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Unfolding Measurements 
at H1 using Machine Learning
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Quick Overview
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• Unfolding + OmniFold


• First OmniFold Measurement


• Previously inaccessible observable

- Made possible with OmniFold


• OmniFold for Jet Substructure
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H1 at HERA
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• H1 Detector at the positron-proton collider, HERA. Hosted in Hamburg Germany 
• Major goal was to study internal structure of the proton through deep inelastic scattering
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HERA publication overview
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• HERA operated from 1992- 2007


• Both ZEUS and H1 are still active

- Data AND simulation are available to 

members for analysis


• HERA data used to study PDFs 
and perturbative QCD, low-x and 
diffraction, transition from soft to 
hard QCD

CFNS workshop, May 2020 S.Schmitt, HERA introduction 5

The HERA publication harvest

● Both collaborations are still active
and open for new members

● Data are available for analysis at
DESY, including computing
infrastructure (batch system)

● Top-ten cited (excluding detector papers)

● 500+ citations: proton at low-x and PDFs

● 250+ citations: total cross-section, diffractive PDF,
diffractive vector mesons, pentaquark

● 200+ citations: charm, jets, DVCS

H1+ZEUS combined 8 publication

H1 223 publications

ZEUS 250 publications

JHEP 1001 (2010) 109 H1+ZEUS 1000+ Data combination, PDF
Eur.Phys.J. C21 (2001) 33 H1 700+ Low-x, PDF, alpha_s
Nucl.Phys. B470 (1996) 3 H1 500+ Low-x, PDF
Eur.Phys.J. C21 (2001) 443 ZEUS 500+ Low-x, PDF
Phys.Lett. B315 (1993) 481 ZEUS 500+ Observation of diffraction
Nucl.Phys. B407 (1993) 515 H1 400+ Rise of F2 at low-x
Eur.Phys.J. C75 (2015) 580 H1+ZEUS 400+ Data combination, Low-x, PDF
Phys.Lett. B316 (1993) 412 ZEUS 400+ Rise of F2 at low-x
Z.Phys. C76 (1997) 613 H1 400+ Difffractive PDF
Z.Phys. C74 (1997) 207 ZEUS 400+ High Q² DIS

Status: Feb 2020

HERA data are used mainly to study:
PDFs and perturbative QCD, low-x and diffraction,
transition from soft to hard QCD

CFNS workshop, May 2020 S.Schmitt, HERA introduction 5

The HERA publication harvest

● Both collaborations are still active
and open for new members

● Data are available for analysis at
DESY, including computing
infrastructure (batch system)

● Top-ten cited (excluding detector papers)

● 500+ citations: proton at low-x and PDFs

● 250+ citations: total cross-section, diffractive PDF,
diffractive vector mesons, pentaquark

● 200+ citations: charm, jets, DVCS

H1+ZEUS combined 8 publication

H1 223 publications

ZEUS 250 publications

JHEP 1001 (2010) 109 H1+ZEUS 1000+ Data combination, PDF
Eur.Phys.J. C21 (2001) 33 H1 700+ Low-x, PDF, alpha_s
Nucl.Phys. B470 (1996) 3 H1 500+ Low-x, PDF
Eur.Phys.J. C21 (2001) 443 ZEUS 500+ Low-x, PDF
Phys.Lett. B315 (1993) 481 ZEUS 500+ Observation of diffraction
Nucl.Phys. B407 (1993) 515 H1 400+ Rise of F2 at low-x
Eur.Phys.J. C75 (2015) 580 H1+ZEUS 400+ Data combination, Low-x, PDF
Phys.Lett. B316 (1993) 412 ZEUS 400+ Rise of F2 at low-x
Z.Phys. C76 (1997) 613 H1 400+ Difffractive PDF
Z.Phys. C74 (1997) 207 ZEUS 400+ High Q² DIS

Status: Feb 2020

HERA data are used mainly to study:
PDFs and perturbative QCD, low-x and diffraction,
transition from soft to hard QCD

Really great example of maintaining ‘legacy’ datasets as our analysis methods improve
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Unfolding
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• Essentially: We want to remove unwanted 
detector effects from our experimental data

- correct a whole dataset on a statistical level 

- combine data from multiple sources 


• Un-binned?

- Re-bin option for future analysis

- Modify phase space in the future

- New Observables that are function of previous 

unfolding

Omnifold*

4

2 step iterative approach
▰ Simulated events after detector interaction 

are reweighted to match the data
▰ Create a “new simulation” by transforming 

weights to a proper function of the generated 
events

Machine learning is used to approximate 2 
likelihood functions:
▰ reco MC to Data reweighting
▰ Previous and new Gen reweighting

* Andreassen et al. PRL 124, 182001 
(2020)
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Motivating ML + Liklehood Ratios
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11

Q: How can we adjust one distribution to look like another? 
A: Learn a reweighting function based on the ratio of their probability densities. 

How can we adjust one distribution to look like another?

• In practice, directly learning the individual 
densities,  and  is difficult


• Machine learning (classifiers) can directly 
approximate the ratio of the liklehoods

pA( ⃗x) pB( ⃗x)

w( ⃗x) =
pB( ⃗x)
pA( ⃗x)

10

“Likelihood ratio” 

Q: How can we adjust one distribution to look like another? 
A: Learn a reweighting function based on the ratio of their probability densities. 

pB( ⃗x)
pA( ⃗x)

Credit: Mariel Pattee
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13

Classifier functions can be re-used to directly approximate a likelihood ratio. 

A vanilla NN classifying between two classes could be trained using binary cross-entropy loss: 

where f(x) is the output of a NN classifier, and our datasets are sampled from these two 
probability distributions pA(x) and pB(x).  

Credit: Mariel Pattee
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Classifier functions can be re-used to directly approximate a likelihood ratio. 

A vanilla NN classifying between two classes could be trained using binary cross-entropy loss: 

To find where this is minimized, we need to find the extremum, i.e. differentiate with respect to        and set equal to 0:  

Likelihood ratio Rescaling of classifier output 

Credit: Mariel Pattee
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OmniFold
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Jetp
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Jetp

e e
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…

2 step iterative approach 

1. Events from detector level 
sim. are reweighted to match 
the data 

2. Create a “new simulation” 
by transforming weights to a 
proper function of the 
generated events

 

Classifiers used to approximate 2 
likelihood functions: 

1. reco MC to Data 
reweighting

2. Previous and new Gen 
reweighting 

Some pretty consistent numbers: 4-5 Iterations, for single ensemble, ~5 ensembles
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OmniFold Terms
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• Dimensionality:

- 1 Observable: UniFold

- Many: MultiFold 


‣ (Often used interchangeably with OmniFold)

- All: OmniFold


• Steps

- Step 1: Detector sim to Data

- Step 2: Old Particle-level to new Particle Level


• Iterations: Loops of OmniFold


• Ensembles: Repetition of the unfolding

- To mitigate randomness from the model
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• H1 Data from 2006 and 2007 
periods at 228 ( 130 )

- Positron-proton and electron proton 

collisions

-  GeV


• Fiducial Cuts:

- 

- 

-

pb−1 pb−1

s = 318

0.2 < y < 0.7
Q2 > 150 GeV2

pjet
T > 10 GeV

Experimental Setup

11

- 

- 

- 


-

−1 < ηlab < 2.5
kT, R = 1.0
q⊥/Q < 0.25
q⊥/pT,jet < 0.3

Experimental setup

3

Using 228 pb-1  of data collected 
by the H1 Experiment during 
2006 and 2007 at 318 GeV 
center-of-mass energy 

Phase space definition:
▰ 0.2 < y < 0.7
▰ Q2 > 150 GeV2

▰ Jet pT > 10 GeV
▰ -1 < 𝜂lab < 2.5

Jets are clustered with kt 
algorithm with R=1.0

Reconstructed hadrons using 
combined detector 
information: energy flow 
algorithm

27.5 GeV e+-  (k) 920 GeV p (P)

Q2 = - q2

 y = Pq / pk

 P: incoming proton 4-vector
 k: incoming electron 4-vector
 q=k-k’ : 4-momentum transfer
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H1 Differential Cross Sections  (Lepton-Jet correlations) 
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• Production cross sections as a function of , , 

• Simultaneous unfolding of eight observables:


-

pjet
T ηjet Δϕjet

pe
x , pe

y , pe
z , pjet

T , ηjet, ϕjet, Δϕjet, qjet
T /Q

RAPGAP describes the pjet
T and ηjetlab cross sections within

uncertainties, whereas DJANGOH describes the pjet
T cross

section within uncertainty and shows small but significant
differences with the ηjetlab cross section. PYTHIA8.3 describes
the low pjet

T spectrum well, but predicts a significantly
harder pjet

T spectrum beyond about 30 GeV; there are also
significant deviations in the ηjetlab cross section. HERWIG7.2

describes the entire pjet
T spectrum well, but deviates from

the data at high ηjetlab and for all Δϕjet and qjetT =Q. The
CASCADE calculations describe the pjet

T spectrum well but
fail for the ηjetlab shape; they also describe the data reasonably
well at low qjetT =Q and Δϕ while missing the large values,
likely due to missing higher-order contributions. While no
event generator describes the qjetT =Q and Δϕjet cross
sections over the entire range, the data are mostly contained
within the spread of predictions.
Even though uncertainties are not yet available for the

TMD predictions, the spread in predictions that use

different TMD sets (including CASCADE) is comparable
to the experimental and fixed-order uncertainties. This
suggests that these data will have constraining power
toward a global description of TMD and collinear effects
across scales.
Summary and conclusions.—Measurements of jet pro-

duction in neutral current DIS events with Q2 > 150 GeV2

and 0.2 < y < 0.7 have been presented. Jets are recon-
structed in the laboratory frame with the kT algorithm and
distance parameter R ¼ 1. The following observables are
measured: jet transverse momentum and pseudorapidity, as
well as the TMD-sensitive observables qjetT =Q (lepton-jet
momentum imbalance) and Δϕ (lepton-jet azimuthal angle
correlation).
This Letter provides the first measurement of lepton-jet

imbalance at high Q2, a variable recently proposed [33,34]
for probing TMD PDFs and their evolution. The data agree
in a wide kinematic range with calculations that use TMD
PDFs extracted from low Q2 semi-inclusive DIS data and
parton branching TMD PDFs extracted from other HERA
data. The experimental uncertainty is comparable to the
spread from predictions using different TMD sets, sug-
gesting that when a full TMD uncertainty breakdown is
available, the data will be able to constrain the models.
These measurements bridge the kinematic gap between

DIS measurements from fixed target experiments and
Drell-Yan measurements at hadron colliders, and may
provide a test of TMD factorization, TMD evolution,
and TMD universality. These measurements complement
previous and ongoing studies of TMD physics in hadronic
collisions [144–149] and provide a baseline for jet studies
in DIS of polarized protons and nuclei at the future Electron
Ion Collider [150,151].
This measurement also represents a milestone in the

use of ML techniques for experimental physics, as it
provides the first example of ML-assisted unfolding,
which is based on the recently proposed MULTIFOLD

method [65] and enables simultaneous and unbinned
unfolding in high dimensions. This opens up the possibility
for high dimensional explorations of nucleon structure with
H1 data and beyond.

We are grateful to the HERA machine group whose
outstanding efforts have made this experiment possible. We
thank the engineers and technicians for their work in
constructing and maintaining the H1 detector, our funding
agencies for financial support, the DESY technical staff for
continual assistance, and the DESY directorate for support.
We express our thanks to all those involved in securing not
only the H1 data, but also the software and working
environment for long term use, allowing the unique H1
data set to continue to be explored. The transfer from
experiment specific to central resources with long term
support, including both storage and batch systems, has
also been crucial to this enterprise. We therefore also

FIG. 2. Measured cross sections, normalized to the inclusive jet
production cross section, as a function of the jet transverse
momentum (top left) and jet pseudorapidity (top right), lepton-jet
momentum balance (qjetT =Q) (lower left), and lepton-jet azimuthal
angle correlation (Δϕjet) (lower right). Predictions obtained with
the PQCD (corrected by hadronization effects, “NP”) are shown
as well. Predictions obtained with the TMD framework are shown
for the qjetT =Q and Δϕjet cross sections. At the bottom, the ratio
between predictions and the data are shown. The gray bands
represent the total systematic uncertainty of the measurement; the
bars represent the statistical uncertainty of the measurement,
which is typically smaller than the marker size. The error bar on
the NNLO calculation represents scale, PDF, and hadronization
uncertainties. The statistical uncertainties on the MC predictions
are smaller than the markers.

PHYSICAL REVIEW LETTERS 128, 132002 (2022)

132002-6
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132002-6

First multidimensional un-binned unfolding using OmniFold
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Systematic Uncertainties
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Systematic uncertainties considered
• HFS energy scale: +- 1%
• HFS azimuthal angle: +- 20 mrad
• Lepton energy: +- 0.5% (mainly affects Q2)
• Lepton azimuthal angle: +- 1 mrad (mainly affects Q2)
• Model uncertainty: differences in unfolded results 

between Djangoh and Rapgap
• QED uncertainty: Use the variation of measured 

quantities when radiation is turned off in the simulation

Example

General Procedure
• Systematically vary MonteCarlo
• Both detector level and generator level sim.
• Re-do entire analysis, including unfolding
• Take full difference of systematic variations as 

uncertainty
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Bootstrapping Uncertainty
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• Simulate different ensembles of data

- Each event is given an initial weight according 

to a poisson distribution with 

- Simulates ~100 “pseudo datasets”

- Estimates statistical uncertainty of dataset


• Repeat entire unfolding process with 
different ensembles

- Save final NN weights of OmniFold Procedure

- Take the standard deviation of the spread in 

the unfolded results as the statistical 
uncertainty

μ = 1

q⊥ [GeV]

N
or

m
al

iz
ed

C
ou

nt
s
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Lepton Jet Asymmetry
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• Total transverse momentum of the outgoing system , 
is typically small but nonzero 

• Imbalance can come from perturbative initial and final state radiation 

- e.g. Emission of soft gluon with momentum 

- unrelated to TMDs or intrinsic transverse momentum of target gluons


• Depending on kinematics, soft gluon radiation can dominate

- Radiative corrections enhanced approximately as  

⃗q⊥ = ⃗kℓ⊥ + ⃗kJ⊥

k⊥g

(αs ln2 P2
⊥/q2

⊥)n

P⊥ ≫ q⊥

Fernando TA 6/24/24Fernando TA 6/24/24 1

⃗kl⊥

⃗kJ⊥

⃗q⊥ = ⃗kℓ⊥ + ⃗kJ⊥⃗P ⊥ = ( ⃗kl,⊥ − ⃗kJ⊥)/2
ϕ g

Observable that was previously impossible to unfold!
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Lepton Jet Asymmetry

16

•  = Total transverse 
momentum 

•   = Transverse 
momentum difference 

•  = Angle between  and 

q⊥

P⊥

ϕ q⊥ P⊥

⃗q⊥ = ⃗kℓ⊥ + ⃗kJ⊥

⃗P⊥ = ( ⃗kℓ⊥ − ⃗kJ⊥) / 2

ϕ = acos[( ⃗q⊥ ⋅ ⃗P⊥ ) / | ⃗q⊥ | | ⃗P⊥ | ]

Key Ingredients:

Momentum conservation:

Multifold used to unfold:  
pe

x , pe
y , pe

z , pjet
T , ηjet, ϕjet, Δϕjet, qjet

T /Qpjet
T , ηjet, ϕjetpe

x , pe
y

Final Observable: 
 for n = 1, 2, 3⟨cos(nϕ)⟩

Fernando TA 6/24/24Fernando TA 6/24/24 1

⃗kl⊥

⃗kJ⊥

⃗q⊥ = ⃗kℓ⊥ + ⃗kJ⊥⃗P ⊥ = ( ⃗kl,⊥ − ⃗kJ⊥)/2
ϕ g
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Asymmetry Motivation
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1. Probes soft gluon radiation 

- Soft gluon radiation can be the primary contribution to asymmetry

- 10.1103/PhysRevD.104.054037


2. Asymmetry is perturbative

- Opportunity to compare to unfolded H1 data


3. May represent a vital reference for other signals, in 
particular TMD PDF measurements


- Factorize contributions TMD PDFs and Soft gluon radiation


4. Observable is sensitive to gluon saturation 
phenomena, possibly measurable at the EIC


- 10.1103/PhysRevLett.130.151902

S(g)

https://doi.org/10.1103/PhysRevD.104.05403
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.151902
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Putting it Together*
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Detector-level MC
Si

m
ul

at
io

n
N

at
ur
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Weights
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Step 1: 
Reweight Sim. to Data

Step 2: 
Reweight Gen.

RAPGAP
DJANGOH

PYTHIA

GEANT

Jetp

e e

Jetp

e e

Geant3

Rapgap, 
Djangoh, 

…

ϕ = acos[( ⃗q⊥ ⋅ ⃗P⊥ ) / | ⃗q⊥ | | ⃗P⊥ | ]

1. Obtain the azimuthal asymmetry 
angle, , in each event 

2. Obtain unfolding event weight 
from MultiFold Step 2, , for 
each event, 

ϕ

ωi
i

 for 
∑i ωi cos(nϕi)

∑i ωi
n = 1, 2, 3

Done in bins of GeV/c| ⃗q⊥ |

Fernando TA 6/24/24Fernando TA 6/24/24 1

⃗kl⊥

⃗kJ⊥

⃗q⊥ = ⃗kℓ⊥ + ⃗kJ⊥⃗P ⊥ = ( ⃗kl,⊥ − ⃗kJ⊥)/2
ϕ g

Multifold already used to unfold:  
pe

x , pe
y , pe

z , pjet
T , ηjet, ϕjet, Δϕjet, qjet

T /Qpjet
T , ηjet, ϕjetpe

x , pe
y
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R = 0.4

EIC Calculation @ HERA kinematics
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⃗q⊥ = ⃗kℓ⊥ + ⃗kJ⊥⃗P⊥ = ( ⃗kℓ⊥ − ⃗kJ⊥) / 2

Harmonics of saturation with the inputs GBW model and a TMD calculation CT18A PDF 

arXiv: 2211.01647

Plots above are for R = 0.4. Calculation done for this measurement w/ R = 1.0, 
Very good example of observable from ‘legacy’ dataset influencing future colliders

 =140 GeV,  = 20 GeV, 
 = 1.5,  = 25 GeV 

Radiative corrections 
enhanced  

s P⊥
yl Q

∝ (αs ln2 P2
⊥/q2

⊥)n

https://arxiv.org/pdf/hep-ph/9807513.pdf
https://arxiv.org/abs/2211.01647
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Moments of Asymmetry Results
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• Three harmonics of the azimuthal angular asymmetry between the lepton 
and leading jet as a function of .   
• Predictions from multiple simulations as well as a pQCD calculation are 

shown for comparison. 

q⊥
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Taking OmniFold one step 
Further

21

• Neural networks are well suited for handling high 
dimensional inputs


• We no longer bin for unfolding, but still use the same 
typical physics objects as inputs

- Ex: Scattered lepton and Jet properties


• Why not expand what we use as inputs for the unfolding?
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Quick OmniFold Recap
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Omnifold*

4

2 step iterative approach
▰ Simulated events after detector interaction 

are reweighted to match the data
▰ Create a “new simulation” by transforming 

weights to a proper function of the generated 
events

Machine learning is used to approximate 2 
likelihood functions:
▰ reco MC to Data reweighting
▰ Previous and new Gen reweighting

* Andreassen et al. PRL 124, 182001 
(2020)

2 step iterative approach 

1. Events from detector level 
sim. are reweighted to match 
the data 

2. Create a “new simulation” 
by transforming weights to a 
proper function of the 
generated events

 

Classifiers used to approximate 2 
likelihood functions: 

1. reco MC to Data 
reweighting

2. Previous and new Gen 
reweighting 
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Different OmniFold input

23

Different input levels for each step

1. Particles are as inputs

2. Set of gen obs. Planned to 
unfold

 

5

Different input levels for each step
▰ Step 1 particles are used as inputs 
▰ Step 2 uses  the set of observables planned 

to unfold

Gen Jet 
observables

Reco 
Particles 
inside jet

Omnifold

Step 1 Step 2 5

Different input levels for each step
▰ Step 1 particles are used as inputs 
▰ Step 2 uses  the set of observables planned 

to unfold

Gen Jet 
observables

Reco 
Particles 
inside jet

Omnifold

Step 1 Step 2

Reminder: The output of each step is an event weight, w( ⃗x)
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Point Cloud Input
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Extracting particle information

6

▰ Particle information is extracted using a Point cloud 
transformer* model

▰ Model takes kinematic properties of particles and use the 
distance between particles in 𝜂-𝜑 to learn the relationship 
between particles

▰ Built in symmetries: permutation invariance
▰ Consider up to 30 particles per jet

* V. Mikuni and F. Canelli 2021 Mach. Learn.: Sci. Technol. 2 035027

Summary: The model is given much richer data in step 1, accounting for all 
possible covariates of the detector response 

Credit: Vinicius Mikuni

Extracting particle information

6

▰ Particle information is extracted using a Point cloud 
transformer* model

▰ Model takes kinematic properties of particles and use the 
distance between particles in 𝜂-𝜑 to learn the relationship 
between particles

▰ Built in symmetries: permutation invariance
▰ Consider up to 30 particles per jet

* V. Mikuni and F. Canelli 2021 Mach. Learn.: Sci. Technol. 2 035027
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Jet angularities

2

Use jet observables to study different 
properties of QCD physics:
▰ Infrared and collinear (IRC) safe 

𝛌1
a, a = [0,0.5,1] and unsafe pTD 

angularities
▰ Charge dependent observables: 

Qj and Nc
▰ Study the evolution of the 

observables with energy scale 
Q2 = -q2 

q

● zi: longitudinal momentum fraction
● qi: charge
● Ri distance from jet axis in (eta,phi)

Simultaneously Measuring 6 
Jet Angularities

25
Credit: Vinicius Mikuni
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Jet Angularity Results
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Inclusive 

10

Dedicated DIS 
generators do a good 
job everywhere, 
especially Rapgap

Herwig, Pythia,  and 
(yet unreleased update 
to) Sherpa do a decent 
job for most 
distributions

Credit: Vinicius Mikuni

•Dedicated DIS generators do good job (Rapgap and Djangoh) 
•Herwig, Pythia, and Sherpa do a decent job
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Multi-Differential Results
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Multi-differential

11

Q2  distribution is 
simultaneously 
unfolded, displaying 
the energy scale 
dependence of the 
observables, resulting 
in more than 30 
unfolded distributions 
provided
● Jet pT and eta 

also used during 
the unfolding

Credit: Vinicius Mikuni
•  distribution simultaneously unfolded, showing the energy scale dependenceQ2
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Mean Value, for free
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Multi-differential

12

Mean value of all distributions also unfolded for free

More quark-like 
behaviour at higher 
energies: mean jet 
charge becomes more 
positive

Agreement between 
general purpose 
generators improve at 
higher Q2

Credit: Vinicius Mikuni

•More quark-like at higher energies: mean charge increases 
• Better agreement at higher Q2



Fernando TA 7/1/24Fernando TA 7/1/24

Conclusions

29

• First Multidimensional un-binned unfolding using OmniFold and real data


• Promising measurement to probe soft gluon radiation, with importance for EIC


• Simultaneous unfolding for Jet Substructure


• MultiFold

- This work presents a measurement of moments, requiring the un-binned unfolding! 
- Re-usability (cross sections + asymmetry measurement)

- LHC measurement! https://arxiv.org/pdf/2405.20041 

• H1 is a great example of exciting measurements using legacy datasets

https://doi.org/10.1016/j.physletb.2023.138101
PhysRevLett.128.132002

https://arxiv.org/pdf/2405.20041
https://doi.org/10.1016/j.physletb.2023.138101
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.128.132002
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END

30
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Backup

31
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Investigation of Model Bias vs.  q⊥ [GeV]

32

• Leading uncertainty is model bias in the unfolding for  and 

• Difference in the result when unfolding using RAPGAP and DJANGO

• Reporting Abs. Errors; central values are very close to 0.0

• The Total Uncertainty is quite stable between harmonics

cos(2ϕ) cos(3ϕ)
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Systematic Uncertainties

33

• Model Dependance:

- The bias of the unfolding procedure is determined by taking the difference in the 

result when unfolding using RAPGAP and DJANGO

- The two generators have different underlying physics, thus providing a realistic 

evaluation of the procedure bias


• QED Radiation Corrections

- Difference of correction between RAPGAP and DJANGO

- Take RAPGAP with and without QED corrections

- Take DJANGO with and without QED corrections


• Systematic uncertainties are determined by varying an aspect of 
the simulation and repeating the unfolding

- These values detail the magnitude of variation:

- HFS-object energy scale: 

- HFS-object azimuthal angle:  mrad

- Scattered lepton azimuthal:  mrad

- Scattered lepton energy: 

±1 %
±20

±1
±0.5 − 1.0 %
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Further Background
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• Machine learning (OmniFold) is used to perform an 8-dimensional, 
unbinned unfolding. Present four, binned results:


• Use the 8-dimensional result to explore the  dependence and any other 
observables that can be computed from the electron-jet kinematics

Q2

Extracted from the same phase-space as Yao’s analysis, 
but reporting a different observable
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1. ωn(m) = νpush
n−1 (m)L[(1,Data), (νpush

n−1 , Sim.)](m)
ωpull

n (t) = ωn(m)

• Detector level simulation is weighted to match the data


•   approximated by  classifier trained 
to distinguish the Data and Sim.
L[(1,Data), (νpush

n−1 , Sim.)](m)

• Transform weights to a proper function of the generated events to 
create a new simulation


•  approximated by classifier 
trained to distinguish Gen. with pulled weights from Gen. using

 

L[(ωpull
n , Gen.), (νn−1, Gen.)](t)

weightsold / weightsnew

2. νn(t) = ν0(t)L[(ωpull
n , Gen.), (ν0, Gen.)](t)

Each iteration of step 2 learns the correction from the original  weights 
Advantage: Easier implementation, no need to store previous  model 

Disadvantage: Learning correction from  is more computationally expensive

ν0
νn

ν0

OmniFold
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IBU Generalization
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Differential Cross Section
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Credit: Fanyi Zhao
Note: slightly different angle definition, but 

background still applies ]


