using gravitational wave observations

Hung Tan Syracuse University

Collaborators: Travis Dore (Universität Bielefeld), Veronica Dexheimer (Kent State University), Jacquelyn Noronha-Hostler (UIUC, ICASU), Nicolás Yunes (UIUC, ICASU)

PhysRevLett.125.261104 PhysRevD.105.023018 PhysRevLett.128.161101

INT: EOS Measurements with Next-Gerneration GW Detectors Sep. 5th 2024

Challenges of measuring the Neutron-Star equation of state

Cold Dense Matter in a Neutron Star Core How GW signals reveal properties of cold dense matter?

Detection GW170817

Dietrich et al. 2021

Cold Dense Matter in a Neutron Star Core

How inspiral-phase signals reveal properties of cold dense matter?

 M_1

Masses (M_1 and M_2) can be measured at early inspiral phase

Cold Dense Matter in a Neutron Star Core How inspiral-phase signals reveal properties of cold dense matter?

Tidal deformability!

Tidal deformability (Λ_1 and Λ_2) in the late inspiral phase

 Λ_1

 M_1

Problems Degeneracy in GW inference

• Early inspiral phase: M_1, M_2 (Assuming no spin)

Late inspiral phase:
=
$$\frac{16}{13}\eta_1^4(12 - 11\eta_1) \Lambda_1 + \frac{16}{13}\eta_2^4(12 - 11\eta_2) \Lambda_2$$

 $\eta_i = M_i / (M_1 + M_2)$

- Spectral Parametrazation - What's the challenge?
- EoS insensitive relations
 - What's the challenge?
- Future Work

Outline

• How gravitational wave (GW) observations constrain equation of state (EoS)?

Spectral Parametrization **Parametrizing EoSs**

$$\Gamma \equiv \frac{\epsilon + p \, dp}{p \, d\epsilon}$$

Adiabatic index

$$\ln \Gamma = \sum_{k} \gamma_k x^k$$

Spectral Parametrization Parametrizing adiabatic index

$$\ln \Gamma = \sum_{k} \gamma_k x^k$$

$$x = \ln \frac{p}{p_0}$$

Pressure at saturation density (n_{sat}) , fixed

A spectral EoS is represented by $(\gamma_0, \gamma_1, \gamma_2, \gamma_3, ...)$ Lindblom 2010

Spectral Parametrization **An Example**

Example: $(\gamma_0, \gamma_1, \gamma_2, \gamma_3) = (0.982, 0.128, -0.039, 0.003)$

$$\frac{\epsilon + p \, dp}{p \, d\epsilon} = \exp\left(0.982 + 0.128x - 0.039x^2 + 0.004\right)$$

- Gravitational waveform template $h(t; M_i, \Lambda_i)$ can be calculated for a given spectral EoS
- If waveform template ~ observed GW signal, try another set of γ
- After finding the best fit of γ , we find the best fit EoS
- M, R, Λ can be calculated using that EoS, which avoids the degeneracy problem and constrains the radius

 $03x^{3}$

Spectral Parametrization

Challenges: what if the true EoS cannot be well approximated?

Tan et al. PRL (2020)

Tan et al. PRD (2022)

Spectral Parametrization Challenges: what if the EoS is not that smooth

• Phase transition (PT) $\Gamma \equiv \frac{\epsilon + p}{p} \frac{dp}{d\epsilon} = \exp\left(\sum_{k} \gamma_{k} x^{k}\right)$

Spectral Parametrization Challenges: what if the EoS is not smooth

Hung Tan / Syracuse University

Spectral EoS

Spectral Parametrization Challenges: what if the EoS is not smooth

Spectral Parametrization **GW190814: A NS or a BH**

$M \approx 2.6 M_{\odot}$ (GW190814)

Spectral EoS constraint

 $M_{max} \leq 2.43 M_{\odot} (90\%)$

GW170817, LVC 2018

Hung Tan / Syracuse University

 $\rightarrow \leftarrow$

Spectral Parametrization **GW190814: A NS or a BH**

Tan et al. PRL (2020)

Spectral Parametrization Summary

- EoS
- We can miss the opportunity to detect a phase transition

• EoSs with a phase transition are not well approximated by spectral

EoS-insensitive relations Introducing chirp deformability

• Early phase of the inspiral: M_1, M_2 (Assuming no spin)

Late inspiral phase:
=
$$\frac{16}{13} \left(\eta_1^4 (12 - 11\eta_1) \Lambda_1 + \eta_2^4 (12 - 11\eta_2) \Lambda_2 \right)$$

 $\eta_i = M_i / (M_1 + M_2)$

Yagi and Yunes 2016

Binary Love relation: $\Lambda_a(\Lambda_s)$

- Symbols
 - $-\Lambda_a = (\Lambda_1 \Lambda_2)/2$
 - $-\Lambda_s = (\Lambda_1 + \Lambda_2)/2$
 - $-q = M_1/M_2$
- $\mathcal{O}(10\%)$ error to the fit
- Break degeneracy with the fitted $\Lambda_a(\Lambda_s)$ and $\tilde{\Lambda}(\Lambda_1, \Lambda_2)$

What will happen if we consider phase transitions?

Binary Love relation: $\Lambda_a(\Lambda_s)$

Tan et al. (2021)

Hung Tan / Syracuse University

20

EoS-insensitive relations Slope of binary Love relation

Tan et al. (2021)

EoS-insensitive relations Slope of binary Love relation

Tan et al. (2021)

Tan et al. (2021)

Why does n_{rise} change the slope of M-R curve?

EoS-insensitive relations Summary

not assume the relation is universal and use it blindly.

• Binary Love relations contain information of phase transitions, do

Future Work

- EoS insensitive relation: more problems

• Parametrizing EoS: What if the true EoS cannot be well represented?

Future Work Next generation detector

5PN:
$$\tilde{\Lambda} = \frac{16}{13} \left(\eta_1^4 (12 - 11\eta_1)\Lambda_1 + \eta_2^4 (12 - 11\eta_2)\Lambda_2 \right)$$

6PN: $\delta\Lambda = \eta_1^4 \left(-\frac{15895}{28} + \frac{4595}{28}\eta_1 + \frac{5715}{14}\eta_1^2 - \frac{325}{7}\eta_1^3 \right)\Lambda_1 + (1 \leftrightarrow 2)$

