Unfolding Measurements at H1 using Machine Learning

Fernando Torales Acosta

1

Quick Overview

- Unfolding + OmniFold
- First OmniFold Measurement
- Previously inaccessible observable
	- Made possible with OmniFold
- OmniFold for Jet Substructure

H1 at HERA

- **• H1 Detector at the positron-proton collider, HERA. Hosted in Hamburg Germany**
- **• Major goal was to study internal structure of the proton through deep inelastic scattering**

$$
e(k) + q(p_1) \rightarrow e'(k_{\ell}) + jet(k_J) + X
$$

HERA publication overview **The HERA publication has public** to the HERA public state of the HERA publication of the HERA publication of the

Status: Feb 2020

- HERA operated from 1992- 2007
- Both ZEUS and H1 are still active
	- Data *AND* simulation are available to members for analysis
- HERA data used to study PDFs and perturbative QCD, low-x and diffraction, transition from soft to hard QCD but a state of the \bullet HERA data used to study α iu portui patrvo QUD, luw- λ

Top-ten cited (excluding detector papers)

JHEP 1001 (2010) 109 H1+ZEUS 1000+ Data combination, PDF Eur.Phys.J. C21 (2001) 33 H1 700+ Low-x, PDF, alpha_s Eur.Phys.J. C21 (2001) 33 H1 /00+ Low-x, PDF, alp
Nucl.Phys. B470 (1996) 3 H1 500+ Low-x, PDF Eur. Phys. J. C21 (2001) 443 ZEUS 500+ Low-x, PDF Phys.Lett. B315 (1993) 481 ZEUS 500+ Observation of diffraction Nucl. Phys. B407 (1993) 515 H1 400 + Rise of F2 at low-x Eur.Phys.J. C75 (2015) 580 H1+ZEUS 400+ Data combination, Low-x, PDF Phys.Lett. B316 (1993) 412 ZEUS 400+ Rise of F2 at low-x Z.Phys. C76 (1997) 613 H1 400+ Difffractive PDF Z.Phys. C74 (1997) 207 ZEUS 400+ High Q² DIS **PDFs and perturbative QCD, low-x and diffraction, transition from soft to hard QCD**

● Data are available for analysis at iy great example of maintair
' Really great example of maintaining 'legacy' datasets as our analysis methods improve

infrastructure (batch system)

Unfolding

- Essentially: We want to remove unwanted detector effects from our experimental data
	- correct a whole dataset on a statistical level
	- combine data from multiple sources
- Un-binned?
	- Re-bin option for future analysis
	- Modify phase space in the future
	- New Observables that are function of previous unfolding

Detector-level

Particle-level

Motivating ML + Liklehood Ratios

How can we adjust one distribution to look like another?

- In practice, directly learning the individual densities, $p_A(x)$ and $p_B(x)$ is difficult ⃗
- Machine learning (classifiers) can directly approximate the *ratio* of the liklehoods

Credit: Mariel Pattee

Classifier functions can be re-used to directly approximate a likelihood ratio.

A vanilla NN classifying between two classes could be trained using binary cross-entropy loss:

$$
L_{BCE}[f] = -\int dx \left(p_A(x) \log(f(x)) + p_B(x) \log(1 - f(x)) \right)
$$

where $f(x)$ is the output of a NN classifier, and our datasets are sampled from these two probability distributions $p_A(x)$ and $p_B(x)$.

Credit: Mariel Pattee

Classifier functions can be re-used to directly approximate a likelihood ratio.

A vanilla NN classifying between two classes could be trained using binary cross-entropy loss:

$$
L_{\text{BCE}}[f] = -\int \mathrm{d}x \, \big(p_A(x) \, \log(f(x)) + p_B(x) \, \log(1 - f(x)) \big)
$$

To find where this is minimized, we need to find the extremum, i.e. differentiate with respect to $f(x)$ and set equal to 0:

$$
\frac{\partial L}{\partial f} = -\frac{\partial}{\partial f} (p_A(x) \log(f(x)) + p_B(x) \log(1 - f(x)))
$$

$$
= -\frac{p_A(x)}{f(x)} + \frac{p_B(x)}{1 - f(x)}
$$

$$
\frac{\partial L}{\partial f} = 0 \Rightarrow \frac{f(x)}{1 - f(x)} = \frac{p_A(x)}{p_B(x)}
$$
Rescaling of classifier output

Credit: Mariel Pattee

OmniFold

2 step iterative approach

- 1. Events from detector level sim. are reweighted to match the data
- 2. Create a "new simulation" by transforming weights to a proper function of the generated events

Classifiers used to approximate **2** likelihood functions:

- 1. reco MC to Data reweighting
- 2. **Previous** and **new Gen** reweighting

Some pretty consistent numbers: 4-5 Iterations, for single ensemble, ~5 ensembles

OmniFold Terms

 $H1$

- Dimensionality:
	- 1 Observable: UniFold
	- Many: MultiFold
		- \cdot (Often used interchangeably with On
	- All: OmniFold
- Steps
	- Step 1: Detector sim to Data
	- Step 2: Old Particle-level to new Press Event 71329
- Iterations: Loops of Om
- Ensembles: Repetition of the unit of the water
 Simulation

Simulation
 Simulation
	- To mitigate randomness fron

 $\begin{vmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{vmatrix}$

 $-180.$

Experimental Setup

- H1 Data from 2006 and 2007 periods at 228 ${\rm pb}^-1$ (130 ${\rm pb}^{-1}$)
	- Positron-proton and electron proton collisions Using 228 pb-1 of data collected and data collected and data collected and data collected and data collected a
Using 228 pb-1 of data collected and data collected and data collected and data collected and data collected a

$$
-\sqrt{s} = 318 \text{ GeV}
$$

- Fiducial Cuts:
	- $-0.2 < y < 0.7$
	- $-Q^2 > 150 \text{ GeV}^2$ $C_2 V$
	- $-p_T^{\text{jet}} > 10 \text{ GeV}$ \overline{C} v
	- $-1 < \eta_{\rm lab} < 2.5$
	- $-k_{\rm T}$, $R = 1.0$ 0
	- *q*⊥/*Q* < 0.25 0.25 $\frac{1}{2}$
	- *q*⊥/*p*T,*jet* < 0.3

 $Q^2 = -q^2$ $y = PQ / pk$ **P:** incoming proton 4-vector k: incoming electron 4-vector

11

H1 Differential Cross Sections (Lepton-Jet correlations) PHYSICAL REVIEW LETTERS 128, 132002 (2022)

First multidimensional un-binned unfolding using OmniFold

Fernando TA Fernando TA 7/1/24 7/1/24

distance parameter R ¼ 1. The following observables are measured: jet transverse momentum and pseudorapidity, as well as the TMD-sensitive observables observables observables observables observables observables observables m and Δ (lepton-jet azimuthal angles Δ correlation). Fig. 2. Measured cross section in contract to the inclusive jet incl ^T =Q) (lower left), and lepton-jet azimuthal

 $\begin{split} e(k)+q(p_1) \rightarrow e'(k_\ell)+jet(k_J)+X \end{split}$

Systematic Uncertainties

General Procedure

- **•** Systematically vary MonteCarlo
- **•** Both detector level and generator level sim.
- **•** Re-do entire analysis, **including unfolding**
- **•** Take full difference of systematic variations as uncertainty

Systematic uncertainties considered

- **• HFS energy scale:** +- 1%
- **HFS azimuthal angle:** $+-20$ mrad
- Lepton energy: $+-0.5%$ (mainly affects $Q₂$)
- **Lepton azimuthal angle:** +- 1 mrad (mainly affects Q²)
- Model uncertainty: differences in unfolded results between Djangoh and Rapgap
- **QED uncertainty**: Use the variation of measured quantities when radiation is turned off in the simulation

Bootstrapping Uncertainty

- Simulate different ensembles of data
	- Each event is given an initial weight according to a poisson distribution with $\mu=1$
	- Simulates ~100 "pseudo datasets"
	- Estimates statistical uncertainty of dataset
- Repeat entire unfolding process with different ensembles
	- Save final NN weights of OmniFold Procedure
	- Take the standard deviation of the spread in the unfolded results as the statistical uncertainty

14

Lepton Jet Asymmetry

Observable that was previously impossible to unfold!

- Total transverse momentum of the outgoing system $\vec{q}_{\perp} = \vec{k}_{\ell \perp} + \vec{k}_{J \perp}$, is typically *small* but *nonzero* ⃗
- Imbalance can come from perturbative initial and final state radiation
	- **−** e.g. Emission of soft gluon with momentum $k_{\perp g}$
	- unrelated to TMDs or intrinsic transverse momentum of target gluons
- Depending on kinematics, soft gluon radiation can dominate

 $P_{\perp} \gg q_{\perp}$

- Radiative corrections enhanced approximately as $(\alpha_s \ln^2 P_{\perp}^2/q_{\perp}^2)^n$

 $e(k) + q(p_1) \rightarrow e'(k_{\ell}) + jet(k_{J}) + X$

Lepton Jet Asymmetry

Key Ingredients:

• ⁼ *Total* **transverse** *q*⊥ **momentum**

$$
\vec{q}_{\perp} = \vec{k}_{e\perp} + \vec{k}_{J\perp}
$$

$$
\overrightarrow{P_{\perp}} = (\vec{k}_{\ell\perp} - \vec{k}_{J\perp}) / 2
$$

• ⁼ Transverse *P*⊥ **momentum d***ifference*

$$
\phi = \text{acos}[(\vec{q}_{\perp} \cdot \overrightarrow{P_{\perp}}) / \vec{q}_{\perp} \overrightarrow{P_{\perp}}]
$$

Final Observable: $\langle \cos(n\phi) \rangle$ for n = 1, 2, 3

Multifold used to unfold: $p_{x}^{e}, p_{y}^{e}, p_{z}^{e}, p_{\text{T}}^{\text{jet}}, \eta^{\text{jet}}, \phi^{\text{jet}}, \Delta \phi^{\text{jet}}, q_{\text{T}}^{\text{jet}}$ / Q

Momentum conservation:

$$
\vec{q}_\perp = -\sum_i^{soft} k_i
$$

 $\overline{1}$

Asymmetry Motivation

- 1. Probes soft gluon radiation *S*(*g*)
	- Soft gluon radiation can be the primary contribution to asymmetry
	- [10.1103/PhysRevD.104.054037](https://doi.org/10.1103/PhysRevD.104.05403)
- 2. Asymmetry is perturbative
	- Opportunity to compare to unfolded H1 data
- 3. May represent a vital reference for other signals, in particular TMD PDF measurements
	- Factorize contributions TMD PDFs and Soft gluon radiation
- 4. Observable is sensitive to gluon saturation phenomena, possibly measurable at the EIC
	- [10.1103/PhysRevLett.130.151902](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.151902)

Putting it Together*

$$
\phi = \text{acos}[(\vec{q}_{\perp} \cdot \overrightarrow{P_{\perp}}) / \vec{q}_{\perp} \overrightarrow{P_{\perp}}]
$$

$$
\vec{P}_{\perp} = (\vec{k}_{l,\perp} - \vec{k}_{J\perp})/2
$$
\n
$$
\vec{q}_{\perp} = \vec{k}_{l,\perp} + \vec{k}_{J\perp}
$$

- 1. Obtain the azimuthal asymmetry angle, $\boldsymbol{\phi}$, in each event
- 2. Obtain unfolding event weight from MultiFold Step 2, ω_i , for each event, *i*

$$
\frac{\sum_{i} \omega_{i} \cos(n\phi_{i})}{\sum_{i} \omega_{i}}
$$
 for $n = 1, 2, 3$

Done in bins of $\overrightarrow{q}_{\perp}$ GeV/c

Multifold already used to unfold:

 $p_{x}^{e}, p_{y}^{e}, p_{z}^{e}, p_{\text{T}}^{\text{jet}}, \eta^{\text{jet}}, \phi^{\text{jet}}, \Delta \phi^{\text{jet}}, q_{\text{T}}^{\text{jet}}$ / Q

EIC Calculation @ HERA kinematics

Harmonics of saturation with the inputs [GBW](https://arxiv.org/pdf/hep-ph/9807513.pdf) model and a TMD calculation CT18A PDF Plots above are for R = 0.4. Calculation done for this measurement w/ R = 1.0, Very good example of observable from 'legacy' dataset influencing future colliders

Moments of Asymmetry Results

- **• Three harmonics of the azimuthal angular asymmetry between the lepton** and leading jet as a function of q_\perp .
- **• Predictions from multiple simulations as well as ^a pQCD calculation are shown for comparison.**

Taking OmniFold one step *Further*

- Neural networks are well suited for handling high dimensional inputs
- We no longer *bin* for unfolding, but still use the same typical physics objects as inputs
	- Ex: Scattered lepton and Jet properties
- Why not expand what we use as inputs for the unfolding?

Quick OmniFold Recap

2 step iterative approach **2 step** iterative approach

- $T_{\rm syn}$ S_{imulated events after detector} $\frac{1}{2}$ sim. are reweighted to match the data 1. Events from detector level
- Create a "new simulation" by transforming weights to a proper function of the generated events 2. Create a "new simulation"

 $\cos^2\theta$ and $\cos^2\theta$ to $\cos^2\theta$ representation assiners ased to approximate $\frac{1}{2}$ Classifiers used to approximate **2** likelihood functions:

- 1. reco MC to Data reweighting
- $\overline{}$ $\overline{}$ 2. **Previous** and **new Gen** reweighting

Different OmniFold input

Reminder: The output of each step is an event weight, $w(x)$

Point Cloud Input

- Particle information is extracted using a Point cloud transformer* model ifacted using a **Point cloud**
- Model takes kinematic properties of particles and use the distance between particles in η - φ to learn the relationship between particles particles in η - φ to learn the relationship transformer models models
- Built in symmetries: permutation invariance \mathcal{L} s, permutation myanance \mathcal{L}
- Consider up to 30 particles per jet

 $e(k) + q(p_1) \to e'(k_{\ell}) + jet(k_{J}) + X$

Jet angularities Jet Angularities Simultaneously Measuring

Use jet observables to study different properties of QCD physics:

- Infrared and collinear (IRC) safe $\lambda^1_{a'}$ a = [0,0.5,1] and unsafe $\bm{p_T}$ D angularities
- Charge dependent observables: $\mathbf{Q}_{\mathbf{j}}$ and $\mathbf{N}_{\mathbf{c}}$
- Study the evolution of the observables with energy scale $Q^2 = -q^2$

$$
\lambda_{\beta}^{\kappa}=\sum_{i\in\mathrm{jet}}z_{i}^{\kappa}\left(\frac{R_{i}}{R_{0}}\right)^{\beta}
$$

Jet Angularity Results

• Herwig, Pythia, and Sherpa do ^a decent job

Credit: Vinicius Mikuni

Multi-Differential Results Multi-differential

Credit: Vinicius Mikuni

Fernando TA Fernando TA 7/1/24 7/1/24

Mean Value, for free Multi-differential m Value for froe

- **• More quark-like at higher energies: mean charge increases**
- **• Better agreement at higher** *Q*²

Credit: Vinicius Mikuni

Conclusions

- First Multidimensional un-binned unfolding using OmniFold and real data
- Promising measurement to probe soft gluon radiation, with importance for EIC
- Simultaneous unfolding for Jet Substructure
- MultiFold
	- This work presents a measurement of *moments*, requiring the *un-binned unfolding!*
	- Re-usability (cross sections + asymmetry measurement)
	- LHC measurement!<https://arxiv.org/pdf/2405.20041>
- H1 is a great example of exciting measurements using legacy datasets

[PhysRevLett.128.132002](https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.128.132002)

<https://doi.org/10.1016/j.physletb.2023.138101>

END

Backup

Investigation of Model Bias vs. *q*[⊥] [GeV]

- Leading uncertainty is model bias in the unfolding for $\cos(2\phi)$ and $\cos(3\phi)$
- Difference in the result when unfolding using RAPGAP and DJANGO
- Reporting Abs. Errors; central values are very close to 0.0
- The Total Uncertainty is quite stable between harmonics

Systematic Uncertainties

- Model Dependance:
	- The bias of the unfolding procedure is determined by taking the difference in the result when unfolding using RAPGAP and DJANGO
	- The two generators have different underlying physics, thus providing a realistic evaluation of the procedure bias
- QED Radiation Corrections
	- Difference of correction between RAPGAP and DJANGO
	- Take RAPGAP with and without QED corrections
	- Take DJANGO with and without QED corrections
- Systematic uncertainties are determined by varying an aspect of the simulation and repeating the unfolding
	- These values detail the magnitude of variation:
	- HFS-object energy scale: ± 1 $\%$
	- HFS-object azimuthal angle: ± 20 mrad
	- Scattered lepton azimuthal: ± 1 mrad
	- Scattered lepton energy: $\pm 0.5 1.0\,\%$

Further Background

- Machine learning (OmniFold) is used to perform an 8-dimensional, unbinned unfolding. Present four, binned results:
- Use the 8-dimensional result to explore the Q^2 dependence and any other observables that can be computed from the electron-jet kinematics

Extracted from the same phase-space as Yao's analysis, but reporting a different observable

OmniFold

1.
$$
\omega_n(m) = \nu_{n-1}^{\text{push}}(m) L[(1, \text{Data}), (\nu_{n-1}^{\text{push}}, \text{Sim.})](m)
$$

$$
\omega_n^{\text{pull}}(t) = \omega_n(m)
$$

- Detector level simulation is weighted to match the data
- $L[(1,Data), (\nu_{n-1}^{push}, Sim.)](m)$ approximated by classifier trained to distinguish the *Data* and *Sim*.

2.
$$
\nu_n(t) = \nu_0(t)L[(\omega_n^{\text{pull}}, \text{Gen.}), (\nu_0, \text{Gen.})](t)
$$

- Transform weights to a proper function of the generated events to create a new simulation
- $L[(\omega_n^{\text{pull}}, \text{Gen.}), (\nu_{n-1}, \text{Gen.})](t)$ approximated by classifier trained to distinguish Gen. with *pulled* weights from Gen. using weights $_{old}$ / weights_{new}

Each iteration of step 2 learns the correction from the original ν_0 weights Advantage: Easier implementation, no need to store previous ν_n model **Disadvantage: Learning correction from** ν_0 is more computationally expensive

IBU Generalization

$$
t_j^{(n)} = \sum_i \Pr_{n-1}(\text{truth is } j | \text{measure } i) \Pr(\text{measure } i)
$$

$$
= \sum_i \frac{R_{ij} t_j^{(n-1)}}{\sum_k R_{ik} t_k^{(n-1)}} \times m_i,
$$

$$
L[(w, X), (w', X')] (x) = \frac{p_{(w, X)}(x)}{p_{(w', X')}(x)},
$$

Differential Cross Section

• Back-to-back electron-jet production from ep collision,

$$
e(l) + p(P) \rightarrow e(l') + J_q(p_J) + X
$$

$$
\frac{d\sigma}{d^2 p_T dy_J d\phi_J d^2 q_T} = \frac{d\sigma}{2\pi d^2 p_T dy_J q_T dq_T} \left[1 + 2 \sum_{n=1}^{\infty} v_n (p_T, y_T) \cos(n(\phi_q - \phi_J)) \right]
$$
\n
$$
q_T
$$
: transverse momentum imbalance\n
$$
q_T = l'_T + p_{JT}
$$
\n
$$
p_T
$$
: jet transverse momentum\n
$$
y_J
$$
: jet rapidity

Note: slightly different angle definition, but background still applies]

Credit: Fanyi Zhao

 q_T :

37