ TeV}, 150 \text{ nb}^{-1}$

FoCal measurement would be sufficient to observe a deviation from a power law behavior, if exists

Projections for exclusive $\psi(2S)$ and J/ ψ cross section ratio in γp

- Different wave functions and dipole sizes evolution result in great sensitivity to non-linear QCD effects
- No sensitivity at HERA, but expected at the LHC
- Projections here based on STARlight

Projections for dissociative J/ ψ cross section ratio in γp

J. Cepilia, J.G. Contreras and DTT Phys. Lett.B 766 (2017) 186-191

INT workshop: Heavy-ion physics in the EIC era

Projections for dissociative J/ ψ cross section ratio in γp

UPC p-Pb $\sqrt{s_{NN}}$ = 8.16 TeV, 150 nb⁻¹

INT workshop: Heavy-ion physics in the EIC era

$\mathcal{L} = 7.0 \text{ nb}^{-1}$

A. Bylinkin, J. Nystrand and DTT J.Phys.G 50 (2023) 055105, 5

VM	$\sigma(Pb + Pb \rightarrow Pb + Pb + VM)$	$\sigma(3.4 \le \eta_{1,2} \le 5.8)$	Yield
$ ho^0$	5.0 b	$20~\mu{ m b}$	$140,\!000$
ϕ	440 mb	$10~\mu{ m b}$	70,000
${ m J}/\psi$	39 mb	$53~\mu{ m b}$	$370,\!000$
$\psi(2S)$	7.5 mb	$1.1 \ \mu \mathrm{b}$	7,500
$\Upsilon(1S)$	$94 \ \mu b$	5.0 nb	35

Projections for coherent J/ ψ cross section ratio in γ Pb

UPC Pb-Pb $\sqrt{s_{NN}} = 5.36 \text{ TeV}, 7 \text{ nb}^{-1}$

FoCal acceptance dominated by gluons and sensitivity to the form factor

 Projections here based on STARlight

Neutron-dependence of coherent J/ ψ in γ Pb

Decomposed in terms of neutron configurations emitted in the forward region

$$\frac{d\sigma}{dy} = \frac{d\sigma(0n0n)}{dy} + 2\frac{d\sigma(0nXn)}{dy} + \frac{d\sigma(XnXn)}{dy}$$

Neutron configuration	$\sigma(Pb + Pb \rightarrow J/\psi + Pb + Pb)$	$\sigma(3.4 \le \eta_{1,2} \le 5.8)$	Yield
0n0n	28.8 mb	$47 \ \mu \mathrm{b}$	$329,\!000$
0nXn + Xn0n	$7.3 \mathrm{\ mb}$	$5.0~\mu{ m b}$	$35,\!000$
XnXn	3.0 mb	$2.0~\mu{ m b}$	$14,\!000$

Solving the linear equations resolves the two-photon ambiguity for VMs at $y \neq 0$

$$\frac{d\sigma}{dy} = n(+y)\sigma(\gamma p, +y) + n(-y)\sigma(\gamma p, -y)$$

INT workshop: Heavy-ion physics in the EIC era

Projections for Neutron-dependence of coherent J/ ψ in γ Pb

- Neutrons measured with Zero Degree Calorimeters
- Projections based on STARlight
- ALICE will be the only detector capable of explore x ~ 10⁻⁶ in Pb thanks to FoCal

- With sufficient luminosity, it would be possible to study the A-dependence of UPC J/ ψ for p, O and Pb
- Possible to do the A-dependence for UPC ρ^0 for p, O, Xe and Pb
- The probability for Coulomb excitation in coincidence with vector meson production in O-O is small. So, unlikely to be able to extract r0 photonuclear cross section using 0nXn and XnXn fragmentation

Thanks!