Unfolding Measurements at H1 using Machine Learning

Fernando Torales Acosta

7/1/24

Fernando TA

Quick Overview

- Unfolding + OmniFold
- First OmniFold Measurement
- Previously inaccessible observable
 - Made possible with OmniFold
- OmniFold for Jet Substructure

H1 at HERA

- H1 Detector at the positron-proton collider, HERA. Hosted in Hamburg Germany
- Major goal was to study internal structure of the proton through deep inelastic scattering

$$e(k) + q(p_1) \to e'(k_\ell) + jet(k_J) + X$$

HERA publication overview

- HERA operated from 1992-2007
- Both ZEUS and H1 are still active
 - Data AND simulation are available to members for analysis
- HERA data used to study PDFs and perturbative QCD, low-x and diffraction, transition from soft to hard QCD

H1+ZEUS combined	8 publication
H1	223 publications
ZEUS	250 publications

Top-ten cited (excluding detector papers)

JHEP 1001 (2010) 109H1+ZEUS1000+ IEur.Phys.J. C21 (2001) 33H1700+ INucl.Phys. B470 (1996) 3H1500+ IEur.Phys.J. C21 (2001) 443ZEUS500+ IPhys.Lett. B315 (1993) 481ZEUS500+ INucl.Phys. B407 (1993) 515H1400+ IEur.Phys.J. C75 (2015) 580H1+ZEUS400+ IPhys.Lett. B316 (1993) 412ZEUS400+ IZ.Phys. C76 (1997) 613H1400+ IZ.Phys. C74 (1997) 207ZEUS400+ I

H1+ZEUS1000+ Data combination, PDFH1700+ Low-x, PDF, alpha_sH1500+ Low-x, PDFZEUS500+ Low-x, PDFZEUS500+ Observation of diffractionH1400+ Rise of F2 at low-xH1+ZEUS400+ Data combination, Low-x, PDFZEUS400+ Rise of F2 at low-xH1400+ Rise of F2 at low-xH1400+ Rise of F2 at low-xH1400+ Diffractive PDFZEUS400+ High Q² DIS

Really great example of maintaining 'legacy' datasets as our analysis methods improve

Unfolding

- Essentially: We want to remove unwanted detector effects from our experimental data
 - correct a whole dataset on a statistical level
 - combine data from multiple sources
- Un-binned?
 - Re-bin option for future analysis
 - Modify phase space in the future
 - New Observables that are function of previous unfolding

Detector-level

Particle-level

Motivating ML + Liklehood Ratios

How can we adjust one distribution to look like another?

- In practice, directly learning the individual densities, $p_A(\vec{x})$ and $p_B(\vec{x})$ is difficult
- Machine learning (classifiers) can directly approximate the *ratio* of the liklehoods

Credit: Mariel Pattee

Classifier functions can be re-used to directly approximate a likelihood ratio.

A vanilla NN classifying between two classes could be trained using binary cross-entropy loss:

$$L_{\rm BCE}[f] = -\int dx \left(p_A(x) \, \log(f(x)) + p_B(x) \, \log(1 - f(x)) \right)$$

where f(x) is the output of a NN classifier, and our datasets are sampled from these two probability distributions $p_A(x)$ and $p_B(x)$.

Credit: Mariel Pattee

Classifier functions can be re-used to directly approximate a likelihood ratio.

A vanilla NN classifying between two classes could be trained using binary cross-entropy loss:

$$L_{\rm BCE}[f] = -\int dx \left(p_A(x) \, \log(f(x)) + p_B(x) \, \log(1 - f(x)) \right)$$

To find where this is minimized, we need to find the extremum, i.e. differentiate with respect to f(x) and set equal to 0:

$$\frac{\partial L}{\partial f} = -\frac{\partial}{\partial f} \left(p_A(x) \log(f(x)) + p_B(x) \log(1 - f(x)) \right)$$
$$= -\frac{p_A(x)}{f(x)} + \frac{p_B(x)}{1 - f(x)}$$
$$\frac{\partial L}{\partial f} = 0 \Rightarrow \frac{f(x)}{1 - f(x)} = \frac{p_A(x)}{p_B(x)}$$
Likelihood ratio

Credit: Mariel Pattee

OmniFold

2 step iterative approach

- 1. Events from detector level sim. are reweighted to match the data
- 2. Create a "new simulation"by transforming weights to a proper function of the generated events

Classifiers used to approximate **2** likelihood functions:

- 1. reco MC to Data reweighting
- 2. **Previous** and **new Gen** reweighting

Some pretty consistent numbers: 4-5 Iterations, for single ensemble, ~5 ensembles

	Γ.
Lornono	1
E E I Z I I I	-

OmniFold Terms

H1

- Dimensionality:
 - 1 Observable: UniFold
 - Many: MultiFold
 - (Often used interchangeably with Or
 - All: OmniFold
- Steps
 - Step 1: Detector sim to Data
 - Step 2: Old Particle-level to new
- Iterations: Loops of Om
- Ensembles: Repetition of
 - To mitigate randomness fron

Experimental Setup

- H1 Data from 2006 and 2007 periods at 228 pb⁻¹(130 pb⁻¹)
 - Positron-proton and electron proton collisions

-
$$\sqrt{s} = 318 \text{ GeV}$$

- Fiducial Cuts:
 - 0.2 < y < 0.7
 - $Q^2 > 150 \text{ GeV}^2$
 - $p_T^{\text{jet}} > 10 \text{ GeV}$
 - $-1 < \eta_{\text{lab}} < 2.5$
 - $k_T, R = 1.0$
 - $q_\perp/Q < 0.25$
 - $q_\perp/p_{\mathrm{T},jet} < 0.3$

Q² = - q² y = Pq / pk P: incoming proton 4-vector
k: incoming electron 4-vector
q=k-k' : 4-momentum transfer

H1 Differential Cross Sections (Lepton-Jet correlations)

First multidimensional un-binned unfolding using OmniFold

 $e(k) + q(p_1) \rightarrow e'(k_\ell) + jet(k_J) + X$

Systematic Uncertainties

General Procedure

- Systematically vary MonteCarlo
- Both detector level and generator level sim.
- Re-do entire analysis, including unfolding
- Take full difference of systematic variations as uncertainty

Systematic uncertainties considered

- HFS energy scale: +- 1%
- HFS azimuthal angle: +- 20 mrad
- Lepton energy: +- 0.5% (mainly affects Q²)
- Lepton azimuthal angle: +- 1 mrad (mainly affects Q²)
- Model uncertainty: differences in unfolded results between Djangoh and Rapgap
- QED uncertainty: Use the variation of measured quantities when radiation is turned off in the simulation

Bootstrapping Uncertainty

- Simulate different ensembles of data
 - Each event is given an initial weight according to a poisson distribution with $\mu = 1$
 - Simulates ~100 "pseudo datasets"
 - Estimates statistical uncertainty of dataset
- Repeat entire unfolding process with different ensembles
 - Save final NN weights of OmniFold Procedure
 - Take the standard deviation of the spread in the unfolded results as the statistical uncertainty

14

Lepton Jet Asymmetry

Observable that was previously impossible to unfold!

- Total transverse momentum of the outgoing system $\vec{q}_{\perp} = \vec{k}_{\ell \perp} + \vec{k}_{J \perp}$, is typically *small* but *nonzero*
- Imbalance can come from perturbative initial and final state radiation
 - e.g. Emission of soft gluon with momentum $k_{\perp g}$
 - unrelated to TMDs or intrinsic transverse momentum of target gluons
- Depending on kinematics, soft gluon radiation can dominate

 $P_{\perp} \gg q_{\perp}$

- Radiative corrections enhanced approximately as $(\alpha_s \ln^2 P_{\perp}^2/q_{\perp}^2)^n$

 $e(k) + q(p_1) \rightarrow e'(k_\ell) + jet(k_J) + X$

Lepton Jet Asymmetry

Key Ingredients:

• q_{\perp} = *Total* transverse momentum

$$\vec{q}_{\perp} = \vec{k}_{\ell \perp} + \vec{k}_{J \perp}$$

$$\overrightarrow{P_{\perp}} = (\vec{k}_{\ell \perp} - \vec{k}_{J \perp}) \; / \; 2$$

• P_{\perp} = Transverse momentum d*ifference*

$$\phi = \arccos[(\vec{q}_{\perp} \cdot \overrightarrow{P_{\perp}}) / \vec{q}_{\perp} \quad \overrightarrow{P_{\perp}}]$$

Final Observable: $\langle \cos(n\phi) \rangle$ for n = 1, 2, 3

Momentum conservation:

$$\vec{q}_{\perp} = -\sum_{i}^{soft} k_{i}$$

Asymmetry Motivation

- 1. Probes soft gluon radiation S(g)
 - Soft gluon radiation can be the primary contribution to asymmetry
 - <u>10.1103/PhysRevD.104.054037</u>
- 2. Asymmetry is perturbative
 - Opportunity to compare to unfolded H1 data
- 3. May represent a vital reference for other signals, in particular TMD PDF measurements
 - Factorize contributions TMD PDFs and Soft gluon radiation
- 4. Observable is sensitive to gluon saturation phenomena, possibly measurable at the EIC
 - <u>10.1103/PhysRevLett.130.151902</u>

Putting it Together*

$$\phi = \operatorname{acos}[(\vec{q}_{\perp} \cdot \overrightarrow{P_{\perp}}) / \vec{q}_{\perp} \quad \overrightarrow{P_{\perp}}]$$

 $\vec{k}_{J\perp}$

etry t $\vec{k}_{l\perp}$ $\vec{k}_{l\perp}$ $\vec{k}_{l\perp}$ $\vec{k}_{l\perp}$ $\vec{q}_{\perp} = \vec{k}_{\ell\perp} + \vec{k}_{J\perp}$

1. Obtain the azimuthal asymmetry angle, ϕ , in each event

2. Obtain unfolding event weight from MultiFold Step 2, ω_i , for each event, i

$$\frac{\sum_{i} \omega_{i} \cos(n\phi_{i})}{\sum_{i} \omega_{i}} \text{ for } n = 1, 2, 3$$

Done in bins of $\overrightarrow{q_{\perp}}$ GeV/c

 $p_x^e, p_y^e, p_z^e, p_T^{jet}, \eta^{jet}, \phi^{jet}, \Delta \phi^{jet}, q_T^{jet}/Q$

7/1/24

EIC Calculation @ HERA kinematics

Plots above are for R = 0.4. Calculation done for this measurement w/ R = 1.0, Very good example of observable from 'legacy' dataset influencing future colliders Harmonics of saturation with the inputs <u>GBW</u> model and a TMD calculation CT18A PDF

Moments of Asymmetry Results

- Three harmonics of the azimuthal angular asymmetry between the lepton and leading jet as a function of q_{\perp} .
- Predictions from multiple simulations as well as a pQCD calculation are shown for comparison.

Taking OmniFold one step *Further*

- Neural networks are well suited for handling high dimensional inputs
- We no longer *bin* for unfolding, but still use the same typical physics objects as inputs
 - Ex: Scattered lepton and Jet properties
- Why not expand what we use as inputs for the unfolding?

Quick OmniFold Recap

2 step iterative approach

- 1. Events from detector level sim. are reweighted to match the data
- 2. Create a "new simulation"by transforming weights to a proper function of the generated events

Classifiers used to approximate **2** likelihood functions:

- 1. reco MC to Data reweighting
- 2. **Previous** and **new Gen** reweighting

Different OmniFold input

Reminder: The output of each step is an event weight, w(x)

Lornond	
	UTA

Point Cloud Input

 $e(k) + q(p_1) \rightarrow e'(k_\ell) + jet(k_J) + X$

24

- Particle information is extracted using a Point cloud transformer* model
- Model takes kinematic properties of particles and use the distance between particles in η - φ to learn the relationship between particles
- Built in symmetries: permutation invariance
- Consider up to **30** particles per jet

Simultaneously Measuring 6 Jet Angularities

Use jet observables to study different properties of QCD physics:

- Infrared and collinear (IRC) safe λ_{a}^{1} , a = [0,0.5,1] and unsafe $\mathbf{p}_{T}\mathbf{D}$ angularities
- Charge dependent observables:
 Q_i and N_c
- Study the evolution of the observables with energy scale
 Q² = -q²

$$\lambda_{\beta}^{\kappa} = \sum_{i \in \text{jet}} z_{i}^{\kappa} \left(\frac{R_{i}}{R_{0}}\right)^{\beta}$$

Credit: Vinicius Mikuni

Jet Angularity Results

• Herwig, Pythia, and Sherpa do a decent job

Credit: Vinicius Mikuni

Fernando TA

Multi-Differential Results

Credit: Vinicius Mikuni

Fernando TA

7/1/24

Mean Value, for free

- More quark-like at higher energies: mean charge increases
- Better agreement at higher Q^2

Credit: Vinicius Mikuni

Conclusions

- First Multidimensional un-binned unfolding using OmniFold and real data
- Promising measurement to probe soft gluon radiation, with importance for EIC
- Simultaneous unfolding for Jet Substructure
- MultiFold
 - This work presents a measurement of *moments*, requiring the *un-binned unfolding!*
 - Re-usability (cross sections + asymmetry measurement)
 - LHC measurement! <u>https://arxiv.org/pdf/2405.20041</u>
- H1 is a great example of exciting measurements using legacy datasets

PhysRevLett.128.132002

https://doi.org/10.1016/j.physletb.2023.138101

END

Backup

Investigation of Model Bias vs. q_{\perp} [GeV]

- Leading uncertainty is model bias in the unfolding for $\cos(2\phi)$ and $\cos(3\phi)$
- Difference in the result when unfolding using RAPGAP and DJANGO
- Reporting Abs. Errors; central values are very close to 0.0
- The Total Uncertainty is quite stable between harmonics

Systematic Uncertainties

- Model Dependance:
 - The bias of the unfolding procedure is determined by taking the difference in the result when unfolding using RAPGAP and DJANGO
 - The two generators have different underlying physics, thus providing a realistic evaluation of the procedure bias
- QED Radiation Corrections
 - Difference of correction between RAPGAP and DJANGO
 - Take RAPGAP with and without QED corrections
 - Take DJANGO with and without QED corrections
- Systematic uncertainties are determined by varying an aspect of the simulation and repeating the unfolding
 - These values detail the magnitude of variation:
 - HFS-object energy scale: $\pm 1~\%$
 - HFS-object azimuthal angle: ± 20 mrad
 - Scattered lepton azimuthal: ±1 mrad
 - Scattered lepton energy: $\pm 0.5 1.0\,\%$

Further Background

- Machine learning (OmniFold) is used to perform an 8-dimensional, unbinned unfolding. Present four, binned results:
- Use the 8-dimensional result to explore the Q^2 dependence and any other observables that can be computed from the electron-jet kinematics

Extracted from the same phase-space as Yao's analysis, but reporting a different observable

Lornond	

7/1/24

OmniFold

1.
$$\omega_n(m) = \nu_{n-1}^{\text{push}}(m) L[(1, \text{Data}), (\nu_{n-1}^{\text{push}}, \text{Sim.})](m)$$

 $\omega_n^{\text{pull}}(t) = \omega_n(m)$

- Detector level simulation is weighted to match the data
- $L[(1, \text{Data}), (\nu_{n-1}^{\text{push}}, \text{Sim.})](m)$ approximated by classifier trained to distinguish the *Data* and *Sim*.

2.
$$\nu_n(t) = \nu_0(t) L[(\omega_n^{\text{pull}}, \text{Gen.}), (\nu_0, \text{Gen.})](t)$$

- Transform weights to a proper function of the generated events to create a new simulation
- $L[(\omega_n^{\text{pull}}, \text{Gen.}), (\nu_{n-1}, \text{Gen.})](t)$ approximated by classifier trained to distinguish Gen. with *pulled* weights from Gen. using weights_{old} / weights_{new}

Each iteration of step 2 learns the correction from the original ν_0 weights Advantage: Easier implementation, no need to store previous ν_n model Disadvantage: Learning correction from ν_0 is more computationally expensive

IBU Generalization

 $t_{j}^{(n)} = \sum_{i} \Pr_{n-1}(\text{truth is } j | \text{measure } i) \Pr(\text{measure } i)$ $= \sum_{i} \frac{R_{ij} t_{j}^{(n-1)}}{\sum_{k} R_{ik} t_{k}^{(n-1)}} \times m_{i},$

$$L[(w,X),(w',X')](x) = \frac{p_{(w,X)}(x)}{p_{(w',X')}(x)},$$

Differential Cross Section

Back-to-back electron-jet production from ep collision,

$$e(l) + p(P) \rightarrow e(l') + J_q(p_J) + X$$

Note: slightly different angle definition, but background still applies]

Credit: Fanyi Zhao